TECHNICAL SPECIFICATIONS

INTERIM BAYS

250 RANCOCAS ROAD
MOUNT HOLLY, NEW JERSEY 08060

TECHNICAL SPECIFICATION SECTIONS 02 - APPENDIX

RELIEF FIRE COMPANY No. 1
17 PINE STREET
MOUNT HOLLY, NEW JERSEY 08060

MOUNT HOLLY FIRE DISTRICT NO. 1
100 GARDEN STREET
MOUNT HOLLY, NEW JERSEY 08060
(609) 518-7911

REGAN YOUNG, AIA
NEW JERSEY REGISTRATION NO. 21A00912100

RYEBREAD PROJECT 5475C
01 JULY 2020

Working together, we can create building envelopes/systems/interiors/contexts that are more safe, productive, healthy, efficient, and distinctive.
SECTION 000010 - TABLE OF CONTENTS

All sections have page numbers prefixed by the section number, as page number 000000-3 for page 3 of Section 000000.

<table>
<thead>
<tr>
<th>SECTION NUMBER</th>
<th>SECTION TITLE</th>
<th># PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>000010</td>
<td>TABLE OF CONTENT</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Refer to DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS & additional DIVISION 01 - GENERAL REQUIREMENTS specification Sections in Project Manual-Division 1 of the Relief Fire Company No. 1 Addition and Renovation Sections. These Divisions are common to this Work.

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

| 000010 | TABLE OF CONTENT ... | 3 |

DIVISION 01 - GENERAL REQUIREMENTS

014219.10	REFERENCE STANDARDS FOR SITEWORK ..	3
015526	MAINTENANCE & PROTECTION OF TRAFFIC	7
017123	FIELD ENGINEERING ...	2
017413	CLEANING & RESTORATION FOR SITEWORK	4

DIVISION 02 – EXISTING CONDITIONS

023000	SUBSURFACE INVESTIGATION ...	1
024113	SELECTIVE SITE DEMOLITION ..	4
024119	SELECTIVE DEMOLITION ..	8

DIVISION 03 - CONCRETE

031100	CONCRETE FORMWORK FOR SITEWORK ...	5
032100	CONCRETE REINFORCEMENT FOR SITEWORK ...	3
033000	CAST-IN-PLACE CONCRETE ..	12
033053	CONCRETE FOR SITEWORK ..	4
033660	CONCRETE SLAB TREATMENTS - EXPOSED CONCRETE	3

DIVISION 04 - MASONRY

| 042000 | UNIT MASONRY .. | 9 |

DIVISION 05 - METALS

051200	STRUCTURAL STEEL FRAMING ..	6
054000	COLD-FORMED METAL FRAMING ..	10
054400	COLD-FORMED METAL TRUSSES ..	7
Table of Contents

DIVISION 06 – WOOD, PLASTICS AND COMPOSITES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ROUGH CARPENTRY</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>SHEATHING</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>SHOP-FABRICATED WOOD TRUSSES</td>
<td>6</td>
</tr>
</tbody>
</table>

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>BITUMINOUS DAMPPROOFING</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>UNDER-SLAB VAPOR RETARDER</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>THERMAL INSULATION</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>WEATHER BARRIERS</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>FORMED METAL ROOF PANELS</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>PLASTIC SIDING</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>SHEET METAL FLASHING AND TRIM</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>ROOF SPECIALTIES</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>SNOW GUARDS</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>JOINT SEALANTS</td>
<td>6</td>
</tr>
</tbody>
</table>

DIVISION 08 - OPENINGS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>HOLLOW METAL DOORS AND FRAMES</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>SECTIONAL DOOR</td>
<td>11</td>
</tr>
<tr>
<td>25</td>
<td>DOOR HARDWARE</td>
<td>13</td>
</tr>
<tr>
<td>26</td>
<td>FIXED LOUVERS</td>
<td>7</td>
</tr>
</tbody>
</table>

DIVISION 22 - PLUMBING

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>GENERAL PROVISIONS FOR PLUMBING WORK</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>SLEEVES AND SLEEVE SEALS FOR PLUMBING WORK</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>ESCUTCHEONS FOR PLUMBING PIPING</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>GENERAL-DUTY VALVES FOR PLUMBING PIPING</td>
<td>5</td>
</tr>
<tr>
<td>34</td>
<td>HANGARS AND SUPPORTS FOR PLUMBING PIPING & EQUIPMENT</td>
<td>13</td>
</tr>
<tr>
<td>35</td>
<td>IDENTIFICATION FOR PLUMBING PIPING & EQUIPMENT</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>PLUMBING PIPING INSULATION</td>
<td>11</td>
</tr>
<tr>
<td>37</td>
<td>DOMESTIC WATER PIPING</td>
<td>16</td>
</tr>
<tr>
<td>38</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
<td>11</td>
</tr>
</tbody>
</table>

DIVISION 23 – HVAC

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>SPECIAL REQUIREMENTS FOR HVAC WORK</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>HANGARS & SUPPORTS FOR HVAC PIPING & EQUIPMENT</td>
<td>8</td>
</tr>
<tr>
<td>44</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING</td>
<td>8</td>
</tr>
<tr>
<td>46</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
<td>4</td>
</tr>
<tr>
<td>47</td>
<td>FACILITY NATURAL-GAS PIPING</td>
<td>7</td>
</tr>
<tr>
<td>48</td>
<td>GAS-FIRED UNIT HEATERS</td>
<td>6</td>
</tr>
</tbody>
</table>

DIVISION 26 – ELECTRIC

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
</table>
DIVISION 31 - EARTHWORK

1. 310000 SITE CLEARING ... 2
2. 312300 SITE EXCAVATION, FILLING & GRADING 12
3. 310319.10 EXCAVATION (UNCLASSIFIED) 3
4. 312319 DEWATERING ... 5
5. 312500 TEMPORARY SOIL EROSION & SEDIMENT CONTROL MEASURES 3
6. 313116 TERMITE CONTROL .. 4

DIVISION 32 – EXTERIOR IMPROVEMENTS

7. 320123 DENSE GRADED AGGREGATE BASE COURSE 3
8. 320126 HOT-MIXED ASPHALT (HMA-MIX) 7
9. 320172 TRAFFIC STRIPING & MARKINGS 3
10. 320330 SITE FURNISHINGS ... 3
11. 329113.16 MULCHING .. 3
12. 329119.13 TOPSOILING .. 4
13. 329219 FERTILIZING & SEEDING ... 5

DIVISION 34 – APPENDIX AND EXHIBITS

14. SOIL & FOUNDATION ENGINEERING REPORT 34
15. GEOPHYSICAL INVESTIGATION REPORT 5
16. FIGURE 1 - DESIGNATED UNDERGROUND UTILITIES 1
17. FIGURE 2 - EM-31 CONDUCTIVITY CONTOUR MAP 1
18. FIGURE 3 - EM-31 PHASE CONTOUR MAP 1
19. FIGURE 4 - EM-31 ANOMALY MAP 1

END OF SECTION 000010
SECTION 014219.10 – REFERENCE STANDARDS FOR SITEWORK

PART 1 GENERAL

1.1 DESCRIPTION

A. Work included:

1. Throughout the Contract Documents, reference is made to codes and standards which establish qualities and types of workmanship and materials, and which establish methods for testing and reporting on the pertinent characteristics.

2. Where materials or workmanship are required by these Contract Documents to meet or exceed the specifically named code or standard, it is the CONTRACTOR's responsibility to provide materials and workmanship which meet or exceed the specifically named code or standard.

3. It is also the CONTRACTOR's responsibility, when so required by the Contract Documents or by written request from the ARCHITECT, to deliver to the ARCHITECT all required proof that the materials or workmanship, or both, meet or exceed the requirements of the specifically named code or standard. Such proof shall be in the form requested in writing by the ARCHITECT, and generally will be required to be copies of a certified report of tests conducted by a testing agency approved for that purpose by the ARCHITECT.

1.2 QUALITY ASSURANCE

A. Familiarity with pertinent codes and standards: In procuring all items used in this work, it is the CONTRACTOR's responsibility to verify the detailed requirements of the specifically named codes and standards and to verify that the items procured for use in this work meet or exceed the specified requirements.

B. Rejection of noncomplying items: The ARCHITECT reserves the right to reject items incorporated into the work which fail to meet the specified minimum requirements.

C. Applicable standards listed in these specifications include, but are not necessarily limited to, standards promulgated by the following agencies and organizations:

1. AASHTO - American Association of State Highway and Transportation Officials (Formerly AASHO)

2. ACI - American Concrete Institute

3. ACPA - American Concrete Pipe Association

4. AI - Asphalt Institute

5. ASTM - American Society for Testing and Materials
6. AWWA - American Water Works Association
7. CRSI - Concrete Reinforcing Steel Institute
8. CDC - Concrete Technology Corporation
9. DEP - Department of Environmental Protection
10. EJMA - Expansion Joint Manufacturers Association
11. EPA - Environmental Protection Agency
12. FHWA - Federal Highway Administration, U.S. Department of Transportation
13. ITE - Institute of Traffic Engineers
14. MUTCD - Manual on Uniform Traffic Control Devices
15. NJDEP - New Jersey Department of Environmental Protection
16. NJDOT - New Jersey Department of Transportation Standard Specifications for Road and Bridge Construction dated 2007 (Standard Specifications). Terms used within the Standard Specifications shall be defined as follows:
 A. "Commissioner" as referenced in STANDARD SPECIFICATIONS shall be interpreted to mean the ARCHITECT.
 B. "Department" as referenced in STANDARD SPECIFICATIONS shall be interpreted to mean the ARCHITECT duly authorized by the OWNER to observe the construction of the improvements contemplated herein, or the duly appointed assistant or representative of said ARCHITECT.
 C. "Provide" to furnish and install complete.
 D. "Section" shall refer to either the specification section of these specifications in which case it will be followed by the term "of these specifications" or a specified section of the Standard Specifications in which case it will be followed by the term "of the STANDARD SPECIFICATIONS".
 F. "State" as referenced in STANDARD SPECIFICATIONS shall be interpreted to mean OWNER.
17. OSHA - Occupational Safety and Health Act
18. NRMCA - National Ready Mix Concrete Association

19. PCA - Portland Cement Association

20. PPI - Plastics Pipe Institute

END OF SECTION
SECTION 015526 - MAINTENANCE AND PROTECTION OF TRAFFIC

PART 1 GENERAL

1.1 RELATED WORK

A. Section 017413: Cleaning and Restoration for Sitework.

B. Section 312300.10: Site Excavation Filling and Grading

1.2 DESCRIPTION

A. Provide for maintenance and protection of traffic as specified herein and in the Standard Specifications, latest revisions.

B. Before beginning work on any phase of the project, furnish and install all construction signs, barricades, traffic guides, lights and other devices necessary to protect the public during construction.

C. Do not occupy with equipment, materials or personnel any roadway or sidewalk areas within or adjacent to the project that is open to traffic except as necessary during actual working hours.

D. Repair any damage to newly constructed or existing pavements as directed by ARCHITECT, at CONTRACTOR's expense, or repair will be made by others and cost of such repairs will be charged against CONTRACTOR.

1.3 REFERENCE STANDARDS

1.4 SUBMITTALS

A. All submittals shall be submitted through the Architect.

B. Traffic Control Plan:

1. Within ten (10) days after Notice to proceed and before work on the project begins, submit a Traffic Control Plan for the maintenance and protection of traffic.

2. Show type and location of barricades, lights, cones, barrels, signs and other devices.

C. Copies of all notices as specified herein.

D. Name, address, phone number and contact person supplying traffic control devices.
1.5 PROJECT CONDITIONS

A. Except as necessary during actual working hours, and then only with the specified authorization of the ARCHITECT or jurisdictional authority, the CONTRACTOR shall not occupy with his equipment, materials or personnel any roadway or sidewalk area within or adjacent to the project that is open to traffic.

B. No equipment or machinery having caterpillar or other heavy treads that mar or damage pavements shall be permitted to move over or operate from newly constructed or existing pavements unless such equipment or machinery is moved on suitable pontoons or trailers or operated on heavy planking or other suitable platforms.

C. The CONTRACTOR shall provide for prompt removal from the existing roadways of all dirt and other materials that have been spilled, washed, tracked or otherwise deposited thereon by his hauling and other operations whenever the accumulation is sufficient to cause the formation of mud, interfere with drainage, damage pavements, create a traffic hazard or dust condition.

D. The CONTRACTOR shall cease work in existing roads when snow is imminent. The CONTRACTOR is responsible for snow removal within the limits of the construction fencing. The CONTRACTOR shall make suitable provisions to mark the location of equipment and all other obstructions in the event of deep snow.

E. The requirements of the agency having jurisdiction over the roadways in which the CONTRACTOR is working shall govern.

F. The CONTRACTOR may be required to provide, in addition to flagmen, uniformed traffic officers to fulfill the expressed needs of the owner, municipality, or any governmental agency having jurisdiction and shall contact the same to determine their requirements.

G. During any suspension of the work, the CONTRACTOR shall make passable and shall open to traffic such portions of the project and temporary roadways or portions thereof as may be agreed upon between the CONTRACTOR and the ARCHITECT and the jurisdictional authority for the temporary accommodation of necessary traffic during the anticipated period of suspension. When work is resumed, the CONTRACTOR shall replace or renew all work or materials lost or damaged because of such temporary use of the project in every respect as though its prosecution had been continuous and without interference.

PART 2 PRODUCTS

2.1 GENERAL

A. Materials may be new or used but must be suitable for the intended purpose and must not violate requirements of applicable codes and standards.

2.2 CONES
A. Cones shall conform to Part 6, Section 6F.59 of the MUTCD.

B. Cones shall be a minimum of 18" high and be reflectorized.

C. Cones shall be kept clean and bright for maximum target value. Cones shall be orange in color. Rubber cones shall be painted at the place of manufacture. Plastic cones shall be polyvinyl chloride with the color molded into the plastic.

2.3 DRUMS

A. Drums shall conform to Part 6, Section 6F.62 of the MUTCD.

B. Drums shall be 36" high 18" diameter with horizontal, circumferential, orange and white reflectorized stripes, 4" to 8" wide.

2.4 BARRICADES

A. Barricades shall be Type I, Type II and Type III conforming to Part 6, Section C-8 with characteristics as follows:

<table>
<thead>
<tr>
<th>BARRICADE CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE*</td>
</tr>
<tr>
<td>Width of rail</td>
</tr>
<tr>
<td>Length of rail</td>
</tr>
<tr>
<td>Width of stripes**</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Number of Reflectorized Rail Faces</td>
</tr>
</tbody>
</table>

* For wooden barricades nominal lumber dimensions will be satisfactory
** For rails less than 3 feet long, 4 inch wide stripes shall be used

2.5 LIGHTING DEVICES

A. Lighting devices shall conform to Part 6, Section 6F.75 of the MUTCD and be as specified herein.
B. Batteries: Storage batteries or other bulk power sources, not part of a monolithic flasher unit shall be located as far as practicable from the traveled way and at ground level. Single flasher and steady burning units with self-contained batteries shall weigh not more than seven (7) pounds and when located on traffic control devices shall be securely fastened with the bottom tangent of the lens at 36 inches above the existing ground level. Battery powered dual alternate flashers located on advance warning signs shall have the battery power source located as far as practicable from the traveled way and at ground level.

C. Flashing Warning Lights

1. Low intensity flashing warning lights shall be installed on traffic control devices where specified elsewhere herein. Low intensity lights shall be battery operated yellow flashing lights with a one piece lens not less than seven inches in diameter. They shall flash at a rate of 55-75 flashes per minute and the flash duration shall be ten percent of each flash cycle. Light intensity shall not drop below ten candelas during the first 336 hours of continuous flashing as specified in ITE Standards Requirement 5.0, Paragraph 5.10, Section 1 of the ITE Standards for Flashing and Steady Burn Barricade Warning Lights. The lens shall be externally illuminated by reflex-reflection of the light from the headlights of the oncoming automotive traffic. Intensity when acting as a reflex-reflector shall be as in ITE Standard Requirement 5, Paragraph 5.30. If designed with a reflex reflector ring, the ring shall not be less than 1/2-inch in width around the periphery of the lens. Manufacturing design requirements shall conform to the ITE Standard as specified in the following requirements:

 Lens requirements..................6.00
 Head and Housing...................7.00
 Photoelectric Controls..............8.00
 Testing, Quality and Marking........9.00

2. Low intensity flashing warning lights when used where specified shall be kept lighted as specified for steady burning lights.

D. Steady Burning Warning Lights

1. Steady burning lights shall be installed on traffic control devices where specified elsewhere herein. Steady burning lights shall have low wattage yellow electric lamps having a minimum of ten beam candle power. They may be self-contained units with batteries or may be operated with a portable electric generator or from available utility lines. When a circuit in excess of fifty volts is used and such circuits including the light units are within reach of a person who can make contact with the ground, they shall be equipped with an UL approved ground-fault circuit interrupter. Steady burning lights when used where specified shall be kept lighted from one hour before sunset until one hour after sunrise, and through all hours of fog, smog, and other adverse atmospheric conditions affording insufficient visibility for the safe operation of traffic.

2.6 PAVEMENT MARKINGS
A. Temporary pavement markings shall be reflectorized plastic tape specifically designed for this purpose or traffic paint and glass beads conforming to the Standard Specifications. Color shall be yellow.

B. Painted temporary pavement markings shall be completely dry before opening roadway to traffic.

2.7 TEMPORARY CONSTRUCTION SIGNS

A. Temporary construction signs shall conform to Part 6, Section F of the MUTCD and be Regulatory, Warning or guide signs as appropriate as specified herein.

2.8 UNIFORMED TRAFFIC DIRECTORS

A. Uniformed traffic directors shall be trained and of average intelligence, good physical condition, including sight and hearing, having a mental alertness, a courteous but firm manner, neat appearance and sense of responsibility for the safety of the public. Traffic directors shall wear an orange vest. This garment shall be reflectorized for nighttime operations.

PART 3 EXECUTION

3.1 GENERAL

A. Keep the portion of the project being used by public traffic, whether it be through or local traffic, in such condition that pedestrian and vehicular traffic will be adequately and safely accommodated, both temporarily and permanently.

B. Erect, and/or maintain in substantial manner and good condition striping, barricades, signs, lights, traffic signals, cones, and other warning and danger signals and devices, including flagmen and uniformed traffic directors, appropriate and adequate for the specific needs.

C. Traffic control devices are to be provided at work site, closed roads, intersections, open excavations, locations of material storage, standing equipment and other obstructions, at points where usable traffic width of road is reduced, at points where traffic is diverted from its normal course or lanes, and other places of danger to vehicular or pedestrian traffic or to completed work.

D. Establish, repair, replace and relocate signs, lights, warning and protective services as required.

E. Do not permit equipment or machinery having Caterpillar or other heavy treads that mar or damage pavements to move over or to operate from newly constructed or existing pavement unless such equipment or machinery is moved on suitable pontoons or trailers.

3.2 EMERGENCY ACCESS
A. All streets and building access points shall be maintained such that Emergency Vehicles and Personnel shall have complete 24 hour access.

3.3 PRIVATE DRIVEWAYS

A. Notify owners of adjoining properties at least twenty-four (24) hours prior to beginning any work which will interfere with their passage.

B. Provide means of access for pedestrian and vehicular traffic at all private driveways and occupied buildings affected by the work of this contract.

C. During construction in the vicinity of driveways, access width at driveway entrance shall be plainly marked by lights and other devices as necessary.

3.4 DIVERSION OF TRAFFIC

A. Any restriction or diversion of traffic at any time shall be subject to approval of the Local Police Department.

B. Notify Municipal Police and Fire Departments at least twenty-four (24) hours prior to the closing of any roadway to traffic.

C. In accordance with the laws of 1983, c.84, the CONTRACTOR shall give seventy-two (72) hours notice (by the erection and maintenance of signs near the affected area) whenever a township road must be closed to vehicular traffic for a period of forty-eight (48) hours or more.

D. In case of an emergency, "every effort shall be made to notify the public as soon as possible of the closing."

3.5 APPLICATION

A. Barricades

1. Type I and Type II Barricades:

 a. Type I and Type II barricades shall be used when traffic is maintained through the area being constructed and/or reconstructed.

 b. Type II barricades shall be used singly or in groups to mark a specific hazard or they may be used in a series for channelizing traffic.

2. Type III Barricades

 a. Type III barricades shall be erected at points of closure when a road section is closed to traffic.

 b. Type III barricades may extend completely across a roadway and its shoulder or from curb to curb.
c. Type III barricades shall not be used on public thorofares without the written permission of the ARCHITECT and the authorities having jurisdiction.

B. Cones

1. Traffic cones shall be installed to channelize traffic during daylight hours only.

C. Drums

1. Drums shall be used to delineate the edge of a traveled way, lane changes, lane closures and other similar conditions such as to channelize traffic.

2. Drums may also be used to mark specific hazards.

3. Drums shall not be weighted with sand, water or other materials to the extent that would make them hazardous to motorists.

D. Lighting Devices

1. During hours of darkness a flashing warning light shall be placed on drums or barricades used singly.

2. Steady burn warning lights shall be used on drums or barricades used in a series for Traffic Channelization.

3.6 UNIFORMED TRAFFIC DIRECTORS

A. Uniformed traffic directors shall be provided when and where called for by the jurisdictional authority.

B. The CONTRACTOR may, with the permission of the respective police department, secure the services of uniformed police officers to direct traffic in those parts of the project under the jurisdiction of the respective municipality.

C. These directors shall be responsible and trained in their duties to direct pedestrian and vehicular traffic, shall act in conformance with the police department and while serving as traffic directors on this project, shall not be required to perform any other duties.

D. Flagmen who are normally hired to do other work on the project during the same work period shall not be considered as uniformed traffic directors.

E. When controlling traffic, uniformed traffic directors shall follow the procedures stipulated for flagmen in the MUTCD.

END OF SECTION
SECTION 017123 - FIELD ENGINEERING

PART 1 GENERAL

1.1 SECTION INCLUDES
A. Survey and field engineering.
B. Quality control.
C. Submittals.
D. Project record documents.

1.2 RELATED SECTIONS
A. General Conditions: Basic site engineering requirements.
B. Refer to Section 01 “Execution” for additional Field Engineering and Survey Requirements.

1.3 QUALITY ASSURANCE
A. Employ a Land Surveyor registered in the State of New Jersey and acceptable to Architect, to perform survey work of this section.
B. Submit evidence of Surveyor's Errors and Omissions insurance coverage in the form of an Insurance Certificate prior to commencement of survey.

1.4 SUBMITTALS FOR REVIEW
A. Submit name, address, and telephone number of Surveyor to ARCHITECT five (5) days prior to starting survey work.
B. On request, submit documentation verifying accuracy of survey work.
C. After completion of work, submit a certificate signed by the Land Surveyor to ARCHITECT, stating that the elevations and locations of the Work are in conformance with Contract Documents.

1.5 PROJECT RECORD DOCUMENTS
A. Maintain a complete and accurate log of control and survey work as it progresses.
B. On completion of major site improvements, prepare a certified survey illustrating dimensions, locations, angles, and elevations of construction and site work.
C. Submit Record Documents under provisions of Division 1.
PART 2 PRODUCTS - Not Used

PART 3 EXECUTION - Not Used

3.1 EXAMINATION

A. Verify locations of survey control points prior to starting work.

B. Promptly notify ARCHITECT of any discrepancies discovered.

3.2 SURVEY REFERENCE POINTS

A. Owner will locate and protect survey control and reference points.

B. Control datum for survey is that indicated on Drawings.

C. Protect survey control points prior to starting site work; preserve permanent reference points during construction.

D. Promptly report to ARCHITECT the loss or destruction of any reference point or relocation required because of changes in grades or other reasons.

E. Replace dislocated survey control points based on original survey control. Make no changes without prior written notice to ARCHITECT.

3.3 SURVEY REQUIREMENTS

A. Provide field engineering services. Utilize recognized engineering survey practices.

B. Establish elevations, lines and levels. Locate and lay out by instrumentation and similar appropriate means.

C. Site improvements including pavements; stakes for grading, fill and topsoil placement; utility locations, slopes, and invert elevations.

D. Grid or axis for structures.

E. Periodically verify layouts by same means.

3.4 SURVEYS FOR MEASUREMENT AND PAYMENT

A. Perform control surveys to establish measurement reference lines. Notify ARCHITECT prior to starting work.

B. CONTRACTOR's Responsibilities: Sign surveyor's field notes or keep duplicate field notes, and calculate and certify quantities.

END OF SECTION
SECTION 017413 - CLEANING AND RESTORATIONS FOR SITEWORK

PART 1 GENERAL

1.1 DESCRIPTION

A. Related work specified elsewhere:
 1. General requirements for cleaning and restorations: See the General Conditions.
 2. Cleaning for specific products or work: Specification Section for that work.

B. Maintain premises and public properties free from accumulations of waste, debris and rubbish caused by work operations.

C. At completion of work, remove waste materials, rubbish, tools, equipment, machinery and surplus materials; clean all sight exposed surfaces; leave project clean and ready for occupancy.

D. At completion of work, restore or replace, when and as directed by the ARCHITECT, any public or private property disturbed or damaged by CONTRACTOR's work operations to a condition at least equal to that existing prior to beginning work, or as otherwise specified. Materials shall be approved by the ARCHITECT.

PART 2 PRODUCTS

2.1 MATERIALS

A. For temporary and permanent vegetative restoration, use the following materials. All materials shall conform to the applicable Sections of the New Jersey Soil Conservation Service (NJSCS) Standards for Soil Erosion and Sediment Control, and the applicable Sections of the Standard Specifications.

B. Grass restorations: All grass restoration materials shall conform to the specification sections entitled, "Topsoiling," "Fertilizing and Seeding," and "Mulching."

C. Pavement restorations: All paving materials shall conform to the Standard Specifications.

D. Restoration of curbs and other concrete structures:
 1. Concrete:
 a. Shall conform to Section 903.03 of the Standard Specifications.
 b. Compressive Strength shall conform to specification Section entitled "Concrete for Sitework."
 2. Joint fillers: Section 914.01, bituminous cellular type.
3. Curing compound: Section 903.10, white-pigmented liquid.

E. All other materials: As approved by the ARCHITECT or authorities having jurisdiction.

PART 3 EXECUTION

3.1 METHODS OF CONDUCTING WORK - CLEANING

A. Requirements of regulatory agencies: Dispose of all solid waste materials (including concrete, blacktop, trees, stumps, unacceptable backfill material including heavy clay soils, organic materials, silts, rock) in permanently established licensed OSWA (Office of Solid Waste Administration, New Jersey Department of Environmental Protection) landfills, or in temporary landfill sites approved by OWSA.

B. Safety requirements:

1. Hazards control:
 a. Store volatile wastes in covered metal containers, and remove from premises daily.

 b. Prevent accumulation of waste which create a hazardous condition.

 c. Provide adequate ventilation during use of volatile or noxious substances.

2. Conduct cleaning and disposal operation to comply with local ordinances and anti-pollution laws:

 a. Do not burn or bury rubbish and waste materials on project site.

 b. Do not dispose of volatile wastes such as mineral spirits, oil or paint thinner in storm or sanitary drains.

 c. Do not dispose of wastes into streams or waterways.

C. Cleaning during construction:

1. Execute periodic cleaning to keep the work, the site, and adjacent properties free from accumulations of waste materials, rubbish and windblown debris resulting from construction operations.

2. Provide on-site containers for the collection of waste materials, debris and rubbish.

3. Remove waste materials, debris and rubbish from site periodically and legally dispose at location provided by CONTRACTOR.
D. Dust control:

1. Wet down dry materials and rubbish to lay dust and prevent blowing dust.

2. The CONTRACTOR shall employ construction methods and means that will keep flying dust to the minimum. He shall provide for the laying of water on the Project, and on roads, streets and other areas immediately adjacent to the Project limits, wherever traffic, or buildings that are occupied or in use, are affected by such dust caused by his hauling or other operations. The CONTRACTOR, shall control dust using calcium chloride, water or other materials approved by the ARCHITECT. If calcium chloride is used, the rate of application shall be approximately 1.5 pounds per square yard. The cost of carrying out the foregoing provisions shall be included in the prices bid for the various items in the Contracts.

The CONTRACTOR shall provide for prompt removal from existing roadways of all dirt and other materials that have been spilled, washed, tracked or otherwise deposited thereon by his hauling and other operations whenever the accumulation is sufficient to cause the formation of mud, interfere with drainage, damage pavements or create a traffic hazard.

E. Final cleaning:

1. Employ skilled workmen for final cleaning.

2. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from sight-exposed interior and exterior surfaces.

3. Broom clean exterior paved surfaces; rake clean other surfaces of the grounds.

4. Remove all temporary buildings and structures built by CONTRACTOR, all temporary works; tools, machinery or other construction equipment furnished by him.

5. Clean insides of manholes, valve boxes, inlets or other structures constructed, reconstructed or reset during CONTRACTOR's operations to remove debris, excess mortar of foreign materials.

6. Prior to final acceptance, CONTRACTOR shall conduct an inspection of all work areas to verify that the entire work is clean.

3.2 METHODS OF CONDUCTING WORK - RESTORATIONS

A. General: All existing structures, unpaved areas and paved areas disturbed or damaged during the work under this Contract shall be restored or replaced to a condition at least equal to that existing prior to beginning work, or as otherwise specified. The methods of the following Sections of the Standard Specifications.
B. Grass restoration: All grass restorations shall comply with the specification sections entitled “Topsoiling,” “Fertilizing and Seeding,” and “Mulching.”

C. For pavement and concrete restorations, use the following methods. All methods shall conform to the applicable Sections of the Standard Specifications.

2. Concrete curb restoration: All methods shall conform to Specification Section entitled “Concrete for Sitework”.

D. For temporary and permanent vegetative restoration, use the following methods. All methods shall conform to the applicable Sections of the New Jersey Soil Conservation Service (NJSCS) Standards for Soil Erosion and Sediment Control, and the applicable Sections of the Standard Specifications.

1. Soil Erosion and Sediment Control Measures: All materials shall conform to Specification Section entitled "Temporary Soil Erosion and Sediment Control."

2. Topsoiling: All materials shall conform to Specification Sections entitled "Topsoiling."

3. Fertilizing and Seeding: All materials shall conform to Specification Section entitled "Fertilizing and Seeding."

4. Mulching: All materials shall conform to Specification Section entitled "Mulching."

E. Restorations of curbs and other concrete structures:

2. Other concrete structures: Restore in accordance with applicable Articles of the Standard Specifications.

F. All other restorations: Restore in accordance with applicable Articles of the Standard Specifications, or as approved by the ARCHITECT or authorities having jurisdiction.

END OF SECTION
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

SECTION 023000 - SUBSURFACE INVESTIGATION

PART 1 GENERAL

1.1 DESCRIPTION

A. Subsurface investigation includes the excavation of test pits to ascertain the location of buried utilities or surface conditions.

B. Before laying pipes or constructing any structure, the CONTRACTOR shall ascertain the location and grade of utility pipes and other subsurface structures which may interfere with such construction. Test pits shall be excavated wherever necessary to obtain the required information, subject to the approval of the ARCHITECT.

PART 2 PRODUCTS

No products are involved.

PART 3 EXECUTION

3.1 METHODS OF WORK

A. The approximate location of known utility structures and facilities that may be encountered within and adjacent to the limits of the work are shown on the plans. The accuracy and completeness of this information is not guaranteed by the ARCHITECT, and the bidder is advised to ascertain for himself all the facts concerning the location of these utilities.

B. The CONTRACTOR shall adhere to Section 105.07, Cooperation with Utilities, of the Standard Specifications regarding location of and construction around public utilities.

C. All tests pits shall be backfilled with the material excavated. All backfill shall be thoroughly compacted in accordance with Specification Section entitled Site Excavation, Filling and Grading.

D. The CONTRACTOR shall permit the owners of the utilities of their agents, access to the site of the work at all times, in order to relocate or protect their facilities, and he shall cooperate with them in performing this work.

E. The CONTRACTOR shall cooperate with the utility owners concerned and shall notify them not less than ten (10) days in advance of the time he proposes to perform any work that will endanger or affect their facilities.

F. The CONTRACTOR shall call 1-800-272-1000 for a utility mark-out prior to any excavation activities.

END OF SECTION
PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specifications, apply to this section.

B. Refer to Division 02 section “Selective Site Demolition” for demolition and removal of selected site improvements.

C. Refer to Division 31 section “Selective Site Clearing” for site clearing and removal of above and below grade improvements.

1.2 DESCRIPTION

A. The work of this section includes:

1. Demolition, removal and/or disposal of selected site elements as shown on the Plans including, but not limited to, buildings, bituminous and concrete pavement, concrete curb, structures and all other obstructions.

2. Patching and repairs.

1.3 DEFINITIONS

A. Remove: Remove and legally dispose of items except those indicated to be reinstalled, salvaged, or to remain the OWNER's property.

B. Remove and Salvage: Items indicated to be removed and salvaged remain the OWNER's property. Remove, clean, and pack or create items to protect against damage. Identify contents of containers and deliver to OWNER's designated storage area.

C. Remove and Reinstall: Remove items indicated; clean, service, and otherwise prepare them for reuse; store and protect against damage. Reinstall items in the same locations or in locations indicated.

D. Existing to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by the ARCHITECT, items may be removed to a suitable, protected storage location during selective demolition and then cleaned and reinstalled in the original and/or new locations.

1.4 MATERIALS OWNERSHIP

A. Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain the OWNER's property, demolished materials shall become the CONTRACTOR's property and shall be removed from the site with further disposition at the CONTRACTOR's option.
B. Historical items indicated remain the OWNER's property. Carefully remove and salvage each item in a manner to prevent damage and deliver promptly to the OWNER.

C. Historical items, relics, and similar objects including, but not limited to, cornerstones, and their contents, commemorative plaques and tablets, antiques, and other items of interest or value to the OWNER, which may be encountered during selective demolition, remain the OWNER's property. Carefully remove and salvage each item or object in a manner to prevent damage and deliver promptly to the OWNER.

1.5 QUALITY ASSURANCE

A. Engage an experienced firm that has successfully completed selective demolition work similar to that indicated for this project.

B. Comply with governing NJDEP notification regulations before starting selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

1.6 PROJECT CONDITIONS

A. The OWNER and the ARCHITECT assumed no responsibility for actual condition of site elements to be selectively demolished.

B. Storage or sale of removed items or materials on-site will not be permitted.

1.7 SCHEDULING

A. Arrange demolition schedule so as not to interfere with OWNER's on-site operations. Coordinate with schedule and phasing indicated elsewhere.

PART 2 PRODUCTS

2.1 REPAIR MATERIALS

A. Use repair materials identical to existing materials.

1. Where identical materials are unavailable or cannot be used for exposed surfaces, use materials that visually match existing adjacent surfaces, use materials that visually match existing adjacent surfaces to the fullest extent possible.

2. Use materials whose installed performance equals or surpasses that of existing materials.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped.
B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

C. Inventory and record the condition of items to be removed and reinstalled and items to be removed and salvaged.

3.2 UTILITY SERVICES

A. Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

B. Do not interrupt existing utilities serving occupied or operating facilities, except when authorized in writing by OWNER and authorities having jurisdiction. Provide temporary services during interruptions to existing utilities, as acceptable to OWNER and to governing authorities. Provide not less than 48 hours' notice to OWNER if shutdown of service is required during changeover.

C. Locate, identify, disconnect, and seal or cap off indicated utility services to be selectively demolished.

1. Arrange to shut off indicated utilities with utility companies.

2. Where utility services are required to be removed, relocated, or abandoned, provide bypass connections to maintain continuity of service to other parts of the building before proceeding with selective demolition.

3.3 PREPARATION

A. Conduct demolition operations to prevent injury to people and damage to adjacent buildings and facilities to remain. Ensure safe passage of people around selective demolition area.

1. Erect temporary protection, such as walks, fences, railing, canopies, and covered passageways, where required by authorities having jurisdiction.

2. Protect existing site improvement, appurtenances, and landscaping to remain.

3. Erect a plainly visible fence around drip line of individual trees of around perimeter drip line of groups of trees to remain.

3.4 POLLUTION CONTROLS

A. Use water mist, temporary enclosures, and other suitable methods to limit the spread of dust and dirt. Comply with governing environmental protection regulations.

B. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
C. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before start of selective demolition.

3.5 SELECTIVE DEMOLITION

A. Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete work within limitation of governing regulation and as follows:

1. Proceed with selective demolition systematically.

2. Dispose of demolished items and materials promptly. On-site storage or sale of removed items is prohibited.

3. Return elements of construction and surfaces to remain to condition existing before start of selective demolition operations.

B. Demolish concrete and masonry in smaller sections. Cut concrete and masonry at juncture with construction to remain, using power-driven saw or hand tools; do not use power-driven impact tools.

C. Break up and remove concrete slabs on grade, unless otherwise shown to remain.

D. Saw cut asphalt paving at juncture with construction to remain, using power driven asphalt saw.

3.6 PATCHING AND REPAIRS

A. Promptly patch and repair holes and damaged surfaces caused to adjacent construction by selective demolition operations.

B. Where repairs to existing surface are required, patch to produce surfaces suitable for new materials.

3.7 DISPOSAL OF DEMOLISHED MATERIALS

A. Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site.

B. Do not burn demolished materials.

C. Transport demolished materials off OWNER's property and legally dispose of them.

END OF SECTION
SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Demolition and removal of selected portions of building or structure.
2. Demolition and removal of selected site elements.

B. Related Requirements:

1. Section 011000 "Summary" for restrictions on the use of the premises, Owner-occupancy requirements, and phasing requirements.
2. Section 017300 "Execution" for cutting and patching procedures.

1.3 DEFINITIONS

A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.

B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.

C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.

D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.
1.5 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site.
 1. Inspect and discuss condition of construction to be selectively demolished.
 2. Review structural load limitations of existing structure.
 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 5. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS

A. Proposed Protection Measures: Submit report, including drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and, for noise control. Indicate proposed locations and construction of barriers.

B. Schedule of Selective Demolition Activities: Indicate the following:
 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 3. Coordination for shutoff, capping, and continuation of utility services.
 4. Use of elevator and stairs.
 5. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.

C. Inventory: Submit a list of items to be removed and salvaged and deliver to Owner prior to start of demolition.

D. Predemolition Photographs or Video: Submit before Work begins.

1.7 CLOSEOUT SUBMITTALS

A. Inventory: Submit a list of items that have been removed and salvaged.

B. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.

1.8 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

 1. Before selective demolition, Owner will remove the following items:

 a. Loose historical artifacts.

C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Storage or sale of removed items or materials on-site is not permitted.

E. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

 1. Maintain fire-protection facilities in service during selective demolition operations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

B. Review record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.

C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
E. Perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.

1. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

F. Survey of Existing Conditions: Record existing conditions by use of measured drawings, preconstruction photographs, preconstruction videotapes and templates.

1. Comply with requirements specified in Section 013233 "Photographic Documentation."
2. Inventory and record the condition of items to be removed and salvaged. Provide photographs or video of conditions that might be misconstrued as damage caused by salvage operations.
3. Before selective demolition or removal of existing building elements that will be reproduced or duplicated in final Work, make permanent record of measurements, materials, and construction details required to make exact reproduction.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

1. Comply with requirements for existing services/systems interruptions specified in Section 011000 "Summary."

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.

1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
2. Arrange to shut off indicated utilities with utility companies.
3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.

a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.

3.3 PREPARATION

A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

1. Comply with requirements for access and protection specified in Section 015000 "Temporary Facilities and Controls."

B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
4. Cover and protect furniture, furnishings, and equipment that have not been removed.
5. Comply with requirements for temporary enclosures, dust control, heating, and cooling specified in Section 015000 "Temporary Facilities and Controls."

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

1. Strengthen or add new supports when required during progress of selective demolition.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and
chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.

3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.

4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.

5. Maintain adequate ventilation when using cutting torches.

6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.

7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.

8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

9. Dispose of demolished items and materials promptly.

B. Reuse of Building Elements: Project has been designed to result in end-of-Project rates for reuse of building elements as follows. Do not demolish building elements beyond what is indicated on Drawings without Architect's approval.

C. Removed and Salvaged Items:

1. Clean salvaged items.
2. Pack or crate items after cleaning. Identify contents of containers.
3. Store items in a secure area until delivery to Owner.
4. Transport items to Owner's storage area designated by Owner.
5. Protect items from damage during transport and storage.

D. Removed and Reinstalled Items:

1. Clean and repair items to functional condition adequate for intended reuse.
2. Pack or crate items after cleaning and repairing. Identify contents of containers.
3. Protect items from damage during transport and storage.
4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in small sections. Using power-driven saw, cut concrete to a depth of at least 3/4 inch (19 mm) at junctures with construction to remain. Dislodge concrete from
reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete. Neatly trim openings to dimensions indicated.

B. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, then remove concrete between saw cuts.

C. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.

D. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.

1. Do not allow demolished materials to accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
4. Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."

B. Hazardous Waste: Remove, package, transport and dispose of all asbestos-containing materials, mercury thermostats, fluorescent light fixture ballasts containing polychlorinated biphenyls (PCBs), fluorescent light bulbs and all items containing lead cadmium batteries (such as exit signs and emergency lighting fixtures) and any other items classified as universal waste in accordance with the provisions of the regulations promulgated by the United States Environmental Protection Agency (40 CFR 273) and the New Jersey Department of Environmental Protection (N. J. A. C. 7:26A-7).

C. Burning: Do not burn demolished materials.

D. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.
3.8 SELECTIVE DEMOLITION SCHEDULE

A. Prior to the commencement of the Work, the Contractor shall review with the Owner all materials & equipment to be removed. Should the Owner opt to keep any items, the Contractor shall salvage & deliver the items to the Owner on the site where so directed & properly dispose of all other demolition & construction materials.

END OF SECTION 024119
SECTION 031100 - CONCRETE FORMWORK FOR SITEWORK

PART 1 GENERAL

1.1 SUMMARY

A. Provide formwork in accordance with provisions of this section for cast-in-place concrete shown on the Drawings or required by other sections of these Specifications.

1.2 SUBMITTALS

A. Product Data: Within 15 calendar days after the CONTRACTOR has received the OWNER'S Notice to Proceed, submit manufacturer's data and installation instructions for proprietary materials including form coatings, ties, and accessories, and manufactured form systems if used.

1.3 QUALITY ASSURANCE

A. Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for proper performance of the work of this section.

B. Design of formwork is the CONTRACTOR's responsibility.

C. Standards: In addition to complying with pertinent regulations of governmental agencies having jurisdiction, comply with pertinent provisions of ACI 347.

PART 2 PRODUCTS

2.1 FORM MATERIALS

A. Except for metal forms, use new materials. Materials may be reused during progress of the work, provided they are completely cleaned and reconditioned, recoated for each use, and capable of producing formwork of the required quality.

B. For footings and foundations, use Douglas Fir boards or planks secured to wood or steel stakes, substantially constructed to shapes indicated and to support the required loads.

C. For studs, wales, and supports, use standard grade or better Douglas Fir, dimensions as required to support the loads but not less than 2" x 4".

D. Wall forms:

1. Exposed concrete surfaces:

 a. Use 3/4" minimum thickness Douglas Fir plywood, Grade B/B, Class I or II, exterior, sanded both sides, complying with PS-1.

 b. Seal edges and coat both faces with colorless coating which will not affect application of applied finishes.
2. Unexposed concrete surfaces:
 a. Use 1" x 6" shiplap Douglas Fir boards, surfaced one side and two edges, or 3/4" minimum thickness Douglas Fir plywood, Grade B/B plyform Class I or II, sanded both sides, mill-oiled.

E. Column forms, if required:
 1. For square or rectangular columns, use 2" thick Douglas Fir planks or joists, surfaced one side and two edges, or use metal forms.
 2. For round columns, use metal forms or patented paper tube forms approved by the ARCHITECT.
 3. Construct column forms with tight joints and securely clamped together with steel clamps.

2.2 FORM TIES

A. Hold inner and outer forms of vertical concrete together with combination steel ties and spreaders approved by the ARCHITECT.
 1. Space ties symmetrically in tiers and rows, each tier plumb from top to bottom and each row level.
 2. At horizontal pour lines, locate ties not more than 6" below the pour lines. Tighten after concrete has set and before the next pour is made.
 3. For exposed concrete surfaces, provide form ties of removable type with she-bolts equipped with permanent plugs and a system approved by the ARCHITECT for fixing the plugs in place.

2.3 DESIGN OF FORMWORK

A. General:
 1. Design, erect, support, brace, and maintain formwork so it will safely support vertical and lateral loads that might be applied, until such loads can be supported by the concrete structure.
 2. Carry vertical and lateral loads to ground by formwork system and in-place construction that has attained adequate strength for that purpose.
 3. Construct formwork so concrete members and structures are or correct size, shape, alignment elevation, and position.
4. Design forms and falsework to include assumed values of live load, dead load, weight of moving equipment operated on the framework, concrete mix height of concrete drop, vibrator frequency, ambient temperature, foundation pressures, stresses, lateral stability, and other factors pertinent to safety of the structure during construction.

5. Provide shores and struts with positive means of adjustment capable of taking up formwork settlement during concrete placing operations, using wedges or jacks or a combination thereof.

6. Provide trussed supports when adequate foundations for shores and struts cannot be secured.

7. Support form materials by structural members spaced sufficiently close to prevent objectionable deflection.

8. Fit forms of continuous surfaces to provide accurate alignment, free from irregularities, and within the allowable tolerances.

9. Provide formwork sufficiently tight to prevent leakage of cement paste during concrete placement. Solidly butt joints, and provide backup material at joints as required to prevent leakage and prevent fins.

10. Provide camber in formwork as required for anticipated deflections due to weight and pressures of fresh concrete and construction loads.

2.4 EARTH FORMS

A. Side forms for footing may be omitted, and concrete may be placed directly against excavation, only when requested by the CONTRACTOR and approved by the ARCHITECT.

B. When omission of forms is accepted, provide additional concrete 1" on each side of the minimum design profiles and dimensions shown on the Drawings.

PART 3 EXECUTION

3.1 SURFACE CONDITIONS

A. Examine the areas and conditions under which work of this sections will be performed. Correct conditions detrimental to timely and proper completion of the work. Do not proceed until unsatisfactory conditions are corrected.

3.2 FORM CONSTRUCTION

A. General:

1. Construct forms complying with ACI 347 to the exact sizes, shapes, lines, and dimensions shown, and as required to obtain accurate alignment, location, grades, and level and plumb work in the finished structure.
2. Provide for openings, offsets, keyways, recesses, moldings, reglets, chamfers, blocking, screeds, bulkheads, anchorages, inserts, and other features as required.

3. Tolerances shall be in accordance with the Section 3.3.1 of ACI 347.

B. Fabrication:

1. Fabricate forms for easy removal without hammering or prying against concrete surfaces.

2. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces.

4. Provide top forms for inclined surfaces where so directed by the ARCHITECT.

C. Forms for exposed concrete:

1. Drill forms to suit ties being used, and to prevent leakage of cement paste around tie holes. Do not splinter forms by driving ties through improperly prepared holes.

2. Provide sharp, clean corners at intersecting planes, without visible edges or offsets. Back the joints with extra studs or girts to maintain true, square intersections.

3. Use extra studs, wales, and bracing to prevent objectionable bowing of forms between studs, and to avoid bowed appearance in concrete. Do not use narrow strips of form material which will produce bow.

D. Corner treatment:

1. Unless shown otherwise, form chamfers with 1" x 1" strips, accurately formed and surfaced to produce uniformly straight lines and tight edges.

2. Extend terminal edges to required limit, and miter the chamfer strips at changes in direction.

E. Locate control joints as indicated on the Drawings and, where required but not shown on the Drawings, as approved by the ARCHITECT.

F. Provisions for other trades:

1. Provide openings in concrete formwork to accommodate work of other trades.

2. Verify size and location of openings, recesses, and chases with the trade requiring such items.
3. Accurately place and securely support items to be built into the concrete.

3.3 FORM COATINGS

A. Coat form contact surfaces with form coating compound before reinforcement is placed.

1. Do not allow excess form coating material to accumulate in the forms or to come in contact with surfaces which will bond to fresh concrete.

2. Apply the form coating material in strict accordance with its manufacturer's recommendations.

3.4 REMOVAL OF FORMS

A. General:

1. Do not disturb or remove forms until the concrete has hardened sufficiently to permit form removal with complete safety.

2. Do not remove shoring until the member has acquired sufficient strength to support its own weight, the load upon it, and the added load of construction.

3. Do not strip floor slabs in less than two days.

4. Do not strip wall concrete in less than 24 hours. Do not backfill until concrete has cured seven days.

5. When stripping time is less than specified curing time, measures shall be taken to provide adequate curing and thermal protection of the stripped concrete.

B. Finished surfaces:

1. Exercise care in removing forms from finished concrete surfaces so that surfaces are not marred or gouged, and that corners are true, sharp, and unbroken.

2. Release sleeve nuts or clamps, and pull the form ties neatly.

3. Do not permit steel spreaders, form ties, or other metal to project from, or be visible on, any concrete surface except where so shown on the Drawings.

4. Solidly pack form tie holes, rod holes, and similar holes in the concrete. For packing, use the cement grout specified in Specification Section entitled “Concrete for Sitework”. The holes shall be flushed with water before packing, screeding off flush, and grinding to match adjacent surfaces.

END OF SECTION
SECTION 032100 - CONCRETE REINFORCEMENT FOR SITEWORK

PART 1 GENERAL

1.1 SECTION INCLUDES

1.2 RELATED SECTIONS

A. Section 031100 - Concrete Formwork for Sitework.
B. Section 033053 - Concrete for Sitework.

1.3 REFERENCES

A. ACI 301 - Structural Concrete for Buildings.
B. ACI 318 - Building Code Requirements For Reinforced Concrete.
C. ACI SP-66 - American Concrete Institute - Detailing Manual.
D. ASTM A82 - Cold Drawn Steel Wire for Concrete Reinforcement.
E. ASTM A184 - Fabricated Deformed Steel Bar Mats for Concrete Reinforcement.
F. ASTM A185 - Welded Steel Wire Fabric for Concrete Reinforcement.
G. ASTM A496 - Deformed Steel Wire Fabric for Concrete Reinforcement.
H. ASTM A497 - Welded Deformed Steel Wire Fabric for Concrete Reinforcement.
I. ASTM A615 - Deformed and Plain Billet Steel Bars for Concrete Reinforcement.
J. ASTM A616 - Rail Steel Deformed and Plain Bars for Concrete Reinforcement.
K. ASTM A617 - Axle Steel Deformed and Plain Bars for Concrete Reinforcement.
L. ASTM A704 - Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement.
M. ASTM A706 - Low-Alloy Steel Deformed Bars for Concrete Reinforcement.
N. ASTM A767 - Zinc-Coated (Galvanized) Bars for Concrete Reinforcement.
O. ASTM A775 - Epoxy-Coated Reinforcing Steel Bars.
P. ASTM D3963 - Epoxy-Coated Reinforcing Steel.
Q. AWS D1.4 - Structural Welding Code for Reinforcing Steel.
R. AWS D12.1 - Welding Reinforcement Steel, Metal Inserts and Connections in Reinforced Concrete Construction.

S. CRSI - Concrete Reinforcing Steel Institute - Manual of Practice.

T. CRSI 63 - Recommended Practice For Placing Reinforcing Bars.

U. CRSI 65 - Recommended Practice For Placing Bar Supports, Specifications and Nomenclature.

1.4 SUBMITTALS FOR REVIEW

A. Shop Drawings: Indicate bar sizes, spacing, locations, and quantities of reinforcing steel and wire fabric, bending and cutting schedules, and supporting and spacing devices.

1.5 SUBMITTALS FOR INFORMATION

A. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.

B. Submit certified copies of mill test report of reinforcement materials analysis.

1.6 QUALITY ASSURANCE

A. Perform Work in accordance with ASTM A184.

B. Provide ARCHITECT with access to fabrication plant to facilitate inspection of reinforcement. Provide notification of commencement and duration of shop fabrication in sufficient time to allow inspection.

PART 2 PRODUCTS

2.1 REINFORCEMENT

A. Reinforcing Steel: ASTM A615, 60 ksi yield grade; deformed billet steel bars, unfinished.

B. Reinforcing Steel Mat: ASTM A615, 40 ksi yield grade; steel bars or rods, unfinished.

C. Stirrup Steel: ASTM A82, unfinished.

D. Welded Steel Wire Fabric: ASTM A185 Plain Type; in coiled rolls; unfinished.

2.2 ACCESSORIES

A. Tie Wire: Minimum 16 gage annealed type, epoxy coated. Patented system, manufactured by an approved source.
B. Chairs, Bolsters, Bar Supports, Spacers: Sized and shaped for strength and support of reinforcement during concrete placement conditions including load bearing pad on bottom to prevent vapor barrier puncture.

C. Special Chairs, Bolsters, Bar Supports, Spacers Adjacent to Weather Exposed Concrete Surfaces: Plastic coated steel type; size and shape as required.

PART 3 EXECUTION

3.1 PLACEMENT

A. Place, support and secure reinforcement against displacement. Do not deviate from required position.

B. Do not displace or damage vapor barrier.

C. Accommodate placement of formed openings.

D. Conform to applicable code for concrete cover over reinforcement.

3.2 FIELD QUALITY CONTROL

A. Inspect for acceptability.
SECTION 033000 – CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 SUMMARY

A. Extent of concrete work is shown on drawings.

1.3 SUBMITTALS

A. Product Data: Submit data for proprietary materials and items, including reinforcement and forming accessories, admixtures, patching compounds and others as required by Architect.

B. Samples: Submit samples of materials as requested by Architect, including names, sources and descriptions.

C. Laboratory Test Reports: Submit laboratory test reports for concrete materials and mix design test.

D. Materials Certificates: Provide materials certificates in lieu of materials laboratory test reports when permitted by Architect. Materials certificates shall be signed by manufacturer and Contractor, certifying that each material item complies with, or exceeds, specified requirements. Provide certification from admixture manufacturers that chloride content complies with specification requirements.

1.4 QUALITY ASSURANCE

A. Codes and Standards: Comply with provisions of following codes, specifications and standards, except where more stringent requirements are shown or specified:

1. ACI 301 "Specifications for Structural Concrete for Buildings".
2. ACI 318 "Building Code Requirements for Reinforced Concrete".
3. Concrete Reinforcing Steel Institute (CRSI), "Manual of Standard Practice".

B. Concrete Testing Service: Engage a testing laboratory acceptable to Architect to perform material evaluation tests and to design concrete mixes.
C. Materials and installed work may require testing and retesting at anytime during progress of work. Tests, including retesting of rejected materials for installed work, shall be done at Contractor's expense.

PART 2 - PRODUCTS

2.1 FORM MATERIALS

A. Forms for Exposed Finish Concrete: Plywood, metal, metal-framed plywood faced, or other acceptable panel-type materials, to provide continuous, straight, smooth, exposed surfaces. Furnish in largest practicable sizes to minimize number of joints and to conform to joint system shown on drawings.

B. Forms for Unexposed Finish Concrete: Plywood, lumber, metal, or other acceptable material. Provide lumber dressed on at least 2 edges and one side for tight fit.

C. Form Coatings: Provide commercial formulation form-coating compounds that will not bond with, stain, nor adversely affect concrete surfaces, and will not impair subsequent treatments of concrete surfaces.

2.2 REINFORCING MATERIALS

A. Reinforcing Bars: ASTM A 615, Grade 60, deformed.

B. Steel Wire: ASTM A 82, plain, cold-drawn steel.

E. Supports for Reinforcement: Bolsters, chairs, spacers and other devices for spacing, supporting and fastening reinforcing bars and welded wire fabric in place. Use wire bar type supports complying with CRSI specifications.

2.3 CONCRETE MATERIALS

A. Portland Cement: ASTM C 150, Type I or Type II.

1. Use one brand of cement throughout project, unless otherwise acceptable to Architect.

B. Normal Weight Aggregates: ASTM C 33, and as herein specified. Provide aggregates from a single source for exposed concrete.

C. Light Weight Aggregates: ASTM C330 and as herein specified, coarse shale, slate or slag aggregate, free from expanded clay.
D. Water: Drinkable.

E. Air-Entraining Admixture: ASTM C 260, certified by manufacturer to be compatible with other required admixtures.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. "Sika Aer"; Sika Corp.
 c. "MB-VR or MB-AE"; Master Builders.
 d. "Darex AEA" or "Daravair"; W.R. Grace.
 e. Architect approved equal.

F. Water-Reducing Admixture: ASTM C 494, Type A, and containing not more than 0.05 percent chloride ions.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. "Eucon WR-75" or "Eucon WR-89"; Euclid Chemical Co.
 c. "Pozzolith 322N"; Master Builders.
 d. Architect-approved equal.

G. High-Range Water-Reducing Admixture (Super Plasticizer) ASTM C 494, Type F or Type G and containing not more than 0.05 percent chloride ions.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. "Daracem 100" or "WRDA-19"; W.R. Grace.
 b. "Eucon 37"; Euclid Chemical Co.
 c. "Rheobuild 1000"; Master Builders.
 d. "Sika 86"; Sika Corporation.
 e. Architect-approved equal.

H. Water-Reducing, Non-Chloride Accelerator Admixture: ASTM C 494, Type E, and containing not more than 0.024 percent chloride ions.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. "Accelguard 80"; Euclid Chemical Co.
 b. "Daraset"; W.R. Grace
 c. “Plastocrete 161FL” or “SikeSet NC”; Sika Corporation
 d. Architect-approved equal.

I. Water-Reducing, Retarding Admixture: ASTM C 494, Type D and containing not more than 0.05 percent chloride ions.

1. Products: Subject to compliance with requirements, provide one of the following:
b. "Eucon Retarder 75"; Euclid Chemical Co.
d. "Plastocrete 161R"; Sika Corporation.
e. Architect-approved equal.

J. Prohibited Admixtures: Calcium chloride thyocyanates or admixtures containing more than 0.05 percent chloride ions are not permitted.

2.4 RELATED MATERIALS

A. Extruded Polystyrene Board Insulation: Rigid closed-cell extruded, expanded polystyrene insulation board with integral high-density skin, complying with ASTM C-578 Type IV: min. 25 psi compressive strength ASTM D 1621: k value of 0.20 ASTM C 518: 0.30% maximum water absorption ASTM C272: 1.1 perm/inch max water vapor transmission: manufacturer's standard length and widths.

1. Manufacturer: Subject to compliance with requirements, provide products of one of the following or an approved equal:

 a. Dow Chemical Co: Midland MI
 b. VC Industries/V.5 Gypsum: Chicago, IL.
 c. GreenGuard XPS: Pactive LLC: Austin, TX
 d. Architect-approved equal.

B. Non-Shrink Grout: CRD-C 621, factory pre-mixed grout.

1. Available Products: Subject to compliance with requirements, products which may be incorporated in the work include, but are not limited to, the following:

2. Products: Subject to compliance with requirements provide one of the following:

3. Non-metallic

 a. "Euco-NS"; Euclid Chemical Co.
 b. “Duragrout”; L&M Construction Chemicals, Inc.
 c. "Masterflow 713"; Master Builders
 e. Architect-approved equal.

C. Absorptive Cover: Burlap cloth made from jute or kenaf weighing approximately 9 oz. per sq. yd., complying with AASHTO M 182, Class 2.

D. Moisture-Retaining Cover: One of the following, complying with ASTM C 171.

1. Waterproof paper.
2. Polyethylene film.
3. Polyethylene-coated burlap.
E. Clear curing and sealing compound (VOC Compliant): The compound shall have 30% solids content minimum, and will not yellow under ultraviolet light after 500 hours of test in accordance with ASTM C-1315 and will have test data from an independent testing laboratory indicating a maximum moisture loss of 0.039 grams per sq. cm when applied at a rate of 300 sq. ft. per gallon. Sodium silicate compounds are not permitted.

3. Product: “Kure-n-Seal 30 VOC” by Sonneborne

F. Vapor Barrier: Provide vapor barrier which conforms to ASTM E1745, Class A. The membrane shall have a water-vapor transmission rate no greater than 0.01 gr./ft²/hr/inch Hg when tested in accordance with ASTM E96. The vapor barrier shall be placed over prepared base material where indicated below slabs on grade. Vapor barrier shall be no less than 15 mil thick. Installation of vapor barrier to comply with ASTM E1643.

1. Product: Stego Wrap (15 mil) Vapor Barrier by Stego Industries LLC
2. Product: VaporBlock (15 mil) by Raven Industries
3. Product: Zero Perm by Alumiseal
5. Architect-approved equal.

2.5 PROPORTIONING AND DESIGN OF MIXES

A. Prepare design mixes for each type and strength of concrete by either laboratory trial batch or field experience methods as specified in ACI 301. If trial batch method used, use an independent testing facility acceptable to Architect for preparing and reporting proposed mix designs. The testing facility shall not be the same as used for field quality control testing.

B. Submit written reports to Architect and Structural Engineer of each proposed mix for each class of concrete at least 15 days prior to start of work. Do not begin concrete production until mixes have been reviewed by Architect.

C. Design mixes to provide normal weight concrete with the following properties, as indicated on drawings and schedules:

D. For normal weight aggregate mixes: 4000 psi 28-day compressive strength; W/C ratio, 0.51 maximum.

E. Adjustment to Concrete Mixes: Mix design adjustments may be requested by Contractor when characteristics of materials, job conditions, weather, test results or other circumstances warrant; at no additional cost to Owner and as accepted by Architect. Laboratory test data for revised mix design and strength results must be admitted to and accepted by Architect before using in work.

F. Admixtures:
1. Use water-reducing admixture or high range water-reducing admixture (super plasticizer) in concrete as required for placement and workability.

2. Use high-range water-reducing admixture in pumped concrete, concrete for industrial slabs, architectural concrete, parking structure slabs, concrete required to be watertight and concrete with water/cement ratios below 0.50.

3. Use admixtures for water-reducing and set-control in strict compliance with manufacturer's directions.

4. Use air-entraining admixture in exterior exposed concrete, unless otherwise indicated. Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having air content within following limits.

 a. 5% for maximum 2" aggregate
 b. 6% for maximum 3/4" aggregate
 c. 7% for maximum 1/2" aggregate

G. Slump Limits: Proportion and design mixes to result in concrete slump at point of placement as follows:

1. Ramps, slabs and sloping surfaces: Not more than 3".
2. Reinforced foundation systems: Not less than 1" and not more than 3".
3. Concrete containing HRWR admixture (super-plasticizer): Not more than 8" after addition of HRWR to site-verified 2"-3" slump concrete.
4. Other concrete: Not less than 1" nor more than 4"

2.6 CONCRETE MIXING

A. Ready-Mix Concrete: Comply with requirements of ASTM C94, and as herein specified.

B. During hot weather, or under conditions contributing to rapid setting of concrete, a shorter mixing time than specified in ASTM C 94 may be required.

PART 3 - EXECUTION

3.1 FORMS

A. Design, erect, support, brace and maintain formwork to support vertical and lateral loads that might be applied until such loads can be supported by concrete structure. Construct formwork so concrete members and structure are of correct size, shape, alignment, elevations and position.

B. Construct forms to sizes, shapes, lines and dimensions shown, and to obtain accurate alignment, location, grades, level and plumb work in finished structures. Provide for openings, offsets, sinkages, keywarp, recesses, moldings, rustications, reglets, chamfers, blocking, sreads, bulkheads, anchorages and inserts, and other features, required in work. Use selected materials to obtain required finishes. Solidly butt joints and provide back-up at joints to prevent leakage of cement paste.
3.2 PLACING REINFORCEMENT

A. Comply with Concrete Reinforcing Steel Institute's recommended practice for "Placing Reinforcing Bars", for details and methods of reinforcement placement and supports, and as herein specified.

1. Avoiding cutting or puncturing vapor retarder during reinforcement placement and concreting operations.

B. Clean reinforcement of loose rust and mill scale, earth, ice and other materials which reduce or destroy bond with concrete.

C. Accurately position, support and secure reinforcement against displacement by formwork, construction, or concrete placement operations. Locate and support reinforcing by metal chairs, runners, bolsters, spacers and hangers, as required.

D. Place reinforcement to obtain at least minimum coverages for concrete protection. Arrange, space and securely tie bars and bar supports to hold reinforcement in position during concrete placement operations. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.

E. Install welded wire fabric in as long lengths as practicable. Lap adjoining pieces at least one full mesh and lace splices with wire. Offset end laps in adjacent widths to prevent continuous laps in either direction.

3.3 JOINTS

A. Construction Joints: Locate and install construction joints as necessary.

B. Control Joints: Locate and install control joints as indicated or at a maximum spacing of 30 feet. Locate at a spacing which does not impair appearance of the structure as acceptable to Architect. Use “SOFFCUT” saw to cut joints in slab. Joint to be cut the same day as the pour.

C. Joint filler and sealant materials are specified in Division-7 sections of these specifications.

3.4 INSTALLATION OF EMBEDDED ITEMS

A. General: Set and build into work anchorage devices and other embedded items required for other work that is attached to, or supported by, cast-in-place concrete. Use setting drawings, diagrams, instructions and directions provided by suppliers of items to be attached thereto.

B. Edge Forms and Screed Strips for Slabs: Set edge forms, or bulkheads and intermediate screed strips for slabs to obtain required elevations and contours in finished slab surface. Provide and secure units sufficiently strong to support types of screed strips by use of strike-off templates or accepted compacting type screeds.
3.5 CONCRETE PLACEMENT

A. Preplacement inspection: Before placing concrete, inspect and complete formwork installation, reinforcing steel and items to be embedded or cast-in. Notify other crafts to permit installation of their work; cooperate with other trades in setting such work. Moisten wood forms immediately before placing concrete where form coatings are not used.

1. Apply temporary protective covering to lower 2’ of finished walls adjacent to poured floor slabs and similar conditions, and guard against spattering during placement.

B. General: Comply with ACI 304R "Guide for Measuring, Mixing, Transporting and Placing Concrete", and as herein specified.

C. Deposit concrete continuously or in layers of such thickness that no concrete will be placed on concrete which has hardened sufficiently to cause the formation of seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as herein specified. Deposit concrete as nearly as practicable to its final location to avoid segregation.

D. Placing Concrete Slabs: Deposit and consolidate concrete slabs in a continuous operation, within limits of construction joints, until the placing of a panel or section is completed.

E. Consolidate concrete during placing operations so that concrete is thoroughly worked around reinforcement and other embedded items and into corners.

F. Bring slab surfaces to correct level with straightedge and strikeoff. Use bull floats or darbies to smooth surface, free of humps or hollows. Do not disturb slab surfaces prior to beginning finishing operations.

G. Maintain reinforcing in proper position during concrete placement operations.

H. Cold Weather Placing: Protect concrete work from physical damage or reduced strength which would be caused by frost, freezing actions or low temperatures, in compliance with ACI 306R.

I. Do not use calcium chloride, salt and other materials containing antifreeze agents or chemical accelerators, unless otherwise accepted in mix designs.

J. Hot Weather Placing: When hot weather conditions exist that would seriously impair quality and strength of concrete, place concrete in compliance with ACI 305R.

3.6 MONOLITHIC SLAB FINISHES

A. Float Finish: Apply float finish to monolithic slab surfaces to receive trowel finish and other finishes as hereinafter specified, and slab surfaces which are to be covered with membrane or elastic waterproofing, membrane or elastic roofing, or sand-bed terrazzo, and as otherwise indicated.
B. After screeding, consolidating and leveling concrete slabs, do not work surface until ready for floating. Begin floating when surface water has disappeared or when concrete has stiffened sufficiently to permit operation of power-driven floats, or both. Consolidate surface with power-driven floats, or by hand-floating if area is small or inaccessible to power units. Check and level surface plane to tolerances of FF18 - FL15. Cut down high spots and fill low spots. Uniformly slope surfaces to drains. Immediately after leveling, refloat surface to a uniform, smooth, granular texture.

C. Trowel Finish: Apply trowel finish to monolithic slab surfaces to be exposed-to-view, and slab surfaces to be covered with resilient flooring, carpet, ceramic or quarry tile, paint, or other thin film finish coating system.

D. After floating, begin first trowel finish operation using a power driven trowel. Begin final troweling when surface produces a ringing sound as trowel is moved over surface. Consolidate concrete surface by final hand-troweling operation, free of trowel marks, uniform in texture and appearance, and with surface leveled to tolerances of FF20 - FL17. Grind smooth surface defects which would telegraph through supplied floor covering system.

E. Non-Slip Broom Finish: Apply non-slip broom finish to exterior concrete platforms, steps and ramps and elsewhere as indicated.

3.7 CONCRETE CURING AND PROTECTION

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Start initial curing as soon as free water has disappeared from concrete surface after placing and finishing. Weather permitting, keep continuously moist for not less than 7 days.

C. Begin final curing procedures immediately following initial curing and before concrete has dried. Continue final curing for at least 7 days in accordance with ACI 301 procedures. Avoid rapid drying at end of final curing period.

D. Curing Methods: Perform curing of concrete by curing and sealing compound, by moist curing, by moisture-retaining cover curing and by combinations thereof, as herein specified.

E. Provide moisture curing by following methods.

1. Keep concrete surface continuously wet by covering with water.
2. Continuous water-fog spray.
3. Covering concrete surface with specified absorptive cover, thoroughly saturating cover with water and keeping continuously wet. Place absorptive cover to provide coverage of concrete surfaces and edges, with 4” lap over adjacent absorptive covers.
F. Provide moisture-cover curing as follows:
 1. Cover concrete surfaces with moisture-retaining cover for curing concrete, place in widest practicable width with sides and ends lapped at least 3" and sealed by waterproof tape or adhesive. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

G. Do not use membrane curing compounds on surfaces which are to be covered with coating material applied directly to concrete, liquid floor hardener, waterproofing, damp proofing, membrane roofing, flooring (such as ceramic or quarry tile, glue-down carpet), painting and other coatings and finish materials, unless otherwise acceptable to Architect.

H. Curing Unformed Surfaces: Cure unformed surfaces, such as slabs, floor topping, and other flat surfaces by application of appropriate curing method.

I. Final cure concrete surfaces to receive liquid floor hardener or finish flooring by use of moisture retaining cover, unless otherwise directed.

3.8 MISCELLANEOUS CONCRETE ITEMS

A. Equipment Bases and Foundations: Provide machine and equipment bases and foundations, as shown on drawings. Set anchor bolts for machines and equipment to template at correct elevations, complying with certified diagrams or templates of manufacturer furnishing machines and equipment.

B. Grout base plates and foundations as indicated, using specified non-shrink grout. Use non-metallic grout for exposed conditions, unless otherwise indicated.

3.9 CONCRETE SURFACE REPAIRS

A. Repair of Unformed Surfaces: Test unformed surfaces, such as monolithic slabs, for smoothness and verify surface plane to tolerances specified for each surface and finish. Correct low and high areas as herein specified. Test unformed surfaces sloped to drain for trueness of slope, in addition to smoothness using a template having required slope.

B. Repair finished unformed surfaces that contain defects which affect durability of concrete. Surface defects, as such, include crazing, cracks in excess of 0.01" wide or which penetrate to reinforcement or completely through non-reinforced sections regardless of width, spalling, pop-outs, honeycomb, rock pockets and other objectionable conditions.

C. Correct high areas in unformed surfaces by grinding, after concrete has cured at least 14 days.

D. Correct low areas in unformed surfaces during or immediately after completion of surface finishing operations by cutting out low areas and replacing with fresh concrete. Finish repaired areas to blend into adjacent concrete. Proprietary patching compounds may be used when acceptable to Architect.
E. Underlayment Application: Leveling of floors for subsequent finishes may be achieved by use of specified underlayment material.

3.10 QUALITY CONTROL TESTING DURING CONSTRUCTION

A. Contractor will employ a testing laboratory to perform the following tests, inspect formwork and reinforcement placement and to submit test reports.

B. Sampling and testing for quality control during placement of concrete may include the following, as directed by Architect.

C. Sampling Fresh Concrete: ASTM C 172, except modified for slump to comply with ASTM C 94.

1. Slump: ASTM C 143; one test at point of discharge for each day's pour of each type of concrete; additional tests when concrete consistency seems to have changed.

2. Air Content: ASTM C 173, volumetric method for lightweight or normal weight concrete; ASTM C 231 pressure method for normal weight concrete; one for each day's pour of each type of air-entrained concrete.

D. Compression Test Specimen: ASTM C 31; one set of 4 standard cylinders for each compressive strength test, unless otherwise directed. Mold and store cylinders for laboratory cured test specimens except when field-cure test specimens are required.

E. Compressive Strength Tests: ASTM C 39; one set for each day's pour exceeding 5 cu. yds. plus additional sets for each 50 cu. yds. over and above the first 25 cu. yds. of each concrete class placed in any one day; one specimen tested at 7 days, two specimens tested at 28 days, and one specimen retained in reserve for later testing if required.

F. When frequency of testing will provide less than 5 strength tests for a given class of concrete, conduct testing from at least 5 randomly selected batches or from each batch if fewer than 5 are used.

G. Test results will be reported in writing to Architect, Structural Engineer and Contractor within 24 hours after tests. Reports of compressive strength tests shall contain the project identification name and number, date of concrete placement, name of concrete testing service, concrete type and class, location of concrete batch in structure, design compressive strength at 28 days, concrete mix proportions and materials; compressive breaking strength and type of break for both 7-day tests and 28-day tests.

H. Nondestructive Testing: Impact hammer, sonoscope or other nondestructive device may be permitted but shall not be used as the sole basis for acceptance or rejection.

I. Additional Tests: The testing service will make additional tests of in-place concrete when test results indicate specified concrete strengths and other characteristics have not been attained in the structure, as directed by Architect. Testing service may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42, or by
other methods as directed. Contractor shall pay for such tests when unacceptable concrete is verified.

END OF SECTION 033000
SECTION 033053 - CONCRETE FOR SITEWORK

PART 1 GENERAL

1.1 DESCRIPTION

A. Provide all non-reinforced and reinforced cast-in-place concrete, complete in place as indicated on the Plans and Specifications.

PART 2 PRODUCTS

2.1 MATERIALS

A. Cement used shall conform to the following requirements of the ASTM as amended and revised to date.

B. Standard Portland Cement ASTM Designation C-150, Type 3.

C. High Early Strength Portland Cement ASTM Designation C-150, Type 3.

D. Air Entraining Portland Cement ASTM Designation C-150, Type 1A.

E. Air Entraining Admixtures ASTM Designation C-260.

F. Water Reducing Admixtures ASTM Designation C-494, Type A, shall be proportioned in accordance with A.G.I. 211.1-77 in order to obtain the requirements of ASTM Designation C-494. Use shall be in accordance with A.C.I. recommendations for water reducing agents, and shall be as manufactured by Masterbuilders, Euclid, Sika or approved equal.

G. Curing Compounds ASTM Designation C-390 for Liquid Membrane-forming Compounds.

H. Joint Material ASTM Designation D-994 for Bituminous Type material or ASTM Designation D-1751 for Non-extruding and Resilient Bituminous Type material.

I. Aggregates, both fine and coarse, shall conform to the requirements therefore of ASTM Designation C-33. Standard size number of the coarse aggregate shall be in conformance with Article 4.1.2 of Addenda A, and aggregate gradation requirements therefore shall conform to ASTM Designation C-33. The maximum coarse aggregate shall be not more than one-fourth the smallest clearance between forms, reinforcement or any exposed surfaces, in any combination thereon.

J. Water shall be clean, fresh and free of oils, acids, salts, organic matter or other injurious substances.
K. Unless otherwise provided, all concrete shall be air entrained having 6% of entrained air with a tolerance of ±1 1/2%, and shall be produced by using Standard Portland Cement with additive or Air Entraining Portland Cement with or without additional additive as may be required.

L. Except where otherwise specifically provided or indicated on Plans, concrete shall be Class 4000 PSI for all surface structures, and Class 3000 PSI for all subsurface structures, and have a three inch (3") slump with a tolerance of ±1".

 1. Concrete curb at driveways shall attain a strength of not less than 3000 PSI in 3 days.

M. Cement, aggregates, water and air entrainment methods and materials shall also conform to Section 903 of the Standard Specifications.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Reference standards included in this section:

 1. Section 405 of the Standard Specifications: Concrete Surface Course
 2. Section 607 of the Standard Specifications: Curbs
 3. Section 903.10 of the Standard Specifications: Curing Materials for Concrete
 4. Section 914 of the Standard Specifications: Joint Filler, Preformed

B. Submittals:

 Certificates: All deliveries of concrete shall be accomplished by delivery slips, copies of which shall be provided to ARCHITECT by the CONTRACTOR.

C. Environmental requirements:

 1. Allowable concrete temperatures:

 a. Cold weather: 60 degrees F Fahrenheit (60°F) when discharged from the mixer.

 b. Hot weather: Maximum concrete temperature is 80 degrees Fahrenheit (80°F).

 2. Do not place concrete during rain, when atmospheric temperature is at or below 40 degrees Fahrenheit (40°F), or when conditions are otherwise unfavorable as determined by the ARCHITECT.

D. Protection:
1. When directed by ARCHITECT, protect new concrete curb from traffic for a minimum of seven (7) days.

2. Method of protection shall be approved by ARCHITECT prior to beginning work.

E. Only enough water shall be added to make concrete workable for its intended use. The ARCHITECT will determine the slump ranges within which the CONTRACTOR must work. Ready mix or transit mix concrete may be used if obtained from sources approved by the ARCHITECT. Equipment used to proportion and mix concrete on the job shall be subject to the approval of the ARCHITECT.

F. Forms shall conform to the shapes, lines, dimensions, and grades shown on the Plans. They shall be firmly braced, tight and sufficiently substantial to prevent movement, bulging, or mortar leakage. Wherever concrete will be exposed to view the form therefore shall be smooth and clean. Forms for footings may be omitted wherever soil conditions and workmanship permit accurate excavation to size & is approved by the ARCHITECT. All forms shall be completely removed.

G. Reinforcement shall be accurately cut, bent and placed in accordance with the Plans. It shall be free of excessive scale or any foreign material that would tend to reduce bond. It shall be securely supported, tied and fastened to prevent movement while concrete is being placed.

H. Subgrades, excavations and soil bases for all concrete work shall be properly finished to the prescribed lines, grades and dimensions, and shall be approved by the ARCHITECT before concrete is placed. All areas to receive concrete shall be free of frost, foreign matter and excessive water, provided however, that forms and soil surfaces shall be uniformly damp when the concrete is placed.

I. Concrete shall be handled and placed so as to avoid any segregation. Concrete which has begun to set or which has been contaminated with foreign materials or to which too much water has been added shall not be used. Pouring of concrete shall generally be a continuous operation until the placing of individual section has been completed. Concrete shall be thoroughly compacted with vibrators or by other suitable means. Ready mixed concrete hauled in truck mixers or truck agitators shall be placed within ninety (90) minutes from the time water was added.

J. Concrete shall not be poured when the atmospheric temperature is below forty degrees (40°F) or when there is any precipitation, unless precautions satisfactory to the ARCHITECT have been taken to prevent any damage to the work; however, this shall not, in any way, relax the performance and appearance requirements of the work.

1. When the ambient temperature is expected to fall below 40 degrees Fahrenheit (40°F), the concrete shall be cured and protected in accordance with Subsection 504.03.02, Subpart (b), of the Standard Specifications.
K. All concrete shall be finished, and the CONTRACTOR shall provide a curing environment as directed by the ARCHITECT. Curing shall be by keeping the concrete surfaces wetted for a period not less than three (3) days. When directed to do so by the ARCHITECT, the CONTRACTOR shall apply a curing compound. No additional compensation shall be made when a curing compound is required.

L. Expansion joints, dummy joints, construction joints and other appurtenances shall be provided as shown on the Plans or otherwise specified. Expansion joints shall be joint filler of the thickness indicated which shall conform to the requirements of these Specifications.

M. After removal of forms all permanently exposed surfaces shall be cleaned of stains and dirt, and all surface defects which do not impair structural strength shall be repaired by cutting and patching in a manner satisfactory to the ARCHITECT.

END OF SECTION
SECTION 033660 - CONCRETE SLAB TREATMENTS – EXPOSED CONCRETE

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes sealer, densifier and hardeners for exposed concrete slabs.
 B. Related Sections:
 1. Division 03 Section "Cast-in-Place Concrete."

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Qualification Data: For Installer and manufacturer.
 C. Minutes of preinstallation conference.

1.4 QUALITY ASSURANCE
 A. Installer Qualifications: A qualified installer who has successfully installed similar concrete treatments.
 B. Source Limitations: Obtain each type or class of material of the same brand from the same manufacturer’s.
 C. Mockups: Install material on slab-on-grade panels to demonstrate surface finish, tolerances, floor treatments, and standard of workmanship.
 D. Preinstallation Conference: Conduct conference at Project site.
PART 2 - PRODUCTS

2.1 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or silicate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ChemMasters; Chemisil Plus.
 b. ChemTec Int'l; ChemTec One.
 c. Conspec by Dayton Superior; Intraseal.
 d. Curecrete Distribution Inc.; Ashford Formula.
 e. Dayton Superior Corporation; Day-Chem Sure Hard (J-17).
 f. Edoco by Dayton Superior; Titan Hard.
 g. Euclid Chemical Company (The), an RPM company; Euco Diamond Hard.
 h. Kaufman Products, Inc.; SureHard.
 i. L&M Construction Chemicals, Inc.; Seal Hard.
 j. Meadows, W. R., Inc.; LIQUI-HARD.
 k. Metalcrete Industries; Floorsaver.
 l. Nox-Crete Products Group; Duro-Nox.
 m. Symons by Dayton Superior; Buff Hard.
 n. US SPEC, Division of US Mix Products Company; US SPEC Industraseal.
 o. Vexcon Chemicals, Inc.; Vexcon StarSeal PS Clear.

PART 3 - EXECUTION

3.1 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.

1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
2. Do not apply to concrete that is less seven days’ old or as recommended by manufacturer.
3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.
3.2 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION 033660
SECTION 042000 - UNIT MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Concrete masonry units.
2. Mortar and grout.
3. Steel reinforcing bars.

B. Related Requirements:

1. Section 033000 "Cast-in-Place Concrete.

1.3 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 INFORMATIONAL SUBMITTALS

A. List of Materials Used in Constructing Mockups: List generic product names together with manufacturers, manufacturers' product names, model numbers, lot numbers, batch numbers, source of supply, and other information as required to identify materials used. Include mix proportions for mortar and grout and source of aggregates.

1. Submittal is for information only. Receipt of list does not constitute approval of deviations from the Contract Documents unless such deviations are specifically brought to the attention of Architect and approved in writing.

B. Material Certificates: For each type and size of the following:

1. Masonry units.
a. Include data on material properties and material test reports substantiating compliance with requirement.

b. For masonry units used in structural masonry include data and calculations establishing average net-area compressive strength of units.

2. Cementitious materials. Include name of manufacturer, brand name, and type.
3. Mortar admixtures.
4. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
5. Grout mixes. Include description of type and proportions of ingredients.
6. Reinforcing bars.
7. Joint reinforcement.
8. Anchors, ties, and metal accessories.

C. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.

1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.

2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

D. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to TMS 602/ACI 530.1/ASCE 6.

E. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.

D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.

E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.
1.6 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day’s work. Cover partially completed masonry when construction is not in progress.

 1. Extend cover a minimum of 24 inches (600 mm) down both sides of walls, and hold cover securely in place.
 2. Where one wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches (600 mm) down face next to unconstructed wythe, and hold cover in place.

B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.

 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 2. Protect sills, ledges, and projections from mortar droppings.
 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.
B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.

1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.
2. Determine net-area compressive strength of masonry by testing masonry prisms according to ASTM C 1314.

2.3 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated.

2.4 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.

1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
2. Provide square-edged units for outside corners unless otherwise indicated.

B. CMUs: ASTM C 90.

1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi (19.3 MPa).
2. Density Classification: Normal weight unless otherwise indicated.
3. Size (Width): Manufactured to dimensions 3/8 inch (10 mm) less than nominal dimensions.

2.5 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C 150/C 150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C 114.

B. Hydrated Lime: ASTM C 207, Type S.

C. Masonry Cement: ASTM C 91/C 91M.

D. Mortar Cement: ASTM C 1329/C 1329M.

E. Aggregate for Mortar: ASTM C 144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.
 3. White-Mortar Aggregates: Natural white sand or crushed white stone.
 4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

F. Aggregate for Grout: ASTM C 404.

G. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C 494/C 494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.

H. Water: Potable.

2.6 REINFORCEMENT

A. Uncoated-Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60 (Grade 420).

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

C. Masonry-Joint Reinforcement, General: ASTM A 951/A 951M.
 4. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches (407 mm) o.c.
 5. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.

D. Masonry-Joint Reinforcement for Single-Wythe Masonry: Ladder or truss type with single pair of side rods.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
2. Verify that foundations are within tolerances specified.
3. Verify that reinforcing dowels are properly placed.
4. Verify that substrates are free of substances that impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.

B. Build chases and recesses to accommodate items specified in this and other Sections.

C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.

D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

3.4 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less 4 inches (100 mm). Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

E. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

F. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

G. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

3.5 MORTAR BEDDING AND JOINTING

A. Lay CMUs as follows:

1. Bed face shells in mortar and make head joints of depth equal to bed joints.
2. Bed webs in mortar in all courses of piers, columns, and pilasters.
3. Bed webs in mortar in grouted masonry, including starting course on footings.
4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
5. Fully bed units and fill cells with mortar at anchors and ties as needed to fully embed anchors and ties in mortar.
3.6 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).

1. Space reinforcement not more than 16 inches (406 mm) o.c.
2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

E. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.7 CONTROL AND EXPANSION JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

3.8 REINFORCED UNIT MASONRY INSTALLATION

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.

1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
3.9 PARGING

A. Parge exterior faces of below-grade masonry walls, where indicated, in two uniform coats to a total thickness of 3/4 inch (19 mm). Dampen wall before applying first coat, and scarify first coat to ensure full bond to subsequent coat.

B. Use a steel-trowel finish to produce a smooth, flat, dense surface with a maximum surface variation of 1/8 inch per foot (3 mm per 300 mm). Form a wash at top of parging and a cove at bottom.

C. Damp-cure parging for at least 24 hours and protect parging until cured.

3.10 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

3.11 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

B. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 042000
SECTION 051200 - STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

A. Extent of structural steel work is shown on drawings, including schedules, notes and details to show size and location of members, typical connections and type of steel required.

B. Structural steel is that work defined in American Institute of Steel Construction (AISC) "Code of Standard Practice" as modified here and as otherwise shown on drawings.

1. Section 2.1 to include “Lintels shown or otherwise enumerated or scheduled.”

C. Miscellaneous Metal Fabricators are specified elsewhere in Division 5.

D. Refer to Division 3 for anchor bolt installation in concrete; Division 4 for masonry.

E. Source Quality Control: Materials and fabrication procedures are subject to inspection and tests in mill, shop and field, conducted by a qualified inspection agency. Such inspections and tests will not relieve Contractor of responsibility for providing materials and fabrication procedures in compliance with specified requirements.

1. Promptly remove and replace materials or fabricated components which do not comply.

F. Design of Members and Connections: Details shown are typical; similar details apply to similar conditions, unless otherwise indicated. Verify dimensions at site whenever possible without causing delay in the work.

1. Promptly notify Architect whenever design of members and connections for any portion of structure are not clearly indicated.

1.2 SUBMITTALS

A. Product Data: Submit producer's or manufacturer's specifications and installation instructions for following products. Include laboratory test reports and other data to show compliance with specifications (including specified standards).

1. Structural steel (each type), including certified copies of mill reports covering chemical and physical properties.
2. High-strength bolts (each type), including nuts and washers.
3. Structural steel primer paint.

B. Shop Drawings: Submit shop drawings, including complete details and schedules for fabrication and assembly of structural steel members, procedures and diagrams.
C. Include details of cuts, connections, camber, holes and other pertinent data. Indicate welds by standard AWS A2.1 and A2.4 symbols; and show size, length and type of each weld.

1. Provide setting drawings, templates and directions for installation of anchor bolts and other anchorages to be installed as work of other sections.

D. Test Reports: Submit copies of tests conducted on shop and field bolted and welded connections. Include data on type(s) of tests conducted and test results.

1.3 QUALITY ASSURANCE

A. Codes and Standards: Comply with provisions of following, except as otherwise indicated:

B. AISC "Specifications for the Design, Fabrication and Erection of Structural Steel for Buildings", including "Commentary" and Supplements thereto as issued.

C. AISC "Specifications for Architecturally Exposed Structural Steel".

D. AISC "Specifications for Structural Joints using ASTM A 325 or A 490 Bolts" approved by the Research Council on Riveted and Bolted Structural Joints of the Engineering Foundation.

E. American Welding Society (AWS) D1.1 "Structural Welding Code - Steel".

F. Qualifications for Welding Work: Qualify welding processes and welding operators in accordance with AWS "Standard Qualification Procedure".

G. Provide certification that welders to be employed in work have satisfactorily passed AWS qualification tests.

1. If recertification of welders is required, retesting will be Contractor's responsibility.

1.4 DELIVERY, STORAGE AND HANDLING

A. Deliver materials to site at such intervals to insure uninterrupted progress of work.

B. Deliver anchor bolts and anchorage devices, which are to be embedded in cast-in-place concrete or masonry, in ample time to not delay work.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Metal Surfaces, General: For fabrication of work which will be exposed to view, use only materials which are smooth and free of surface blemishes including pitting, rust and
scale seam marks, roller marks, rolled trade names and roughness. Remove such blemishes by grinding, or by welding and grinding, prior to cleaning, treating and application of surface finishes.

B. Structural Steel Wide Flange Shapes: ASTM A 992/A572, Grade 50

C. Other Structural Steel Shapes, Plates and Bars: ASTM A 36.

D. Cold-Formed Steel Tubing: ASTM A 500, Grade B.

E. Anchor Bolts: ASTM F 1554, Grade 36, nonheaded type unless otherwise indicated.

F. High-Strength Threaded Fasteners: Heavy hexagon structural bolts, heavy hexagon nuts and hardened washers, as follows:
 1. Quenched and tempered medium-carbon steel bolts, nuts and washers, complying with ASTM A 325.
 2. Direct tension indicator washers may be used at Contractor's option.

2.2 FABRICATION

A. Shop Fabrication and Assembly: Fabricate and assemble structural assemblies in shop to greatest extent possible. Fabricate items of structural steel in accordance with AISC Specifications and as indicated on final shop drawings. Provide camber in structural members where indicated.

B. Properly mark and match-mark materials for field assembly. Fabricate for delivery sequence which will expedite erection and minimize field handling of materials.

C. Where finishing is required, complete assembly, including welding of units, before start of finishing operations. Provide finish surfaces of members exposed in final structure free of markings, burrs and other defects.

D. Connections: Weld or bolt shop connections, as indicated.

E. Bolt field connections, except where welded connections or other connections are indicated.
 1. Provide high-strength threaded fasteners for all bolted connections, except where unfinished bolts are indicated.

F. High-Strength Bolted Construction: Install high-strength threaded fasteners in accordance with AISC "Specifications for Structural Joints using ASTM F3125 Grade A 325 or A 490 Bolts" (RCRBSJ).
G. Welded Construction: Comply with AWS Code for procedures, appearance and quality of welds and methods used in correcting welding work.

H. Holes for Other Work: Provide holes required for securing other work to structural steel framing, and for passage of other work through steel framing members, as shown on final shop drawings.

I. Provide threaded nuts welded to framing, and other specialty items as indicated to receive other work.

J. Cut, drill or punch holes perpendicular to metal surfaces. Do not flame cut holes or enlarge holes by burning. Drill holes in bearing plates.

K. Field drill holes in existing steel members for connection of new steel as noted on the drawings.

2. 3 SHOP PAINTING

A. General: Shop paint structural steel, except those members or portions of members to be embedded in concrete or mortar or to receive fire-proofing. Paint embedded steel which is partially exposed on exposed portions and initial 2" of embedded areas only.

B. Surface Preparation: After inspection and before shipping, clean steelwork to be painted. Remove loose rust, loose mill scale and spatter, slag or flux deposits. Clean steel in accordance with Steel Structures Painting Council (SSPC) as follows:
 1. SP-1 "Solvent Cleaning".
 2. SP-3 "Power Tool Cleaning".

C. Painting: Immediately after surface preparation, apply structural steel primer paint in accordance with Manufacturer's instructions and at a rate to provide dry film thickness of not less than 1.5 mils. Use painting methods which result in full coverage of joints, corners, edges and exposed surfaces.

PART 3 - EXECUTION

3. 1 ERECTION

A. Surveys: Employ a registered professional engineer or land surveyor for accurate erection of structural steel. Check elevations of concrete and masonry bearing surfaces, and locations of anchor bolts and similar devices, before erection work proceeds, and report discrepancies to Architect. Do not proceed with erection until corrections have been made, or until compensating adjustment to structural steel work have been agreed upon with Architect.

B. Temporary Shoring and Bracing: Provide temporary shoring and bracing members with connections of sufficient strength to bear imposed loads. Remove temporary members.
and connections when permanent members are in place and final connections are made. Provide temporary guy lines to achieve proper alignment of structures as erection proceeds.

C. Temporary Planking: Provide temporary planking and working platforms as necessary to effectively complete work.

D. Field Assembly: Set structural frames accurately to lines and elevations indicated. Align and adjust various members forming part of complete frame or structure before permanently fastening. Clean bearing surfaces and other surfaces which will be in permanent contact before assembly. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

E. Level and plumb individual members of structure within specified AISC tolerances.

F. Splice members only where indicated and accepted on shop drawings.

G. Erection Bolts: On exposed welded construction, remove erection bolts, fill holes with plug welds and grind smooth at exposed surfaces.

H. Comply with AISC Specifications for bearing, adequacy of temporary connections, alignment and removal of paint on surfaces adjacent to field welds.

I. Do not enlarge unfair holes in members by burning or by use of drift pins, except in secondary bracing members. Ream holes that must be enlarged to admit bolts.

J. Gas Cutting: Do not use gas cutting torches in field for correcting fabrication errors in primary structural framing. Cutting will be permitted only as acceptable to Architect.

K. Touch-Up Painting: Immediately after erection clean field welds, bolted connections and abraded areas of shop paint. Apply paint to exposed areas using same material as used for shop painting.

L. Apply by brush or spray to provide minimum dry film thickness of 1.5 mils.

3. 2 QUALITY CONTROL

A. Contractor to engage an independent testing and inspection agency to inspect high-strength bolted connections and welded connections and to perform tests and prepare test reports.

B. Testing agency shall conduct and interpret tests and state in each report whether test specimens comply with requirements, and specifically state any deviations therefrom.

C. Provide access for testing agency to places where structural steel work is being fabricated or produced so that required inspection and testing can be accomplished.

D. Testing agency may inspect structural steel at plant before shipment; however, Architect
reserves right, at any time before final acceptance, to reject material not complying with specified requirements.

E. Correct deficiencies in structural steel work which inspections and laboratory test reports have indicated to be not in compliance with requirements. Perform additional tests, at Contractor's expense, as may be necessary to reconfirm any noncompliance of original work, and as may be necessary to show compliance of corrected work.

F. Shop Bolted Connections: Inspect or test in accordance with AISC specifications.

G. Shop Welding: Inspect and test during fabrication of structural steel assemblies, as follows:
 1. Certify welders and conduct inspections and tests as required. Record types and locations of defects found in work. Record work required and performed to correct deficiencies.
 2. Perform visual inspection of all welds.

H. Field Bolted Connections: Inspect in accordance with AISC specifications.

I. Field Welding: Inspect and test during erection of structural steel as follows:
 1. Certify welders and conduct inspections and tests as required. Record types and locations of defects found in work. Record work required and performed to correct deficiencies.
 2. Perform visual inspection of all welds.

J. Testing agency shall confirm that the structure is square, plumb and level in accordance with AISC tolerances.

K. In addition to visual inspection, field-welded connections will be inspected and tested according to AWS D1.1 and the inspection procedures listed below, at testing agency’s option.
 1. Liquid Penetration Inspection: ASTM E 165.
 2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 3. Radiographic Inspection: ASTM E 94 and ASTM E 142; minimum quality level “2-2T.”

END OF SECTION 051200
SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Load-bearing wall framing.
B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for miscellaneous steel shapes, masonry shelf angles, and connections used with cold-formed metal framing.

1.3 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Cold-formed steel framing materials.
 2. Load-bearing wall framing.
 3. Post-installed anchors.
 5. Sill sealer gasket.
B. Shop Drawings:
 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.
C. Delegated-Design Submittal: For cold-formed steel framing. Contractor shall enlist a New Jersey licensed P.E. to design, detail, develop detailed shop drawings, and perform calculations and be responsible for the entire design of the exterior load bearing cold formed framing system.
1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of code-compliance certification for studs and tracks.

B. Product Test Reports: For each listed product, for tests performed by manufacturer and witnessed by a qualified testing agency.
 1. Steel sheet.
 2. Expansion anchors.
 4. Mechanical fasteners.
 5. Vertical deflection clips.
 6. Horizontal drift deflection clips
 7. Miscellaneous structural clips and accessories.

C. Research Reports:
 1. For nonstandard cold-formed steel framing post-installed anchors and power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.
 2. For sill sealer gasket/termite barrier, showing compliance with ICC-ES AC380.

1.5 QUALITY ASSURANCE

A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association, the Steel Framing Industry Association or the Steel Stud Manufacturers Association.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AllSteel & Gypsum Products, Inc.
 2. CEMCO; California Expanded Metal Products Co.
 3. ClarkDietrich.
 4. Consolidated Fabricators Corp.; Building Products Division.
 5. Craco Manufacturing, Inc.
 7. Design Shapes in Steel.
 8. Formetal Co. Inc. (The).
 10. MarinoWARE.
11. MBA Building Supplies.
12. MRI Steel Framing, LLC.
15. SCAFCO Steel Stud Company.
17. State Building Products, Inc.
19. Steel Structural Systems.
20. Steeler, Inc.
22. Telling Industries.
23. The Steel Network, Inc.
24. United Metal Products, Inc.
25. United Steel Deck, Inc.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.

B. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.

1. Design Loads: As indicated on Drawings.
2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:

 a. Exterior Load-Bearing Wall Framing: Horizontal deflection of 1/240 of the wall height.

3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F (67 deg C).

4. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:

 a. Upward and downward movement of 1/2 inch (13 mm).

C. Cold-Formed Steel Framing Standards: Unless more stringent requirements are indicated, framing shall comply with AISI S100, AISI S200, and the following:

1. Wall Studs: AISI S211.
2.3 COLD-FORMED STEEL FRAMING MATERIALS

A. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating designation as follows:
 1. Grade: As required by structural performance.
 2. Coating: G60 (Z180), A60 (ZF180), AZ50 (AZM150).

2.4 LOAD-BEARING WALL FRAMING

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0538 inch (1.37 mm).
 2. Flange Width: 2 inches (51 mm).

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with straight flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0538 inch (1.37 mm).
 2. Flange Width: 1-1/4 inches (32 mm).

C. Steel Box or Back-to-Back Headers: Manufacturer's standard C-shapes used to form header beams, of web depths indicated, unpunched, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0538 inch (1.37 mm).
 2. Flange Width: 1-5/8 inches (41 mm).

D. Steel Single- or Double-L Headers: Manufacturer's standard L-shapes used to form header beams, of web depths indicated, and as follows:
 1. Minimum Base-Metal Thickness: 0.0538 inch (1.37 mm).
 2. Top Flange Width: 2 inches (51 mm).

2.5 FRAMING ACCESSORIES

A. Fabricate steel-framing accessories from ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for framing members.

B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
 1. Supplementary framing.
 2. Bracing, bridging, and solid blocking.
 3. Web stiffeners.
 4. Anchor clips.
 5. End clips.
6. Foundation clips.
7. Gusset plates.
9. Joist hangers and end closures.

2.6 ANCHORS, CLIPS, AND FASTENERS

A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.

B. Anchor Bolts: ASTM F1554, Grade 36, threaded carbon-steel hex-headed bolts carbon-steel nuts, and flat, hardened-steel washers; zinc coated by hot-dip process according to ASTM A153/A153M, Class C.

C. Post-Installed Anchors: Fastener systems with bolts of same basic metal as fastened metal, if visible, unless otherwise indicated; with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, ICC-ES AC193, ICC-ES AC58 or ICC-ES AC308 as appropriate for the substrate.

1. Uses: Securing cold-formed steel framing to structure.
2. Type: Torque-controlled expansion anchor, Torque-controlled adhesive anchor, or adhesive anchor.

D. Power-Actuated Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

E. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.

1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.

F. Welding Electrodes: Comply with AWS standards.

2.7 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: ASTM A780/A780M.

B. Cement Grout: Portland cement, ASTM C150/C150M, Type I; and clean, natural sand, ASTM C404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.
C. Nonmetallic, Nonshrink Grout: Factory-packaged, nonmetallic, noncorrosive, nonstaining grout, complying with ASTM C1107/C1107M, and with a fluid consistency and 30-minute working time.

D. Shims: Load-bearing, high-density, multimonomer, nonleaching plastic; or cold-formed steel of same grade and metallic coating as framing members supported by shims.

E. Sill Sealer Gasket: Closed-cell neoprene foam, 1/4 inch (6 mm) thick, selected from manufacturer's standard widths to match width of bottom track or rim track members as required.

F. Sill Sealer Gasket/Termite Barrier: Minimum 68-mil (1.7-mm) nominal thickness, self-adhering sheet consisting of 64 mils (1.6 mm) of rubberized asphalt laminated on one side to a 4-mil- (0.10-mm-) thick, polyethylene-film reinforcement, and with release liner on adhesive side; formulated for application with primer or surface conditioner that complies with VOC limits of authorities having jurisdiction.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Polyguard Products, Inc.
 b. Architect-approved equal.

2. Physical Properties:
 a. Peel Adhesion: 17.0 lb/in of width (2.9 N/mm of width) when tested in accordance with ASTM D412.
 b. Low-Temperature Flexibility: Pass at minus 25 deg F (minus 32 deg C) when tested in accordance with ASTM D146/D146M.
 c. Water Vapor Permeance: 0.05 perm (0.44 ng/Pa x s x sq. m) maximum when tested in accordance with ASTM E96/E96M, Method B.

2.8 FABRICATION

A. Fabricate cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.

1. Fabricate framing assemblies using jigs or templates.
2. Cut framing members by sawing or shearing; do not torch cut.
3. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, conditions, and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Install load-bearing shims or grout between the underside of load-bearing wall bottom track and the top of foundation wall or slab at locations with a gap larger than 1/4 inch (6 mm) to ensure a uniform bearing surface on supporting concrete or masonry construction.

B. Install sill sealer gasket/termite barrier in accordance with manufacturer's written instructions at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

3.3 INSTALLATION, GENERAL

A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.

B. Install cold-formed steel framing according to AISI S200, AISI S202, and manufacturer's written instructions unless more stringent requirements are indicated.
C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure.
 1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch (1.6 mm).

D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.
 1. Cut framing members by sawing or shearing; do not torch cut.
 2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners, install according to Shop Drawings, and comply with requirements for spacing, edge distances, and screw penetration.

E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.

F. Install temporary bracing and supports to secure framing and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.

G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.

H. Fasten hole-reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

3.4 INSTALLATION OF LOAD-BEARING WALL FRAMING

A. Install continuous top and bottom tracks sized to match studs. Align tracks accurately and securely anchor at corners and ends, and at spacings as follows:
 1. Anchor Spacing: To match stud spacing.

B. Squarely seat studs against top and bottom tracks, with gap not exceeding 1/8 inch (3 mm) between the end of wall-framing member and the web of track.
 1. Fasten both flanges of studs to top and bottom tracks.
 2. Space studs as follows:
 a. Stud Spacing: 16 inches (406 mm).
C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar configurations.

D. Align studs vertically where floor framing interrupts wall-framing continuity. Where studs cannot be aligned, continuously reinforce track to transfer loads.

E. Align floor and roof framing over studs according to AISI S200, Section C1. Where framing cannot be aligned, continuously reinforce track to transfer loads.

F. Anchor studs abutting structural columns or walls, including masonry walls, to supporting structure.

G. Install headers over wall openings wider than stud spacing. Locate headers above openings. Fabricate headers of compound shapes indicated or required to transfer load to supporting studs, complete with clip-angle connectors, web stiffeners, or gusset plates.
 1. Frame wall openings with not less than a double stud at each jamb of frame. Fasten jamb members together to uniformly distribute loads.
 2. Install tracks and jack studs above and below wall openings. Anchor tracks to jamb studs with clip angles or by welding, and space jack studs same as full-height wall studs.

H. Install supplementary framing, blocking, and bracing in stud framing indicated to support fixtures, equipment, services, casework, heavy trim, furnishings, and similar work requiring attachment to framing.
 1. If type of supplementary support is not indicated, comply with stud manufacturer's written recommendations and industry standards in each case, considering weight or load resulting from item supported.

I. Install horizontal bridging in stud system, spaced vertically as indicated on Shop Drawings. Fasten at each stud intersection.
 1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs with a minimum of two screws into each flange of the clip angle for framing members up to 6 inches (150 mm) deep.
 2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges, and secure solid blocking to stud webs or flanges.
 3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.

J. Install steel sheet diagonal bracing straps to both stud flanges; terminate at and fasten to reinforced top and bottom tracks. Fasten clip-angle connectors to multiple studs at ends of bracing and anchor to structure.

K. Install miscellaneous framing and connections, including supplementary framing, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.
3.5 INSTALLATION TOLERANCES

A. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows:
 1. Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.6 REPAIR

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

3.7 FIELD QUALITY CONTROL

A. Testing: Contractor will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.
 B. Field and shop welds will be subject to testing and inspecting.
 C. Testing agency will report test results promptly and in writing to Contractor and Architect.
 D. Cold-formed steel framing will be considered defective if it does not pass tests and inspections.
 E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.8 PROTECTION

A. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION 054000
SECTION 054400 - COLD-FORMED METAL TRUSSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Roof trusses.

B. Related Requirements:
 1. Section 054000 "Cold-Formed Metal Framing" for cold-formed steel studs.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Cold-formed steel truss materials.
 2. Anchor bolts.
 3. Post-installed anchors.
 5. Mechanical fasteners.

B. Shop Drawings:
 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel trusses; fabrication; and fastening and anchorage details, including mechanical fasteners.
 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.

C. Delegated-Design Submittal: For cold-formed steel trusses. Contractor shall enlist a New Jersey licensed P.E. to design, detail, develop detailed shop drawings, and perform calculations and be responsible for the entire design of the exterior load bearing cold formed metal truss system.
1.5 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each listed product, for tests performed by manufacturer and witnessed by a qualified testing agency.
 1. Steel sheet.
 2. Expansion anchors.
 4. Mechanical fasteners.
 5. Miscellaneous structural clips and accessories.

B. Research Reports: For post-installed anchors and power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

B. Product Tests: Mill certificates or data from a qualified independent testing agency indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.

C. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aegis Metal Framing.
 2. MarinoWARE.
 3. TrusSteel; an ITW company.
 4. USA Frametek.
 5. WESTCO Steel Systems, Inc.
 6. Architect-approved equal.
2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel trusses.

B. Structural Performance: Provide cold-formed steel trusses capable of withstanding design loads within limits and under conditions indicated.

1. Design Loads: As indicated on Drawings.
2. Deflection Limits: Design trusses to withstand design loads without deflections greater than the following:
 a. Roof Trusses: Vertical deflection of 1/360 of the span.
3. Design trusses to provide for movement of truss members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F (67 deg C).

C. Cold-Formed Steel Truss Standards: Unless more stringent requirements are indicated, trusses shall comply with the following:

2.3 COLD-FORMED STEEL TRUSS MATERIALS

A. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating designation as follows:

1. Grade: As required by structural performance.
2. Coating: G60 (Z180), A60 (ZF180), AZ50 (AZ150).

2.4 ROOF TRUSSES

A. Roof Truss Members: Manufacturer's standard C-shaped steel sections.

1. Connecting Flange Width: 1-5/8 inches (41 mm), minimum at top and bottom chords connecting to sheathing or other directly fastened construction.

2.5 TRUSS ACCESSORIES

A. Fabricate steel-truss accessories from steel sheet, ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for truss members.
B. Provide accessories of manufacturer's standard thickness and configuration unless otherwise indicated.

2.6 ANCHORS, CLIPS, AND FASTENERS

A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.

B. Anchor Bolts: ASTM F1554, Grade 36, threaded carbon-steel hex-headed bolts carbon-steel nuts, and flat, hardened-steel washers; zinc coated by hot-dip process according to ASTM A153/A153M, Class C.

C. Post-Installed Anchors: Fastener systems with bolts of same basic metal as fastened metal, if visible, unless otherwise indicated; with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, ICC-ES AC193, ICC-ES AC58, or ICC-ES AC308 as appropriate for the substrate.
 1. Uses: Securing cold-formed steel trusses to structure.
 2. Type: Torque-controlled expansion anchor, Torque-controlled adhesive anchor, or adhesive anchor.

D. Power-Actuated Fasteners: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

E. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping steel drill screws.
 1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.

F. Welding Electrodes: Comply with AWS standards.

2.7 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: ASTM A780/A780M.

B. Shims: Load-bearing, high-density multimonomer, nonleaching plastic; or cold-formed steel of same grade and metallic coating as truss members supported by shims.

2.8 FABRICATION

A. Fabricate cold-formed steel trusses and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.
1. Fabricate trusses using jigs or templates.
2. Cut truss members by sawing or shearing; do not torch cut.
3. Fasten cold-formed steel truss members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
4. Fasten other materials to cold-formed steel trusses by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.

B. Reinforce, stiffen, and brace trusses to withstand handling, delivery, and erection stresses. Lift fabricated trusses by means that prevent damage or permanent distortion.

C. Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable variation of 1/8 inch in 10 feet (1:960) and as follows:
 1. Spacing: Space individual truss members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.
 2. Squaredness: Fabricate each cold-formed steel truss to a maximum out-of-square tolerance of 1/8 inch (3 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, conditions, and abutting trusses and framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install bridge, and brace cold-formed steel trusses according to AISI S200, AISI S202, AISI S214, and manufacturer's written instructions unless more stringent requirements are indicated.
 1. Coordinate with wall framing to align webs of bottom chords and load-bearing studs or continuously reinforce track to transfer loads to structure.
 2. Anchor trusses securely at all bearing points.
 3. Install continuous bridging and permanently brace trusses as indicated on Shop Drawings and designed according to CFSEI's Technical Note 551e, "Design Guide: Permanent Bracing of Cold-Formed Steel Trusses."
B. Install cold-formed steel trusses and accessories true to line and location, and with connections securely fastened.

1. Erect trusses with plane of truss webs plumb and parallel to each other. Align and accurately position trusses at required spacings.
2. Erect trusses without damaging truss members or connections.
3. Fasten cold-formed steel trusses by welding or mechanical fasteners.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners, install according to Shop Drawings, and comply with requirements for spacing, edge distances, and screw penetration.

C. Install temporary bracing and supports to secure trusses and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to trusses are secured.

D. Truss Spacing: 16 inches (406 mm).

E. Do not alter, cut, or remove truss members or connections of trusses.

3.3 ERECTION TOLERANCES

A. Install cold-formed steel trusses level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows:
 1. Space individual trusses no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.4 REPAIR

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel trusses with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

3.5 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform special inspections:
B. Cold-formed metal trusses will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.
3.6 PROTECTION

A. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel trusses are without damage or deterioration at time of Substantial Completion.
SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Related Requirements:
 1. Section 061600 "Sheathing" for sheathing.
 2. Section 061753 "Shop-Fabricated Wood Trusses" for wood trusses made from dimension lumber.
 3. Section 313116 "Termite Control" for site application for termite control.

1.3 DEFINITIONS

A. Boards or Strips: Lumber of less than 2 inches nominal (38 mm actual) size in least dimension.
B. Dimension Lumber: Lumber of 2 inches nominal (38 mm actual) size or greater but less than 5 inches nominal (114 mm actual) size in least dimension.
C. Exposed Framing: Framing not concealed by other construction.
D. OSB: Oriented strand board.
E. Timber: Lumber of 5 inches nominal (114 mm actual) size or greater in least dimension.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

1.5 INFORMATIONAL SUBMITTALS

A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.
B. Evaluation Reports: For the following, from ICC-ES:

1. Wood-preservative-treated wood.
2. Engineered wood products.
3. Shear panels.
5. Post-installed anchors.
6. Metal framing anchors.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack wood products flat with spacers beneath and between each bundle to provide air circulation. Protect wood products from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.

B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

C. Engineered Wood Products: Acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.

1. Allowable design stresses, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.
2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2.
 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:
 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 2. Wood sills, sleepers, blocking, and similar concealed members in contact with concrete.
 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 4. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 DIMENSION LUMBER FRAMING

A. Load-Bearing Partitions: No. 2 grade.
 2. Species:
 a. Hem-fir#2 or better.

B. Load-Bearing Partitions: Any species and grade with a modulus of elasticity of at least 1,400,000 psi for 2-inch nominal (38-mm actual) thickness and 12-inch nominal (286-mm actual) width for single-member use.

2.4 ENGINEERED WOOD PRODUCTS

A. Composite Wood Products: Products shall be made without urea formaldehyde.

B. Composite Wood Products: Products shall comply with the testing and product requirements of Source Limitations: Obtain each type of engineered wood product from single source from a single manufacturer.

C. Parallel-Strand Lumber: Structural composite lumber made from wood strand elements with grain primarily parallel to member lengths, evaluated and monitored according to
ASTM D 5456 and manufactured with an exterior-type adhesive complying with ASTM D 2559.

1. As manufactured by Truss Joist Macmillan or approved equivalent.
2. Extreme Fiber Stress in Bending, Edgewise: 2900 psi (20 MPa) for 12-inch nominal- (286-mm actual-) depth members.
3. Modulus of Elasticity, Edgewise: 2,000,000 psi.

2.5 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 1. Blocking.
 2. Nailers.
 3. Rooftop equipment bases and support curbs.

B. Dimension Lumber Items: Construction or No. 2 grade lumber of any species.

C. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

D. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

E. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.6 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exposure 1, C-D Plugged, in thickness indicated or, if not indicated, not less than 3/4-inch (19-mm) nominal thickness.

2.7 FASTENERS

A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture.
 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners of Type 304 stainless steel.

B. Nails, Brads, and Staples: ASTM F 1667.

C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
D. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction.

2.8 MISCELLANEOUS MATERIALS

A. Sill-Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch (6.4 mm) thick, selected from manufacturer's standard widths to suit width of sill members indicated.

B. Water-Repellent Preservative: NWWDA-tested and -accepted formulation containing 3-iodo-2-propynyl butyl carbamate, combined with an insecticide containing chloropyrifos as its active ingredient.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.

C. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate nailers, blocking, and similar supports to comply with requirements for attaching other construction.

D. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels.

E. Install shear wall panels to comply with manufacturer's written instructions.

F. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

G. Install sill sealer gasket to form continuous seal between sill plates and foundation walls.

H. Do not splice structural members between supports unless otherwise indicated.

I. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
J. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

K. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 2. ICC-ES evaluation report for fastener.

L. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING, AND NAILER INSTALLATION
A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

3.3 WALL AND PARTITION FRAMING INSTALLATION
A. General: Provide single bottom plate and double top plates using members of 2-inch nominal (38-mm actual) thickness whose widths equal that of studs, except single top plate may be used for non-load-bearing partitions and for load-bearing partitions where framing members bearing on partition are located directly over studs. Fasten plates to supporting construction unless otherwise indicated.
 1. Provide continuous horizontal blocking at mid-height of partitions more than 96 inches (2438 mm) high, using members of 2-inch nominal (38-mm actual) thickness and of same width as wall or partitions.

B. Construct corners and intersections with three or more studs unless shown otherwise on the structural drawings.

C. Frame openings with multiple studs and headers. Provide nailed header members of thickness equal to width of studs. Support headers on jamb studs.

D. Provide diagonal bracing in exterior walls, at both walls of each external corner, at 45-degree angle, full-story height unless otherwise indicated. Use 1-by-4-inch nominal- (19-by-89-mm
actual-) size boards, let-in flush with faces of studs or metal wall bracing, let into studs in saw kerf.

3.4 PROTECTION

A. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061000
SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Wall sheathing.
 2. Roof sheathing.
B. Related Requirements:
 1. Section 072500 "Weather Barriers" for water-resistive barrier applied over wall sheathing.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Indicate type of preservative used and net amount of preservative retained.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PANEL PRODUCTS
A. Thickness: As needed to comply with requirements specified, but not less than thickness indicated.
B. Factory mark panels to indicate compliance with applicable standard.

2.2 WALL SHEATHING
A. Plywood Sheathing: Exterior sheathing.
 1. Span Rating: For studs not more than 16-inches on center.
 2. Nominal Thickness: Not less than 1/2 inch thick.

2.3 ROOF SHEATHING
A. Plywood Sheathing: Exterior, Structural I sheathing.
 1. Span Rating: For roof structure not more than 16-inches on center
 2. Nominal Thickness: Not less than 5/8-inch thick.

2.4 FASTENERS
A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 1. For roof and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M or Type 304 stainless steel.
B. Nails, Brads, and Staples: ASTM F 1667.
C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
D. Screws for Fastening Sheathing to Wood Framing: ASTM C 1002.
E. Screws for Fastening Wood Structural Panels to Cold-Formed Metal Framing: ASTM C 954, except with wafer heads and reamer wings, length as recommended by screw manufacturer for material being fastened.

2.5 MISCELLANEOUS MATERIALS
A. Adhesives for Field Gluing Panels to Wood Framing: Formulation complying with ASTM D 3498 that is approved for use with type of construction panel indicated by manufacturers of both adhesives and panels.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:
 1. Table 2304.10.1, "Fastening Schedule," in the ICC's International Building Code.
 2. ICC-ES evaluation report for fastener.

D. Penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections. Install fasteners without splitting wood.

E. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

F. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

END OF SECTION 061600
SECTION 061753 - SHOP-FABRICATED WOOD TRUSSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Wood roof trusses.

1.3 DEFINITIONS

A. Metal-Plate-Connected Wood Trusses: Planar structural units consisting of metal-plate-connected members fabricated from dimension lumber and cut and assembled before delivery to Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For metal-plate connectors, metal truss accessories, and fasteners.

B. Shop Drawings: Show fabrication and installation details for trusses.

1. Show location, pitch, span, camber, configuration, and spacing for each type of truss required.
2. Indicate sizes, stress grades, and species of lumber.
3. Indicate locations of permanent bracing required to prevent buckling of individual truss members due to design loads.
4. Indicate locations, sizes, and materials for permanent bracing required to prevent buckling of individual truss members due to design loads.
5. Indicate type, size, material, finish, design values, orientation, and location of metal connector plates.
6. Show splice details and bearing details.

C. Delegated-Design Submittal: For metal-plate-connected wood trusses indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer and fabricator.

B. Material Certificates: For dimension lumber specified to comply with minimum specific gravity. Indicate species and grade selected for each use and specific gravity.

C. Product Certificates: For metal-plate-connected wood trusses, signed by officer of truss-fabricating firm.

D. Evaluation Reports: For the following, from ICC-ES:
 1. Metal-plate connectors.
 2. Metal truss accessories.

1.6 QUALITY ASSURANCE

A. Metal Connector-Plate Manufacturer Qualifications: A manufacturer that is a member of TPI and that complies with quality-control procedures in TPI 1 for manufacture of connector plates.

 1. Manufacturer's responsibilities include providing professional engineering services needed to assume engineering responsibility.
 2. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.

B. Fabricator Qualifications: Shop that participates in a recognized quality-assurance program, complies with quality-control procedures in TPI 1, and involves third-party inspection by an independent testing and inspecting agency acceptable to Architect and authorities having jurisdiction.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Handle and store trusses to comply with recommendations in SBCA BCSI, "Building Component Safety Information: Guide to Good Practice for Handling, Installing, Restraining, & Bracing Metal Plate Connected Wood Trusses."

 1. Store trusses flat, off of ground, and adequately supported to prevent lateral bending.
 2. Protect trusses from weather by covering with waterproof sheeting, securely anchored.
 3. Provide for air circulation around stacks and under coverings.

B. Inspect trusses showing discoloration, corrosion, or other evidence of deterioration. Discard and replace trusses that are damaged or defective.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design metal-plate-connected wood trusses.

B. Structural Performance: Metal-plate-connected wood trusses shall be capable of withstanding design loads within limits and under conditions indicated. Comply with requirements in TPI 1 unless more stringent requirements are specified below.

1. Design Loads: As indicated.
2. Maximum Deflection under Design Loads:

C. Comply with applicable requirements and recommendations of TPI 1, TPI DSB, and SBCA BCSI.

2.2 DIMENSION LUMBER

A. Lumber: DOC PS 20 and applicable rules of any rules-writing agency certified by the American Lumber Standard Committee (ALSC) Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. Provide dressed lumber, S4S.
3. Provide dry lumber with 15 percent maximum moisture content at time of dressing.

B. Permanent Bracing: Provide wood bracing that complies engineer’-approved drawings.

2.3 METAL CONNECTOR PLATES

A. General: Fabricate connector plates to comply with TPI 1.

B. Stainless-Steel Sheet: ASTM A 666, Type 304 and not less than 0.035 inch (0.88 mm) thick.

2.4 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
1. Provide fasteners for use with metal framing anchors that comply with written recommendations of metal framing manufacturer.

B. Nails, Brads, and Staples: ASTM F 1667.

2.5 METAL FRAMING ANCHORS AND ACCESSORIES

A. Allowable design loads, as published by manufacturer, shall comply with or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.

B. Truss Tie-Downs, Clips and Spacers: Shall be designed by the shop-fabricated wood truss Engineer.

2.6 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: SSPC-Paint 20, with dry film containing a minimum of 92 percent zinc dust by weight.

2.7 FABRICATION

A. Factory-construct truss members to accurate lengths, angles, and sizes to produce close-fitting joints.

B. Fabricate metal connector plates to sizes, configurations, thicknesses, and anchorage details required to withstand design loads for types of joint designs indicated.

C. Assemble truss members in design configuration indicated; use jigs or other means to ensure uniformity and accuracy of assembly, with joints closely fitted to comply with tolerances in TPI 1. Position members to produce design camber indicated.

1. Fabricate wood trusses within manufacturing tolerances in TPI 1.

D. Connect truss members by metal connector plates located and securely embedded simultaneously in both sides of wood members by air or hydraulic press.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install wood trusses only after supporting construction is in place and is braced and secured.

B. If trusses are delivered to Project site in more than one piece, assemble trusses before installing.
C. Hoist trusses in place by lifting equipment suited to sizes and types of trusses required, exercising care not to damage truss members or joints by out-of-plane bending or other causes.

D. Install and brace trusses according to TPI recommendations and as indicated.

E. Install trusses plumb, square, and true to line and securely fasten to supporting construction.

F. Space trusses 16 inches o.c. or as indicated; adjust and align trusses in location before permanently fastening.

G. Anchor trusses securely at bearing points; use metal truss tie-downs or floor truss hangers as applicable. Install fasteners through each fastener hole in metal framing anchors according to manufacturer's fastening schedules and written instructions.

H. Install and fasten permanent bracing during truss erection and before construction loads are applied. Anchor ends of permanent bracing where terminating at walls or beams.
 1. Install bracing to comply with Section 061000 "Rough Carpentry.

I. Install wood trusses within installation tolerances in TPI 1.

J. Do not alter trusses in field. Do not cut, drill, notch, or remove truss members.

K. Replace wood trusses that are damaged or do not comply with requirements.
 1. Damaged trusses may be repaired according to truss repair details signed and sealed by the qualified professional engineer responsible for truss design, when approved by Architect.

3.2 REPAIRS AND PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Protect wood trusses from weather. If, despite protection, wood trusses become wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

C. Repair damaged galvanized coatings on exposed surfaces according to ASTM A 780/A 780M and manufacturer's written instructions.

3.3 FIELD QUALITY CONTROL

A. Special Inspections: Contractor will engage a qualified special inspector to perform special inspections to verify that temporary installation restraint/bracing and the permanent individual
truss member restraint/bracing are installed in accordance with the approved truss submittal package.

END OF SECTION 061753
SECTION 071113 - BITUMINOUS DAMPPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Unit Masonry,
 2. Cold-applied, emulsified-asphalt dampproofing.
 B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete”.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 FIELD CONDITIONS
 A. Weather Limitations: Proceed with application only when existing and forecasted weather conditions permit dampproofing to be performed according to manufacturers' written instructions.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL
 A. Source Limitations: Obtain primary dampproofing materials and primers from single source from single manufacturer. Provide protection and auxiliary materials recommended in writing by manufacturer of primary materials.
2.2 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

A. Trowel Coats: ASTM D 1227, Type II, Class 1.
B. Fibered Brush and Spray Coats: ASTM D 1227, Type II, Class 1.
C. Brush and Spray Coats: ASTM D 1227, Type III, Class 1.

2.3 AUXILIARY MATERIALS

A. General: Furnish auxiliary materials recommended in writing by dampproofing manufacturer for intended use and compatible with bituminous dampproofing.
B. Protection Course: ASTM D 6506, 1/8-inch- (3-mm-) thick, semirigid sheets of fiberglass or mineral-reinforced-asphaltic core, pressure laminated between two asphalt-saturated fibrous liners.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions with Applicator present, for compliance with requirements for surface smoothness, surface moisture, and other conditions affecting performance of bituminous dampproofing work.
B. Proceed with application only after substrate construction and penetrating work have been completed and unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Mask or otherwise protect adjoining exposed surfaces from being stained, spotted, or coated with dampproofing. Prevent dampproofing materials from entering and clogging weep holes and drains.
B. Clean substrates of projections and substances detrimental to the dampproofing work; fill voids, seal joints, and remove bond breakers if any, as recommended in writing by prime material manufacturer.
C. Apply patching compound to patch and fill tie holes, honeycombs, reveals, and other imperfections; cover with asphalt-coated glass fabric.
3.3 APPLICATION, GENERAL

A. Comply with manufacturer's written instructions for dampproofing application, cure time between coats, and drying time before backfilling unless more stringent requirements are indicated.

1. Apply dampproofing to provide continuous plane of protection.
2. Apply additional coats if recommended in writing by manufacturer or to achieve a smooth surface and uninterrupted coverage.

B. Where dampproofing footings and foundation walls, apply from finished-grade line to top of footing; extend over top of footing and down a minimum of 6 inches (150 mm) over outside face of footing.

3.4 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

A. Concrete Foundations: Apply two brush or spray coats at not less than 1.5 gal./100 sq. ft. (0.6 L/sq. m) for first coat and 1 gal./100 sq. ft. (0.4 L/sq. m) for second coat, one fibered brush or spray coat at not less than 3 gal./100 sq. ft. (1.2 L/sq. m) or one trowel coat at not less than 4 gal./100 sq. ft. (1.6 L/sq. m).

3.5 INSTALLATION OF PROTECTION COURSE

A. Where indicated, install protection course over completed-and-cured dampproofing. Comply with dampproofing-material and protection-course manufacturers' written instructions for attaching protection course.

3.6 CLEANING

A. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended in writing by manufacturer of affected construction.

END OF SECTION 071113
PART 1 – GENERAL

1.1 SUMMARY

A. Products Supplied Under This Section
 1. Vapor Retarder, seam tape, pipe boots, detail strip for installation under concrete slabs.

B. RELATED SECTIONS
 1. Division 3 Section for slabs-on-grade.

1.2 REFERENCES

A. American Society for Testing and Materials (ASTM)
 1. ASTM E 1745-97 Standard Specification for Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs
 2. ASTM E 154-88 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs
 4. ASTM E 1643-98 Standard Practice for Installation of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs.

B. American Concrete Institute (ACI)
 1. ACI 302.1R-96 Vapor Retarder Component (plastic membrane) is not less than 10 mils thick

1.3 SUBMITTALS

A. Quality Control/Assurance
 1. Independent laboratory test results showing compliance with ASTM & ACI Standards.
 2. Manufacturer’s samples, literature.
 3. Manufacturer’s installation instructions for placement, seaming and pipe boot installation.
PART 2 – PRODUCTS

2.1 MATERIALS

A. Extremely low permeance vapor retarders for critically sensitive, low permeance floor coverings. Includes floor coverings of rubber, vinyl, urethane, epoxy and methyl methacrylate, as well as linoleum and wood.

1. Vapor Retarder must have the following qualities:
 a. Minimum WVTR as tested by ASTM E96 of 0.008
 b. Water Vapor Retarder: ASTM E-1745; Meets or exceeds Class A

2. Acceptable Manufacturers: Subject to compliance with the requirements, products include, but are not limited to, one of the following.
 a. Stego Wrap (15 mil) Vapor Retarder by Stego Industries.
 b. W.R. Meadows Premoulded Membrane with Plasmatic Core.
 c. Zero-Perm by Alumiseal.
 d. Architect-approved equal.

2.2 ACCESSORIES

A. Seam Tape
 1. High Density Polyethylene Tape with pressure sensitive adhesive. Minimum width 4 inches.

B. Pipe Boots
 1. Construct pipe boots from vapor retarder material and pressure sensitive tape per manufacturer’s instructions.

PART 3 – EXECUTION

3.1 PREPARATION

A. Level and tamp or roll aggregate, sand or tamped earth base.

3.2 INSTALLATION

A. Install Vapor Retarder:
 1. Installation shall be in accordance with manufacturer’s instructions and ASTM E 1643–98.
 a. Sub-grade shall be graded, leveled and tamped firm.
 b. Unroll Vapor Retarder with the longest dimension parallel with the direction of the pour.
c. Lap Vapor Retarder over footings and seal to foundation walls.
d. Overlap joints 6 inches and seal with manufacturer’s tape.
e. Seal all penetrations (including pipes) with manufacturer’s pipe boot.
f. No penetration of the vapor retarder is allowed except for reinforcing steel and permanent utilities.
g. Repair damaged areas by cutting patches of vapor retarder, overlapping damaged area 6 inches and taping all four sides with tape.

END OF SECTION 071355
SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Extruded polystyrene foam-plastic board.
2. Glass-fiber blanket.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

B. Evaluation Reports: For foam-plastic insulation, from ICC-ES.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

B. Protect foam-plastic board insulation as follows:

1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.
3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD

A. Extruded Polystyrene Board, Type IV, ASTM C 578, Type IV, 25-psi (173-kPa) minimum compressive strength; R-value of 5.0 per inch, unfaced; maximum flame-spread and smoke-developed indexes of 25 and 450, respectively, per ASTM E 84; fabricated with tongue and grooved edges.

1. Formular 250, Owens Corning or approved equivalent.

2.2 GLASS-FIBER BLANKET

A. Glass-Fiber Blanket, Foil Faced Batt Insulation: ASTM C 665, Type III (reflective faced), Class B (faced surface with a flame-propagation resistance of 0.12 W/sq. cm); Category 1 (membrane is a vapor barrier), faced with foil scrim, foil-scrim kraft, or foil-scrim polyethylene.

1. EcoTouch PINK Insulation, Owens Corning or approved equivalent.

2.3 INSULATION FASTENERS

A. Adhesively Attached, Spindle-Type Anchors: Plate welded to projecting spindle; capable of holding insulation of specified thickness securely in position with self-locking washer in place.

1. Plate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.762 mm) thick by 2 inches (50 mm) square.

2. Spindle: Copper-coated, low-carbon steel; fully annealed; 0.105 inch (2.67 mm) in diameter; length to suit depth of insulation.

B. Anchor Adhesive: Product with demonstrated capability to bond insulation anchors securely to substrates without damaging insulation, fasteners, or substrates.

2.4 ACCESSORIES

A. Eave Ventilation Troughs: Preformed, rigid fiberboard or plastic sheets designed and sized to fit between roof framing members and to provide ventilation between insulated attic spaces and vented eaves.
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF SLAB INSULATION

A. On vertical slab edge and foundation surfaces, set insulation units using manufacturer's recommended adhesive according to manufacturer's written instructions.

1. If not otherwise indicated, extend insulation a minimum of 36 inches (915 mm) below exterior grade line.

3.4 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:

1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.

2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.

3. Attics: Install eave ventilation troughs between roof framing members in insulated attic spaces at vented eaves.

4. For wood-framed construction, install blankets according to ASTM C 1320 and as follows:
a. With faced blankets having stapling flanges, lap blanket flange over flange of adjacent blanket to maintain continuity of vapor retarder once finish material is installed over it.

5. Vapor-Retarder-Faced Blankets: Tape joints and ruptures in vapor-retarder facings, and seal each continuous area of insulation to ensure airtight installation.

B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:

1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft. (40 kg/cu. m).
2. Install insulation to fit snugly without bowing.

3.5 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100
SECTION 072500 - WEATHER BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Building wrap.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. For building wrap, include data on air and water-vapor permeance based on testing according to referenced standards.
 B. Shop Drawings: Show details of building wrap at terminations, openings, and penetrations. Show details of flexible flashing applications.

1.4 INFORMATIONAL SUBMITTALS
 A. Evaluation Reports: For water-resistive barrier, from ICC-ES.

PART 2 - PRODUCTS

2.1 WATER-RESISTIVE BARRIER
 A. Building Wrap: ASTM E 1677, Type I air barrier; with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, when tested according to ASTM E 84; UV stabilized; and acceptable to authorities having jurisdiction.
 1. Water-Vapor Permeance: Not less than 20 perms (1150 ng/Pa x s x sq. m) per ASTM E 96/E 96M, Desiccant Method (Procedure A).
 2. Air Permeance: Not more than 0.004 cfm/sq. ft. at 0.3-inch wg (0.02 L/s x sq. m at 75 Pa) when tested according to ASTM E 2178.
 3. Allowable UV Exposure Time: Not less than three months.
4. Flame Propagation Test: Materials and construction shall be as tested according to NFPA 285.

B. Building-Wrap Tape: Pressure-sensitive plastic tape recommended by building-wrap manufacturer for sealing joints and penetrations in building wrap.

PART 3 - EXECUTION

3.1 WATER-RESISTIVE BARRIER INSTALLATION

A. Cover exposed exterior surface of sheathing with water-resistive barrier securely fastened to framing immediately after sheathing is installed.

B. Cover sheathing with water-resistive barrier as follows:
 1. Cut back barrier 1/2 inch (13 mm) on each side of the break in supporting members at expansion- or control-joint locations.
 2. Apply barrier to cover vertical flashing with a minimum 4-inch (100-mm) overlap unless otherwise indicated.

C. Building Wrap: Comply with manufacturer's written instructions and warranty requirements.
 1. Seal seams, edges, fasteners, and penetrations with tape.
 2. Extend into jambs of openings and seal corners with tape.

END OF SECTION 072500
SECTION 074113.13 - FORMED METAL ROOF PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Exposed-fastener, lap-seam, metal roof panels.

B. Related Sections:

1. Section 074633 "Plastic Siding" for horizontal soffit applications.
2. Section 077253 "Snow Guards" for prefabricated devices designed to hold snow on the roof surface, allowing it to melt and drain off slowly.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

B. Shop Drawings:

1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches (1:10).

C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes.

1. Include similar Samples of trim and accessories involving color selection.

D. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below:
1. Metal Panels: 12 inches (305 mm) long by actual panel width. Include fasteners, closures, and other metal panel accessories.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
C. Field quality-control reports.
D. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For metal panels to include in maintenance manuals.

1.6 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.
B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.
C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.
D. Retain strippable protective covering on metal panels during installation.

1.8 FIELD CONDITIONS
A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.
1.9 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

B. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including rupturing, cracking, or puncturing.
 b. Deterioration of metals and other materials beyond normal weathering.

2. Warranty Period: ten-years from date of Substantial Completion.

B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.

1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta E units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Energy Performance: Provide roof panels according to one of the following when tested according to CRRC-1:

1. Three-year, aged solar reflectance of not less than 0.55 and emissivity of not less than 0.75.
2. Three-year, aged Solar Reflectance Index of not less than 64 when calculated according to ASTM E1980.

B. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:
1. Wind Loads: As indicated on Drawings.
2. Other Design Loads: As indicated on Drawings.
3. Deflection Limits: For wind loads, no greater than 1/180 of the span.

C. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class indicated.

1. Uplift Rating: UL 90.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 EXPOSED-FASTENER, LAP-SEAM, METAL ROOF PANELS

A. Provide factory-formed metal roof panels designed to be installed by lapping side edges of adjacent panels and mechanically attaching panels to supports using exposed fasteners in side laps. Include accessories required for weathertight installation. Roofing panel must be designed to be used on a 2:12 roof slope per manufacturer’s printed requirements and to meet the specified warranties.

B. Corrugated-Profile, Exposed-Fastener Metal Roof Panels: Formed with alternating curved ribs spaced at 2.67 inches (68 mm) o.c. across width of panel.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following, or an approved equivalent:

a. AEP Span; A BlueScope Steel Company.
b. Arconic.
c. Berridge Manufacturing Company.
d. CENTRIA Architectural Systems.
e. Fabral.
f. Firestone Building Products.
g. Firestone Metal Products, LLC.
h. Flexospan Steel Buildings, Inc.
i. MBCI.
j. McElroy Metal, Inc.
k. Metal Sales Manufacturing Corporation.
l. Morin - A Kingspan Group Company.
m. Union Corrugating Company.
n. VICWEST.
o. Architect-approved equal.
2. Metallic-Coated Steel Sheet: Zinc-coated (galvanized) steel sheet complying with ASTM A653/A653M, G90 (Z275) coating designation, or aluminum-zinc alloy-coated steel sheet complying with ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation; structural quality. Prepainted by the coil-coating process to comply with ASTM A755/A755M.
 a. Nominal Thickness: 0.028 inch (0.71 mm).
 c. Color: As selected by Architect from manufacturer's full range.

3. Panel Coverage: 29.3 inches (744 mm).
4. Panel Height: 0.875 inch (22 mm).

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Underlayment: Provide self-adhering, cold-applied, sheet underlayment, a minimum of 30 mils (0.76 mm) thick, specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer when recommended by underlayment manufacturer.
 2. Low-Temperature Flexibility: Passes after testing at minus 20 deg F (29 deg C); ASTM D1970.
 3. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlisle WIP Products; a brand of Carlisle Construction Materials.
 b. GCP Applied Technologies Inc.
 c. Henry Company.
 d. Metal-Fab Manufacturing, a Drexel Metals Company.
 e. Owens Corning.
 f. Polyglass U.S.A., Inc.
 g.Protecto Wrap Company.
 h. SDP Advanced Polymer Products Inc.
 i. Architect-approved equal.

B. Slip Sheet: Roofing manufacturer's recommended slip sheet, of type required for application.

2.4 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Subframing and Furring: ASTM C645; cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 (Z275 hot-dip galvanized) coating designation or ASTM A792/A792M, Class AZ50 (Class AZM150) aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.
B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.

1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal panels.
2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch (25-mm-) thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.

C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

D. Gutters: Formed from same material as roof panels, complete with end pieces, outlet tubes, and other special pieces as required. Fabricate in minimum 96-inch (2400-mm-) long sections, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Furnish gutter supports spaced a maximum of 36 inches (914 mm) o.c., fabricated from same metal as gutters. Provide wire ball strainers of compatible metal at outlets. Finish gutters to match metal roof panels.

E. Downspouts: Formed from same material as roof panels. Fabricate in 10-foot (3-m-) long sections, complete with formed elbows and offsets, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Finish downspouts to match gutters.

F. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.

G. Panel Sealants: Provide sealant types recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.

1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.

2.5 FABRICATION

A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements
demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.

B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

C. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

D. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
4. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal panel manufacturer for application, but not less than thickness of metal being secured.

2.6 FINISHES

A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

C. Steel Panels and Accessories:
1. Siliconized Polyester: Epoxy primer and silicone-modified, polyester-enamel topcoat; with a dry film thickness of not less than 0.2 mil (0.005 mm) for primer and 0.8 mil (0.02 mm) for topcoat.

2. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.

1. Examine solid roof sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.
 a. Verify that air- or water-resistive barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.3 INSTALLATION OF UNDERLAYMENT

A. Self-Adhering Sheet Underlayment: Apply primer if required by manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation. Apply at entire roof area, wrinkle free, in shingle fashion to shed water, and with end laps of not less than 6 inches (152 mm) staggered 24 inches (610 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Extend underlayment into gutter trough. Roll laps with roller. Cover underlayment within 14 days.

1. Apply over the entire roof surface.

B. Slip Sheet: Apply slip sheet over underlayment before installing metal roof panels.
C. Flashings: Install flashings to cover underlayment to comply with requirements specified in Section 076200 "Sheet Metal Flashing and Trim."

3.4 INSTALLATION OF METAL ROOF PANELS

A. Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.

1. Shim or otherwise plumb substrates receiving metal panels.
2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air or water-resistive barriers and flashings that are concealed by metal panels are installed.
3. Install screw fasteners in predrilled holes.
4. Locate and space fastenings in uniform vertical and horizontal alignment.
5. Install flashing and trim as metal panel work proceeds.
6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
7. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.

B. Fasteners:

1. Steel Panels: Use stainless steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.

D. Lap-Seam Metal Panels: Fasten metal panels to supports with fasteners at each lapped joint at location and spacing recommended by manufacturer.

1. Lap ribbed or fluted sheets one full rib. Apply panels and associated items true to line for neat and weathertight enclosure.
2. Provide metal-backed washers under heads of exposed fasteners bearing on weather side of metal panels.
3. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.
4. Install screw fasteners with power tools having controlled torque adjusted to compress washer tightly without damage to washer, screw threads, or panels. Install screws in predrilled holes.
5. Flash and seal panels with weather closures at perimeter of all openings.
6. Watertight Installation:
a. Apply a continuous ribbon of sealant or tape to seal lapped joints of metal panels, using sealant or tape as recommend by manufacturer on side laps of nesting-type panels and elsewhere as needed to make panels watertight.

b. Provide sealant or tape between panels and protruding equipment, vents, and accessories.

c. At panel splices, nest panels with minimum 6-inch (152-mm) end lap, sealed with sealant and fastened together by interlocking clamping plates.

E. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.

1. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal panel manufacturer; or, if not indicated, provide types recommended in writing by metal panel manufacturer.

F. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level. Install work with laps, joints, and seams that are permanently watertight.

1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and achieve waterproof performance.

2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (610 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints).

G. Gutters: Join sections with riveted and soldered or lapped and sealed joints. Attach gutters to eave with gutter hangers spaced not more than 36 inches (914 mm) o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion.

H. Downspouts: Join sections with telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch (25 mm) away from walls; locate fasteners at top and bottom and at approximately 60 inches (1524 mm) o.c. in between.

1. Provide elbows at base of downspouts to direct water away from building.

I. Roof Curbs: Install flashing around bases where they meet metal roof panels.

J. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to metal roof panels as recommended by manufacturer.
3.5 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect completed metal panel installation, including accessories. Report results in writing.

B. Remove and replace applications where tests and inspections indicate that they do not comply with specified requirements.

C. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.

D. Prepare test and inspection reports.

3.7 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074113.13
SECTION 074633 - PLASTIC SIDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes vinyl siding and soffit.

B. Related Requirements:

1. Section 061000 "Rough Carpentry" for wood furring, grounds, nailers, and blocking.
2. Section 072500 "Weather Barriers" for weather-resistant barriers.

1.3 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

1. For vinyl siding, include VSI's official certification logo printed on Product Data.

B. Samples for Initial Selection: For vinyl siding and soffit including related accessories.

C. Samples for Verification: For each type, color, texture, and pattern required.

1. 12-inch- (300-mm-) long-by-actual-width Sample of siding.
2. 24-inch- (600-mm-) wide-by-36-inch- (900-mm-) high Sample panel of siding assembled on plywood backing.
3. 12-inch- (300-mm-) long-by-actual-width Sample of soffit.
4. 12-inch- (300-mm-) long-by-actual-width Samples of trim and accessories.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For vinyl siding Installer.
B. Product Certificates: For each type of vinyl siding and soffit.
C. Research/Evaluation Reports: For each type of vinyl siding required, from ICC-ES.
D. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish full lengths of vinyl siding and soffit including related accessories, in a quantity equal to 2 percent of amount installed.

1.9 QUALITY ASSURANCE

A. Vinyl Siding Installer Qualifications: A qualified installer who employs a VSI-certified Installer on Project.
B. Single Source-Manufacturer: Vertical and horizontal siding shall be manufactured by the same manufacturer.
C. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.
 1. Build mockups for vinyl siding and soffit including accessories.
 a. Size: 60 inches (1800 mm) long by 60 inches (1800 mm) high.
 b. Include outside corner on one end of mockup and inside corner on other end.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
1.10 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with labels intact until time of use.

B. Store materials under cover.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including cracking, fading, and deforming.
 b. Deterioration of materials beyond normal weathering.

2. Fading is defined as loss of color, after cleaning with product recommended by manufacturer, of more than 4 Hunter color-difference units as measured according to ASTM D 2244. Verify available warranties and warranty periods for vinyl siding and soffit.

3. Warranty Period: 50 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain products, including related accessories, from single source from single manufacturer.

2.2 VINYL SIDING

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Alside
 b. CertainTeed Corporation (Basis of Design)
 c. Gentek Building Products, Inc.
 d. Royal Building Products
 e. Architect-approved equal.

B. Vinyl Siding Certification Program: Provide products that are listed in VSI's list of certified products.
C. Single Vertical Board and Batten Pattern: 8-inch (203-mm) exposure, ½-inch batten height, .048-inch wall thickness.

D. Texture: Wood grain.

E. Nailing Hem: Double thickness.

F. Finish: Wood-grain print with clear protective coating containing not less than 70 percent PVDF.
 1. Colors: As selected by Architect from manufacturer's full range of colors.

2.3 VINYL SOFFIT

A. Vinyl Soffit: Integrally colored product complying with ASTM D 4477.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Alside
 b. CertainTeed Corporation (Basis of Design)
 c. Gentek Building Products, Inc.
 d. Royal Building Products
 e. Architect-approved equal.

B. Vinyl Siding Certification Program: Provide products that are listed in VSI's list of certified products.

C. Pattern: 12-inch (300-mm) exposure in V-grooved, double, 6-inch (152-mm) board style.

D. Texture: Smooth.

E. Ventilation: Provide perforated soffit.

F. Nominal Thickness: 0.044 inch (1.1 mm).

G. Minimum Profile Depth: 5/8 inch (16 mm).

H. Colors: As selected by Architect from manufacturer's full range of colors.

2.4 ACCESSORIES

A. Siding Accessories, General: Provide starter strips, edge trim, outside and inside corner caps, and other items as recommended by siding manufacturer for building configuration.
 1. Provide accessories made from same material as and matching color and texture of adjacent siding unless otherwise indicated.
 1. Texture: Smooth.

C. Decorative Accessories: Provide the following vinyl decorative accessories as indicated:
 1. Corner posts.
 2. Door and window casings.
 3. Moldings and trim.

D. Colors for Decorative Accessories: As selected by Architect from manufacturer's full range of colors.

E. Flashing: Provide aluminum flashing at window and door heads and where indicated.
 1. Finish for Aluminum Flashing: Siliconized polyester coating, same color as siding.

F. Fasteners:
 1. For fastening to wood, use siding nails of sufficient length to penetrate a minimum of 1 inch (25 mm) into substrate.
 2. For fastening to metal, use ribbed bugle-head screws of sufficient length to penetrate a minimum of 1/4 inch (6 mm), or three screw-threads, into substrate.
 3. For fastening vinyl, use aluminum fasteners. Where fasteners are exposed to view, use prefinished aluminum fasteners in color to match item being fastened.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of vinyl siding and soffit and related accessories.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

3.3 INSTALLATION

A. General: Comply with manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.
1. Center nails in elongated nailing slots without binding siding to allow for thermal movement.

B. Install vinyl siding and soffit and related accessories according to ASTM D 4756.

 1. Install fasteners for vertical vinyl siding no more than 12 inches (300 mm) o.c.

C. Install joint sealants as specified in Section 079200 "Joint Sealants" and to produce a weathertight installation.

3.4 ADJUSTING AND CLEANING

A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.

B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION 074633
SECTION 076200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Manufactured reglets with counterflashing.
2. Formed roof-drainage sheet metal fabrications.

1.3 COORDINATION

A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.

B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 ACTION SUBMITTALS

A. Product Data: For each of the following

1. Underlayment materials.
2. Elastomeric sealant.
3. Butyl sealant.
4. Epoxy seam sealer.

B. Shop Drawings: For sheet metal flashing and trim.

1. Include plans, elevations, sections, and attachment details.
2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled Work.
3. Include identification of material, thickness, weight, and finish for each item and location in Project.
4. Include details for forming, including profiles, shapes, seams, and dimensions.
5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
6. Include details of termination points and assemblies.
7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
8. Include details of roof-penetration flashing.
9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, flashings, and counterflashings.
10. Include details of special conditions.
11. Include details of connections to adjoining work.
12. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches (1:10).

C. Samples: For each exposed product and for each color and texture specified, 12 inches (300 mm) long by actual width.

D. Samples for Initial Selection: For each type of sheet metal and accessory indicated with factory-applied finishes.

E. Samples for Verification: For each type of exposed finish.
 1. Sheet Metal Flashing: 12 inches (300 mm) long by actual width of unit, including finished seam and in required profile. Include fasteners, cleats, clips, closures, and other attachments.
 2. Trim, Metal Closures, Expansion Joints, Joint Intersections, and Miscellaneous Fabrications: 12 inches (300 mm) long and in required profile. Include fasteners and other exposed accessories.
 3. Unit-Type Accessories and Miscellaneous Materials: Full-size Sample.
 4. Anodized Aluminum Samples: Samples to show full range to be expected for each color required.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.

B. Special warranty.

1.6 QUALITY ASSURANCE
A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.
1. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
2. Protect stored sheet metal flashing and trim from contact with water.

B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.8 WARRANTY

A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta E units when tested in accordance with ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sheet metal flashing and trim assemblies, including cleats, anchors, and fasteners, shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA's "The NRCA Roofing Manual: Architectural Metal Flashing, Condensation and Air Leakage Control, and Reroofing" and SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
2.2 SHEET METALS

A. Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.

B. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet in accordance with ASTM A653/A653M, G90 (Z275) coating designation or aluminum-zinc alloy-coated steel sheet in accordance with ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation, Grade 40 (Grade 275); prepainted by coil-coating process to comply with ASTM A755/A755M.

1. Surface: Embossed and with manufacturer's standard clear acrylic coating on both sides.
2. Exposed Coil-Coated Finish:
 a. Siliconized Polyester: Epoxy primer and silicone-modified, polyester-enamel topcoat; with dry film thickness of not less than 0.2 mil (0.005 mm) for primer and 0.8 mil (0.02 mm) for topcoat.
3. Color: As selected by Architect from manufacturer's full range.
4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil (0.013 mm).

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet Underlayment: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer in accordance with underlayment manufacturer's written instructions.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Carlisle WIP Products; a brand of Carlisle Construction Materials.
 b. GCP Applied Technologies Inc.
 c. Henry Company.
 d. Metal-Fab Manufacturing, a Drexel Metals Company.
 e. Owens Corning.
 f. Polyglass U.S.A., Inc.
 g. Protecto Wrap Company.
 h. SDP Advanced Polymer Products Inc.
 i. Architect-approved equal.

2. Source Limitations: Obtain underlayment from single source from single manufacturer.
3. Low-Temperature Flexibility: ASTM D1970/D1970M; passes after testing at minus 20 deg F (29 deg C) or lower.
B. Slip Sheet: Rosin-sized building paper, 3 lb/100 sq. ft. (0.16 kg/sq. m) minimum.

2.4 MISCELLANEOUS MATERIALS

A. Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.

B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.

 a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.

 b. Blind Fasteners: High-strength aluminum or stainless steel rivets suitable for metal being fastened.

 c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.

2. Fasteners for Zinc-Coated (Galvanized) or Aluminum-Zinc Alloy-Coated Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel in accordance with ASTM A153/A153M or ASTM F2329.

3. Fasteners for Zinc Sheet: Series 300 stainless steel or hot-dip galvanized steel in accordance with ASTM A153/A153M or ASTM F2329.

C. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.

D. Elastomeric Sealant: ASTM C920, elastomeric silicone polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

E. Bituminous Coating: Cold-applied asphalt emulsion in accordance with ASTM D1187/D1187M.

F. Asphalt Roofing Cement: ASTM D4586, asbestos free, of consistency required for application.

G. Reglets: Units of type, material, and profile required, formed to provide secure interlocking of separate reglet and counterflashing pieces, and compatible with flashing indicated with factory-mitered and -welded corners and junctions and with interlocking counterflashing on exterior face, of same metal as reglet.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Cheney Flashing Company.
b. Fry Reglet Corporation.
c. Heckmann Building Products, Inc.
d. Hohmann & Barnard, Inc.
e. Keystone Flashing Company, Inc.
f. Metal-Era, Inc.
g. National Sheet Metal Systems, Inc.
h. OMG, Inc.
i. Architect-approved equal.

2. Source Limitations: Obtain reglets from single source from single manufacturer.
3. Material: Galvanized steel, 0.022 inch (0.56 mm) thick.
4. Surface-Mounted Type: Provide with slotted holes for fastening to substrate, with neoprene or other suitable weatherproofing washers, and with channel for sealant at top edge.
5. Accessories:
 a. Flexible-Flashing Retainer: Provide resilient plastic or rubber accessory to secure flexible flashing in reglet where clearance does not permit use of standard metal counterflashing or where Drawings show reglet without metal counterflashing.
 b. Counterflashing Wind-Restraint Clips: Provide clips to be installed before counterflashing to prevent wind uplift of counterflashing's lower edge.

2.5 FABRICATION, GENERAL

A. Custom fabricate sheet metal flashing and trim to comply with details indicated and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required.

1. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
2. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
3. Verify shapes and dimensions of surfaces to be covered and obtain field measurements for accurate fit before shop fabrication.
4. Form sheet metal flashing and trim to fit substrates without excessive oil-canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
5. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances:

1. Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
2. Fabricate sheet metal flashing and trim that is capable of installation to tolerances specified.

C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
 2. Use lapped expansion joints only where indicated on Drawings.

D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal in accordance with cited sheet metal standard to provide for proper installation of elastomeric sealant.

E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

F. Seams:
 1. Fabricate nonmoving seams with flat-lock seams. Tin edges to be seamed, form seams, and solder.

G. Do not use graphite pencils to mark metal surfaces.

2.6 ROOF-DRAINAGE SHEET METAL FABRICATIONS

A. Hanging Gutters:
 1. Fabricate to cross section required, complete with end pieces, outlet tubes, and other accessories as required.
 2. Fabricate in minimum 96-inch- (2400-mm-) long sections.
 3. Furnish flat-stock gutter brackets and flat-stock or twisted gutter spacers and straps fabricated from same metal as gutters, of size recommended by cited sheet metal standard, but with thickness not less than twice the gutter thickness.
 4. Fabricate expansion joints, expansion-joint covers, gutter bead reinforcing bars, and gutter accessories from same metal as gutters. Shop fabricate interior and exterior corners.
 5. Gutter Profile: roofing manufacturer’s standard shape in accordance with cited sheet metal standard.
 7. Gutters with Girth up to 15 Inches (380 mm): Fabricate from the following materials:
 a. Aluminum-Zinc Alloy-Coated Steel: 0.040 inch thick.

B. Downspouts: Fabricate rectangular downspouts to dimensions indicated on Drawings, complete with mitered elbows. Furnish with metal hangers from same material as downspouts and anchors. Shop fabricate elbows.
 1. Fabricate from the following materials:
a. Aluminum-Zinc Alloy-Coated Steel: 0.050 inch.

2.7 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Roof-to-Wall Transition Expansion-Joint Cover: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.034 inch (0.86 mm) thick.

B. Base Flashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.

C. Counterflashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm).

2.8 WALL SHEET METAL FABRICATIONS

A. Opening Flashings in Frame Construction: Fabricate head, sill, jamb, and similar flashings to extend 4 inches (100 mm) beyond wall openings. Form head and sill flashing with 2-inch- (50-mm-) high, end dams. Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch (0.56 mm) thick.

B. Wall Expansion-Joint Cover: Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF UNDERLayment

A. Self-Adhering, High-Temperature Sheet Underlayment:

1. Install self-adhering, high-temperature sheet underlayment; wrinkle free.
2. Prime substrate if recommended by underlayment manufacturer.
3. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures.
4. Apply in shingle fashion to shed water, with end laps of not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses.
5. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps and edges with roller.
6. Roll laps and edges with roller.
7. Cover underlayment within 14 days.

B. Install slip sheet, wrinkle free, over underlayment before installing sheet metal flashing and trim.

1. Install in shingle fashion to shed water.
2. Lapp joints not less than 4 inches (100 mm).

3.3 INSTALLATION, GENERAL

A. Install sheet metal flashing and trim to comply with details indicated and recommendations of cited sheet metal standard that apply to installation characteristics required unless otherwise indicated on Drawings.

1. Install fasteners, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
2. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of sealant.
3. Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement.
4. Install sheet metal flashing and trim to fit substrates and to result in watertight performance.
5. Install continuous cleats with fasteners spaced not more than 12 inches (300 mm) o.c.
6. Space individual cleats not more than 12 inches (300 mm) apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
7. Install exposed sheet metal flashing and trim with limited oil-canning, and free of buckling and tool marks.
8. Do not field cut sheet metal flashing and trim by torch.
9. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by
painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.

1. Coat concealed side of uncoated-aluminum sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.
2. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim.

1. Space movement joints at maximum of 10 feet (3 m) with no joints within 24 inches (600 mm) of corner or intersection.
2. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.

D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction.

1. Use sealant-filled joints unless otherwise indicated.
 a. Form joints to completely conceal sealant.
 b. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way.
 c. Adjust setting proportionately for installation at higher ambient temperatures.

 1) Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).

2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

G. Rivets: Rivet joints in [uncoated aluminum] [zinc] where necessary for strength.

3.4 INSTALLATION OF ROOF-DRAINAGE SYSTEM

A. Install sheet metal roof-drainage items to produce complete roof-drainage system in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.

B. Hanging Gutters:

1. Join sections with riveted and soldered joints or joints sealed with sealant.
2. Provide for thermal expansion.
3. Attach gutters at eave or fascia to firmly anchor them in position.
4. Provide end closures and seal watertight with sealant.
5. Slope to downspouts.
6. Anchor and loosely lock back edge of gutter to continuous cleat or eave or apron flashing.
7. Anchor gutter with straps or twisted straps spaced not more than 24 inches (600 mm) apart to roof deck unless otherwise indicated, and loosely lock to front gutter bead.
8. Install gutter with expansion joints at locations indicated on Drawings, but not exceeding, 40 feet apart. Install expansion-joint caps.

C. Downspouts:

1. Join sections with 1-1/2-inch (38-mm) telescoping joints.
2. Provide hangers with fasteners designed to hold downspouts securely to walls.
3. Locate hangers at top and bottom and at approximately 60 inches (1500 mm) o.c.
4. Provide elbows at base of downspout to direct water away from building.

D. Expansion-Joint Covers: Install expansion-joint covers at locations and of configuration indicated on Drawings. Lap joints minimum of 4 inches (100 mm) in direction of water flow.

3.5 INSTALLATION OF ROOF FLASHINGS

A. Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard.

1. Provide concealed fasteners where possible, and set units true to line, levels, and slopes.
2. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Roof Edge Flashing:

1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
2. Anchor to resist uplift and outward forces in accordance with recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch (75-mm) centers.
3. Anchor to resist uplift and outward forces in accordance with recommendations in FM Global Property Loss Prevention Data Sheet 1-49 for FM Approvals' listing for required windstorm classification.

C. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending minimum of 4 inches (100 mm) over base flashing. Install stainless steel draw band and tighten.

D. Counterflashing: Coordinate installation of counterflashing with installation of base flashing.

1. Insert counterflashing in reglets or receivers and fit tightly to base flashing.
2. Extend counterflashing 4 inches (100 mm) over base flashing.
3. Lap counterflashing joints minimum of 4 inches (100 mm).
4. Secure in waterproof manner by means of interlocking folded seam or blind rivets and sealant or anchor and washer spaced at 12 inches (300 mm) o.c. along perimeter and 6 inches (150 mm) o.c. at corners areas unless otherwise indicated.

E. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate roof.

3.6 INSTALLATION OF WALL FLASHINGS

A. Install sheet metal wall flashing to intercept and exclude penetrating moisture in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.

B. Opening Flashings in Frame Construction: Install continuous head, sill, jamb, and similar flashings to extend 4 inches (100 mm) beyond wall openings.

3.7 INSTALLATION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.8 CLEANING

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean off excess sealants.

3.9 PROTECTION

A. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions.

B. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended in writing by sheet metal flashing and trim manufacturer.

C. Maintain sheet metal flashing and trim in clean condition during construction.

D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures, as determined by Architect.
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

END OF SECTION 076200
SECTION 077100 - ROOF SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Roof-edge specialties.
2. Roof-edge drainage systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: For roof specialties.

1. Include plans, elevations, expansion-joint locations, keyed details, and attachments to other work. Distinguish between plant- and field-assembled work.
2. Include details for expansion and contraction; locations of expansion joints, including direction of expansion and contraction.
3. Indicate profile and pattern of seams and layout of fasteners, cleats, clips, and other attachments.
4. Detail termination points and assemblies, including fixed points.
5. Include details of special conditions.

C. Samples: For each type of roof specialty and for each color and texture specified.

D. Samples for Initial Selection: For each type of roof specialty indicated with factory-applied color finishes.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer.

B. Product Certificates: For each type of roof specialty.
C. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For roofing specialties to include in maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Do not store roof specialties in contact with other materials that might cause staining, denting, or other surface damage. Store roof specialties away from uncured concrete.
 B. Protect strippable protective covering on roof specialties from exposure to sunlight and high humidity, except to extent necessary for the period of roof-specialty installation.

1.7 FIELD CONDITIONS
 A. Field Measurements: Verify profiles and tolerances of roof-specialty substrates by field measurements before fabrication, and indicate measurements on Shop Drawings.
 B. Coordination: Coordinate roof specialties with flashing, trim, and construction of parapets, roof deck, roof and wall panels, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.8 WARRANTY
 A. Special Warranty on Painted Finishes: Manufacturer agrees to repair finish or replace roof specialties that show evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Finish Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. General Performance: Roof specialties shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.
B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, hole elongation, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Provide clips that resist rotation and avoid shear stress as a result of thermal movements. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 ROOF-EDGE SPECIALTIES

A. Roof-Edge and Fascia: Manufactured, two-piece, roof-edge fascia consisting of metal fascia cover in section lengths not exceeding 12 feet (3.6 m).

1. Formed Aluminum Sheet Fascia Covers: Aluminum sheet, 0.040 inch (1.02 mm) thick.
 a. Surface: Embossed finish.
 b. Finish: Two-coat fluoropolymer.
 c. Color: As selected by Architect from manufacturer's full range.

2. Corners: Factory mitered and mechanically clinched and sealed watertight.
3. Splice Plates: Concealed, of same material, finish, and shape as fascia cover.

2.3 ROOF-EDGE DRAINAGE SYSTEMS

A. Gutters: Manufactured in uniform section lengths not exceeding 12 feet (3.6 m), with matching corner units, ends, outlet tubes, and other accessories. Elevate back edge at least 1 inch (25 mm) above front edge. Furnish flat-stock gutter straps, gutter brackets, expansion joints, and expansion-joint covers fabricated from same metal as gutters.

1. Aluminum Sheet: 0.040 inch (1.02mm) thick.
3. Embossed Surface: Embossed with design as selected by Architect from manufacturer's full range.
5. Gutter Supports: Manufacturer's standard supports as selected by Architect with finish matching the gutters.

B. Downspouts: Corrugated rectangular complete with smooth-curve elbows, manufactured from the following exposed metal. Furnish with metal hangers, from same material as downspouts, and anchors.

1. Formed Aluminum: 0.040 inch (1.02 mm) thick.

C. Aluminum Finish: Two-coat fluoropolymer.
1. Color: As selected by Architect from manufacturer's full range.

2.4 MATERIALS

A. Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90 (Z275) coating designation.

B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), alloy as standard with manufacturer for finish required, with temper to suit forming operations and performance required.

2.5 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet: Minimum 30 to 40 mils (0.76 to 1.0 mm) thick, consisting of slip-resisting polyethylene-film top surface laminated to layer of butyl or SBS-modified asphalt adhesive, with release-paper backing; cold applied. Provide primer when recommended by underlayment manufacturer.

B. Felt: ASTM D 226/D 226M, Type II (No. 30), asphalt-saturated organic felt, nonperforated.

2.6 MISCELLANEOUS MATERIALS

A. Fasteners: Manufacturer's recommended fasteners, suitable for application and designed to meet performance requirements. Furnish the following unless otherwise indicated:

 1. Exposed Penetrating Fasteners: Gasketed screws with hex washer heads matching color of sheet metal.
 2. Fasteners for Aluminum: Aluminum or Series 300 stainless steel.

B. Elastomeric Sealant: ASTM C 920, elastomeric silicone polymer sealant of type, grade, class, and use classifications required by roofing-specialty manufacturer for each application.

C. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required for application.

2.7 FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Coil-Coated Aluminum Sheet Finishes:
 1. High-Performance Organic Finish: Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.
 a. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 b. Concealed Surface Finish: Apply pretreatment and manufacturer’s standard acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.

 B. Examine walls, roof edges, and parapets for suitable conditions for roof specialties.

 C. Verify that substrate is sound, dry, smooth, clean, sloped for drainage where applicable, and securely anchored.

 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 UNDERLAYMENT INSTALLATION

 A. Self-Adhering Sheet Underlayment: Apply primer if required by manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation. Apply wrinkle free, in shingle fashion to shed water, and with end laps of not less than 6 inches (152 mm) staggered 24 inches (610 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps with roller. Cover underlayment within 14 days.
 1. Apply continuously under roof-edge specialties and as shown on the drawings.
 2. Coordinate application of self-adhering sheet underlayment under roof specialties with requirements for continuity with adjacent air barrier materials.

 B. Felt Underlayment: Install with adhesive for temporary anchorage to minimize use of mechanical fasteners under roof specialties. Apply in shingle fashion to shed water, with lapped joints of not less than 2 inches (50 mm).
3.3 INSTALLATION, GENERAL

A. General: Install roof specialties according to manufacturer's written instructions. Anchor roof specialties securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, underlayments, sealants, and other miscellaneous items as required to complete roof-specialty systems.

1. Install roof specialties level, plumb, true to line and elevation; with limited oil-canning and without warping, jogs in alignment, buckling, or tool marks.
2. Provide uniform, neat seams with minimum exposure of solder and sealant.
3. Install roof specialties to fit substrates and to result in weathertight performance. Verify shapes and dimensions of surfaces to be covered before manufacture.
4. Torch cutting of roof specialties is not permitted.
5. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.

1. Coat concealed side of uncoated aluminum roof specialties with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.
2. Bed flanges in thick coat of asphalt roofing cement where required by manufacturers of roof specialties for waterproof performance.

1. Space movement joints at a maximum of 12 feet (3.6 m) with no joints within 18 inches (450 mm) of corners or intersections unless otherwise indicated on Drawings.
2. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures.

D. Fastener Sizes: Use fasteners of sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Seal concealed joints with butyl sealant as required by roofing-specialty manufacturer.

F. Seal joints as required for weathertight construction. Place sealant to be completely concealed in joint. Do not install sealants at temperatures below 40 deg F (4 deg C).

3.4 ROOF-EDGE SPECIALITIES INSTALLATION

A. Anchor roof edgings with manufacturer's required devices, fasteners, and fastener spacing to meet performance requirements.
3.5 ROOF-EDGE DRAINAGE-SYSTEM INSTALLATION

A. General: Install components to produce a complete roof-edge drainage system according to manufacturer's written instructions. Coordinate installation of roof perimeter flashing with installation of roof-edge drainage system.

B. Gutters: Join and seal gutter lengths. Allow for thermal expansion. Attach gutters to firmly anchored gutter supports spaced not more than 12 inches (305 mm) apart. Attach ends with rivets and seal with sealant to make watertight. Slope to downspouts.
 1. Install continuous leaf guards on gutters with noncorrosive fasteners, removable for cleaning gutters.

C. Downspouts: Join sections with manufacturer's standard telescoping joints. Provide hangers with fasteners designed to hold downspouts securely to walls and 1 inch (25 mm) away from walls; locate fasteners at top and bottom and at approximately 60 inches (1500 mm) o.c.
 1. Provide elbows at base of downspouts at grade on concrete splash blocks to direct water away from building.

3.6 CLEANING AND PROTECTION

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean and neutralize flux materials. Clean off excess solder and sealants.

C. Remove temporary protective coverings and strippable films as roof specialties are installed. On completion of installation, clean finished surfaces, including removing unused fasteners, metal filings, pop rivet stems, and pieces of flashing. Maintain roof specialties in a clean condition during construction.

D. Replace roof specialties that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

END OF SECTION 077100
SECTION 077253 - SNOW GUARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pad-type, flat-mounted plastic snow guards.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product, include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 B. Samples:
 1. Pad-Type Snow Guards: Full-size unit with installation hardware.
 a. For units with factory-applied finishes, submit manufacturer's standard color selections.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Test Reports: For each type of snow guard, for tests performed by a qualified testing agency, indicating load at failure of attachment to roof system identical to roof system used on this Project.

1.5 FIELD CONDITIONS
 A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit adhesive-mounted snow guards to be installed, and adhesive cured, according to adhesive manufacturer's written instructions.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Performance Requirements: Provide snow guards that withstand exposure to weather and resist thermally induced movement without failure, rattling, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.

1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

B. Structural Performance: Snow guards shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated.

1. Snow Loads: As indicated on Drawings.

2.2 PAD-TYPE SNOW GUARDS

A. Pad-Type, Flat-Mounted Plastic Snow Guards:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Alpine SnowGuards, a division of Vermont Slate & Copper Services, Inc.
 b. Berger Building Products, Inc.
 c. IceBlox Inc.
 d. Levi's Building Components.
 e. Polar Blox.
 f. Zaleski Snow-Guard and Roofing Specialties Inc.
 g. Architect-approved equal.

 a. Color: As selected by Architect from manufacturer's full range.

3. Attachment: Manufacturer's tested system, capable of resisting design loads.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, snow guard attachment, and other conditions affecting performance of the Work.
1. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean and prepare substrates for bonding snow guards.

B. Prime substrates according to snow guard manufacturer's written instructions.

3.3 INSTALLATION

A. Install snow guards according to manufacturer's written instructions.

1. Space rows as recommended by manufacturer.

B. Attachment for Exposed Fastened Metal Roofing:

1. Do not use fasteners that will void metal roofing finish warranty.

2. Pad-Type, Flat-Mounted Snow Guards:

 a. Adhere to metal roofing according to manufacturer's instructions.

 b. Mechanically fasten to metal roofing, using fasteners identical to those used to secure metal roofing to substrate.

END OF SECTION 077253
SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Silicone joint sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product.

B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.

C. Joint-Sealant Schedule: Include the following information:

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each kind of joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.

B. Preconstruction Laboratory Test Reports: From sealant manufacturer, indicating the following:

1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.

C. Sample Warranties: For special warranties.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.
 1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.

C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.6 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F (5 deg C).
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: Twenty years from date of Substantial Completion.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 2. Disintegration of joint substrates from causes exceeding design specifications.
 3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 NONSTAINING SILICONE JOINT SEALANTS

A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C 1248.

B. Silicone, Nonstaining, S, NS, 100/50, NT: Nonstaining, single-component, nonsag, plus 100 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.

2.3 JOINT-SEALANT BACKING

A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin or any of the preceding types, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

2.4 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of sealant backings.
2. Do not stretch, twist, puncture, or tear sealant backings.
3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.

D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:

1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.

1. Remove excess sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.
3.6 JOINT-SEALANT SCHEDULE

1. Joint Locations:

 a. Perimeter joints between materials listed above and frames of doors and louvers.
 b. Other joints as indicated on Drawings.

2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 079200
SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes hollow-metal work.
 B. Related Requirements:
 1. Refer to Section 087100 “Door Hardware” for door hardware for hollow-metal doors.

1.3 DEFINITIONS
 A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION
 A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, and finishes.
 B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of anchorages, joints, field splices, and connections.
 7. Details of accessories.
C. Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch- (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Curries Company; ASSA ABLOY.
2. Custom Metal Products.
3. Hollow Metal Inc.
5. Republic Doors and Frames.
6. Steelcraft; an Allegion brand.
7. Architect-approved equal.

B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

2.2 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

A. Construct exterior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Commercial Laminated Doors and Frames: NAAMM-HMMA 867.

1. Physical Performance: Level A according to SDI A250.4.
2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
b. Thickness: 1-3/4 inches (44.5 mm.)
c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum G60 (Z180) coating.
d. Edge Construction: Continuously welded with no visible seam.
e. Core: Polyurethane.

1) Thermal-Rated Doors: Provide doors fabricated with thermal-resistance value (R-value) of not less than 2.1 deg F x h x sq. ft./Btu when tested according to ASTM C 1363.

3. Frames:
 a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch (1.3 mm), with minimum A60 (ZF180) coating.
 b. Construction: Full profile welded.

2.3 FRAME ANCHORS

A. Jamb Anchors:
 1. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick.

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm), and as follows:
 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.

2.4 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

C. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

D. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-
developed indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.

2.5 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Insulated Hollow-Metal Doors:

1. Vertical Edges for Single-Acting Doors: Provide beveled or square edges at manufacturer's discretion.
2. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets.
3. Bottom Edge Closures: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets.
4. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.

C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

1. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
2. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
3. Jamb Anchors: Provide number and spacing of anchors as follows:

 a. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c. and as follows:

 1) Four anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.

D. Fabricate concealed stiffeners and edge channels from either cold- or hot-rolled steel sheet.

E. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.
2.6 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.

B. Hollow-Metal Frames: Install hollow-metal frames for doors, transoms, sidelites, borrowed lites, and other openings, of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.
 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 3. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

C. Insulated Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:

 a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 b. At Bottom of Door: As required for threshold.
 c. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).

3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

C. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes factory finished, electrically-operated, insulated commercial sectional doors.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type and size of sectional door and accessory.
 1. Include construction details, material descriptions, dimensions of individual components, profile door sections, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished accessories.
 B. Shop Drawings: For each installation and for special components not dimensioned or detailed in manufacturer's product data.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include points of attachment and their corresponding static and dynamic loads imposed on structure.
 4. Include diagrams for power, signal, and control wiring.
 C. Samples for Initial Selection: For units with factory-applied finishes.
 1. Include Samples of accessories involving color selection.
 D. Samples for Verification: For each type of exposed finish on the following components, in manufacturer's standard sizes:
 1. Flat door sections with sensor edge on bottom section.
 2. Frame for paneled door sections; of each width of stile and rail required.
 3. Panel for raised-panel door sections; not smaller than required to show raised-panel profile.
1.4 INFORMATIONAL SUBMITTALS

A. Submit manufacturer's certificate that products meet or exceed specified requirements.

B. Qualification Data: For Installer.

C. Installation to be performed by and accredited dealership by the Institute of Door Dealer Education and Accreditation.

D. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sectional doors to include in maintenance manuals.

B. Wiring Diagrams.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer for both installation and maintenance of units required for this Project.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store products in manufacturer's unopened packaging until ready for installation.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of sectional doors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Structural failures including, but not limited to, excessive deflection.
 b. Failure of components or operators before reaching required number of operation cycles.
 c. Faulty operation of hardware.
 d. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use; rust through.
 e. Delamination of exterior or interior facing materials.
2. Warranty Period: 10 years from date of Substantial Completion.

 a. No component shall be warranted for less than 2 years from date of Substantial Completion.

B. Special Finish Warranty: Manufacturer agrees to repair or replace components that show evidence of deterioration of factory-applied finishes within specified warranty period.

 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS, GENERAL

 A. Source Limitations: Obtain sectional doors from single source from single manufacturer.

 1. Obtain operators and controls from sectional door manufacturer.

2.2 PERFORMANCE REQUIREMENTS

 A. General Performance: Sectional doors shall comply with performance requirements specified without failure due to defective manufacture, fabrication, installation, or other defects in construction and without requiring temporary installation of reinforcing components.

 B. Structural Performance, Exterior Doors: Capable of withstanding the design wind loads.

 1. Design Wind Load: Uniform pressure (velocity pressure) of 20 lbf/sq. ft., acting inward and outward.
 3. Deflection Limits: Design sectional doors to withstand design wind loads without evidencing permanent deformation or disengagement of door components.

 a. Deflection of door sections in horizontal position (open) shall not exceed 1/120 of the door width.

 4. Operability under Wind Load: Design overhead coiling doors to remain operable under uniform pressure (velocity pressure) of 20 lbf/sq. ft. wind load, acting inward and outward.

2.3 DOOR ASSEMBLY

 A. Steel Sectional Door: Sectional door formed with hinged sections and fabricated according to DASMA 102 unless otherwise indicated.
1. Basis-of-Design: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Series TC200 sectional door as manufactured by Raynor.

2. Other Manufacturers: Subject to compliance with the specifications, other manufacturers include, but are not limited to:
 a. Overhead Door Corporation
 b. C.H.I. Overhead Doors.
 c. Clopay Building Products.
 d. Wayne Dalton.
 e. Architect-approved equal.

B. Operation Cycles: Door components and operators capable of operating for not less than 10,000. One operation cycle is complete when a door is opened from the closed position to the fully open position and returned to the closed position.

C. Air Infiltration: Maximum rate of 0.4 cfm/sq. ft. at 15 and 25 mph (24.1 and 40.2 km/h) when tested according to ASTM E 283.

D. Installed R-Value: 10.25 deg F x h x sq. ft./Btu.

E. Locking Devices: Equip door with slide bolt for padlock.

F. Steel Sections: Zinc-coated (galvanized) steel sheet with G40 zinc coating.
 1. Section Thickness: 2 inches (51 mm).
 2. Exterior-Face, Steel Sheet Thickness: 0.019 inch nominal coated thickness.
 a. Surface: Flat or embossed stucco texture.
 3. Insulation: Board.
 4. Interior Facing Material: Zinc-coated (galvanized) steel sheet with a nominal coated thickness of 0.019 inch.

G. Track Configuration: Standard-lift.

H. Weatherseals: Fitted to bottom and top and around entire perimeter of door. Provide combination bottom weatherseal and sensor edge.

I. Counterbalance Type: Torsion spring.

J. Electric Door Operator:
 1. Usage Classification: Heavy duty, 30 or more cycles per hour and more than 300 cycles per day.
 2. Operator Type: Trolley.
3. Safety: Listed according to UL 325 by a qualified testing agency for commercial or industrial use.
6. Obstruction-Detection Device: Automatic electric sensor edge on bottom section.
 a. Sensor Edge Bulb Color: As selected by Architect from manufacturer's full range.
7. Control Station: Interior-side mounted where indicated on Drawings.
8. Other Equipment: Lock bar sensor.

K. Factory-Installed Glazing: Manufacturer’s standard code-compliant insulated glazing with safety glazing. Follow drawings for additional information.

L. Door Finish:
 1. Baked-Enamel or Powder-Coat Finish: Color and gloss as selected by Architect from manufacturer's full range.
 2. Finish of Interior Facing Material: Manufactures standard baked-enamel or powder-coat finish.
 a. Color: As selected by Architect from Manufacturer’s standard colors.

2.4 MATERIALS, GENERAL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 STEEL DOOR SECTIONS

A. Exterior Section Faces and Frames: Zinc-coated (galvanized), cold-rolled, commercial steel (CS) sheet, complying with ASTM A 653/A 653M, with indicated zinc coating and thickness.
 1. Fabricate section faces from single sheets to provide sections not more than 24 inches (610 mm) high and of indicated thickness. Roll horizontal meeting edges to a continuous, interlocking, keyed, rabbeted, shiplap, or tongue-in-groove weather-resistant seal, with a reinforcing flange return.
 2. For insulated doors, provide sections with continuous thermal-break construction, separating the exterior and interior faces of door.

B. Section Ends and Intermediate Stiles: Enclose open ends of sections with channel end stiles formed from galvanized-steel sheet not less than 0.064-inch- (1.63-mm-) nominal coated thickness and welded to door section. Provide intermediate stiles formed from not less than 0.064-inch- (1.63-mm-) thick galvanized-steel sheet, cut to door section profile, and welded in place. Space stiles not more than 48 inches (1219 mm) apart.
C. Reinforce bottom section with a continuous channel or angle conforming to bottom-section profile.

D. Reinforce sections with continuous horizontal and diagonal reinforcement, as required to stiffen door and for wind loading. Provide galvanized-steel bars, struts, trusses, or strip steel, formed to depth and bolted or welded in place. Ensure that reinforcement does not obstruct vision lites.

E. Provide reinforcement for hardware attachment.

F. Board Thermal Insulation: Insulate interior of steel sections with door manufacturer's standard CFC-free polystyrene or polyurethane board insulation, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, according to ASTM E 84. Secure insulation to exterior face sheet. Enclose insulation completely within steel sections and the interior facing material, with no exposed insulation.

H. Fabricate sections so finished door assembly is rigid and aligned, with tight hairline joints and free of warp, twist, and deformation.

2.6 TRACKS, SUPPORTS, AND ACCESSORIES

A. Tracks: Manufacturer's standard, galvanized-steel track system of configuration indicated, sized for door size and weight, designed for lift type indicated and clearances indicated on Drawings, Provide complete system including brackets, bracing, and reinforcement to ensure rigid support of ball-bearing roller guides for required door type, size, weight, and loading.

2. Slope tracks at an angle from vertical or design tracks to ensure tight closure at jambs when door unit is closed.
3. Track Reinforcement and Supports: Galvanized-steel members to support track without sag, sway, and vibration during opening and closing of doors. Slot vertical sections of track spaced 2 inches (51 mm) apart for door-drop safety device.
 a. For Vertical Track: Continuous reinforcing angle attached to track and attached to wall with jamb brackets.
 b. For Horizontal Track: Continuous reinforcing angle from curve in track to end of track, attached to track and supported at points by laterally braced attachments to overhead structural members.

B. Weatherseals: Replaceable, adjustable, continuous, compressible weather-stripping gaskets of flexible vinyl, rubber, or neoprene fitted to bottom and top of sectional door unless otherwise indicated.
2.7 HARDWARE

A. General: Heavy-duty, corrosion-resistant hardware, with hot-dip galvanized, stainless-steel, or other corrosion-resistant fasteners, to suit door type.

B. Hinges: Heavy-duty, galvanized-steel hinges of not less than 0.079-inch-(2.01-mm-) nominal coated thickness at each end stile and at each intermediate stile, according to manufacturer's written recommendations for door size. Attach hinges to door sections through stiles and rails with bolts and lock nuts or lock washers and nuts. Use rivets or self-tapping fasteners where access to nuts is impossible.

C. Rollers: Heavy-duty rollers with steel ball-bearings in case-hardened steel races, mounted with varying projections to suit slope of track. Extend roller shaft through both hinges where double hinges are required. Provide 2-inch-(51-mm-) diameter roller tires for 2-inch-(51-mm-) wide track.

D. Push/Pull Handles: Equip each push-up operated or emergency-operated door with galvanized-steel lifting handles on each side of door, finished to match door.

2.8 LOCKING DEVICES

A. Slide Bolt: Fabricate with side-locking bolts to engage through slots in tracks for locking by padlock, located on single-jamb side, operable from inside only.

B. Safety Interlock Switch: Equip power-operated doors with safety interlock switch to disengage power supply when door is locked.

2.9 COUNTERBALANCE MECHANISM

A. Torsion Spring: Counterbalance mechanism consisting of adjustable-tension torsion springs fabricated from steel-spring wire complying with ASTM A 229/A 229M, mounted on torsion shaft made of steel tube or solid steel. Provide springs designed for number of operation cycles indicated.

B. Cables: Galvanized-steel, multistrand, lifting cables with cable safety factor of at least 5 to 1.

C. Cable Safety Device: Include a spring-loaded steel or spring-loaded bronze cam mounted to bottom door roller assembly on each side and designed to automatically stop door if either lifting cable breaks.

D. Bracket: Provide anchor support bracket as required to connect stationary end of spring to the wall and to level the shaft and prevent sag.

E. Bumper: Provide spring bumper at each horizontal track to cushion door at end of opening operation.
2.10 ELECTRIC DOOR OPERATORS

A. General: Electric door operator assembly of size and capacity recommended and provided by door manufacturer for door and "operation cycles" requirement specified, with electric motor and factory-prewired motor controls, starter, gear-reduction unit, solenoid-operated brake, clutch, control stations, control devices, integral gearing for locking door, and accessories required for proper operation.

1. Comply with NFPA 70.

B. Usage Classification: Electric operator and components capable of operating for not less than number of cycles per hour indicated for each door.

C. Door-Operator Type: Unit consisting of electric motor, gears, pulleys, belts, sprockets, chains, and controls needed to operate door and meet required usage classification.

1. Trolley: Trolley operator mounted to ceiling above and to rear of door in raised position and directly connected to door with drawbar.

D. Motors: Reversible-type motor for motor exposure indicated.

1. Electrical Characteristics:
 b. Volts: 115 V.
 c. Hertz: 60.

2. Motor Size: Minimum size as indicated. If not indicated, large enough to start, accelerate, and operate door in either direction from any position, at a speed not less than 8 in./sec. (203 mm/s) and not more than 12 in./sec. (305 mm/s), without exceeding nameplate ratings or service factor.

3. Operating Controls, Controllers (Disconnect Switches), Wiring Devices, and Wiring: Manufacturer's standard unless otherwise indicated.

4. Coordinate wiring requirements and electrical characteristics of motors and other electrical devices with building electrical system and each location where installed.

5. Use adjustable motor-mounting bases for belt-driven operators.

E. Limit Switches: Equip motorized door with adjustable switches interlocked with motor controls and set to automatically stop door at fully opened and fully closed positions.

F. Obstruction Detection Device: External entrapment protection consisting of indicated automatic safety sensor capable of protecting full width of door opening. Activation of device immediately stops and reverses downward door travel.

1. Electric Sensor Edge: Automatic safety sensor edge, located within astragal or weather stripping mounted to bottom section. Contact with sensor activates device. Connect to control circuit using manufacturer's standard take-up reel or self-coiling cable.
a. Self-Monitoring Type: Four-wire configured device designed to interface with door-operator control circuit to detect damage to or disconnection of sensor edge.

G. Control Station: Three-button control station in fixed location with momentary-contact push-button controls labeled "Open" and "Stop" and "Close."

1. Interior-Mounted Units: Full-guarded, surface-mounted, heavy-duty type, with general-purpose NEMA ICS 6, Type 1 enclosure.

I. Emergency Operation Disconnect Device: Equip operator with hand-operated disconnect mechanism for automatically engaging manual operator and releasing brake for emergency manual operation while disconnecting motor without affecting timing of limit switch. Mount mechanism so it is accessible from floor level. Include interlock device to automatically prevent motor from operating when emergency operator is engaged.

J. Motor Removal: Design operator so motor may be removed without disturbing limit-switch adjustment and without affecting emergency manual operation.

2.11 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM/NOMMA's "Metal Finishes Manual for Architectural and Metal Products (AMP 500-06)" for recommendations for applying and designating finishes.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.12 STEEL AND GALVANIZED-STEEL FINISHES

A. Baked-Enamel or Powder-Coat Finish: Manufacturer's standard baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for cleaning, pretreatment, application, and minimum dry film thickness.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work.
B. Examine locations of electrical connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sectional doors and operating equipment complete with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified.

B. Tracks:

1. Fasten vertical track assembly to opening jambs and framing, spaced not more than 24 inches (610 mm) apart.
2. Hang horizontal track assembly from structural overhead framing with angles or channel hangers attached to framing by welding or bolting, or both. Provide sway bracing, diagonal bracing, and reinforcement as required for rigid installation of track and door-operating equipment.

C. Accessibility: Install sectional doors, switches, and controls along accessible routes in compliance with regulatory requirements for accessibility.

D. Power-Operated Doors: Install according to UL 325.

3.3 STARTUP SERVICES

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

A. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion.

B. Lubricate bearings and sliding parts as recommended by manufacturer.

C. Adjust doors and seals to provide weather-resistant fit around entire perimeter.

D. Touch-up Painting: Immediately after welding galvanized materials, clean welds and abraded galvanized surfaces and repair galvanizing to comply with ASTM A 780/A 780M.
3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain sectional doors.

END OF SECTION 083613
SECTION 087100 – DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes commercial door hardware for the following:
 1. Swinging doors.

B. Door hardware includes, but is not necessarily limited to, the following:
 1. Mechanical door hardware.

C. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.

D. Standards: All hardware specified herein shall comply with the following industry standards:
 1. ANSI/BHMA Certified Product Standards - A156 Series
 2. UL10C – Positive Pressure Fire Tests of Door Assemblies

1.2 SUBMITTALS

A. Product Data: Manufacturer's product data sheets including installation details, material descriptions, dimensions of individual components and profiles, operational descriptions and finishes.

B. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."
 2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.
3. Content: Include the following information:

 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
 c. Fastenings and other pertinent information.
 d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 e. Explanation of abbreviations, symbols, and codes contained in schedule.
 f. Mounting locations for door hardware.
 g. Door and frame sizes and materials.
 h. Warranty information for each product.

4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

C. Keying Schedule: After a keying meeting with the owner has taken place prepare a separate keying schedule detailing final instructions. Submit the keying schedule in electronic format. Include keying system explanation, door numbers, key set symbols, hardware set numbers and special instructions. Owner must approve submitted keying schedule prior to the ordering of permanent cylinders/cores.

D. Informational Submittals:

 1. Product Test Reports: Indicating compliance with cycle testing requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified independent testing agency.

E. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals.

1.3 QUALITY ASSURANCE

A. Source Limitations: Obtain each type and variety of door hardware specified in this section from a single source unless otherwise indicated.

B. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.

C. Keying Conference: Conduct conference to comply with requirements in Division 01 Section "Project Meetings." Keying conference to incorporate the following criteria into the final keying schedule document:

 1. Function of building, purpose of each area and degree of security required.
2. Plans for existing and future key system expansion.
3. Requirements for key control storage and software.
4. Installation of permanent keys, cylinder cores and software.
5. Address and requirements for delivery of keys.

D. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.

1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
3. Review sequence of operation narratives for each unique access controlled opening.
4. Review and finalize construction schedule and verify availability of materials.
5. Review the required inspecting, testing, commissioning, and demonstration procedures.

E. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.

B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.

C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference".

1.5 COORDINATION

A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.
1.6 WARRANTY

A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:

1. Structural failures including excessive deflection, cracking, or breakage.
2. Faulty operation of the hardware.
3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
4. Electrical component defects and failures within the systems operation.

C. Standard Warranty Period: Two-years from date of Substantial Completion, unless otherwise indicated.

D. Special Warranty Periods:

1. Ten years for mortise locks and latches.
2. Five years for exit hardware.
3. Twenty five years for manual surface door closer bodies.
4. Five years for motorized electric latch retraction exit devices.
5. Two years for electromechanical door hardware.

1.7 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. General: Provide door hardware for each door to comply with requirements in Door Hardware Sets and each referenced section that products are to be supplied under.

B. Designations: Requirements for quantity, item, size, finish or color, grade, function, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Sets at the end of Part 3. Products are identified by using door hardware designations, as follows:
C. Named Manufacturer's Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing requirements. Manufacturers' names are abbreviated in the Door Hardware Schedule.

2.2 HANGING DEVICES

A. Hinges: ANSI/BHMA A156.1 certified butt hinges with number of hinge knuckles as specified in the Door Hardware Sets.

1. Quantity: Provide the following hinge quantity, unless otherwise indicated:
 a. Two Hinges: For doors with heights up to 60 inches.
 b. Three Hinges: For doors with heights 61 to 90 inches.
 c. Four Hinges: For doors with heights 91 to 120 inches.
 d. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.

2. Hinge Size: Provide the following, unless otherwise indicated, with hinge widths sized for door thickness and clearances required:
 a. Widths up to 3’0”: 4-1/2” standard or heavy weight as specified.
 b. Sizes from 3’1” to 4’0”: 5” standard or heavy weight as specified.

3. Hinge Weight and Base Material: Unless otherwise indicated, provide the following:
 a. Exterior Doors: Heavy weight, non-ferrous, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate standard weight.

4. Hinge Options: Comply with the following where indicated in the Hardware Sets or on Drawings:
 a. Non-removable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for the all out-swinging lockable doors.

5. Acceptable Manufacturers:
 a. Bommer Industries (BO).
 b. Hager Companies (HA).
 c. McKinney Products (MK).
 d. Architect-approved equal.

2.3 CYLINDERS AND KEYING

A. General: Cylinder manufacturer to have minimum (10) years experience designing secured master key systems and have on record a published security keying system policy.
B. Source Limitations: Obtain each type of keyed cylinder and keys from the same source manufacturer as locksets and exit devices, unless otherwise indicated.

1. Acceptable Manufacturers:
 a. Stanley Best (BE).
 b. Architect-approved equal.

C. Cylinders: Original manufacturer cylinders complying with the following:

1. Mortise Type: Threaded cylinders with rings and cams to suit hardware application.
2. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
3. Bored-Lock Type: Cylinders with tailpieces to suit locks.
4. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.

D. Permanent Cores: Manufacturer's standard; finish face to match lockset; complying with the following:

1. Interchangeable Cores: Core insert, removable by use of a special key; usable with other manufacturers' cylinders.

E. Keying System: Each type of lock and cylinders to be factory keyed.

1. Conduct specified "Keying Conference" to define and document keying system instructions and requirements.
2. Furnish factory cut, nickel-silver large bow permanently inscribed with a visual key control number as directed by Owner.
3. Existing System: Key locks to Owner's existing system.

F. Key Quantity: Provide the following minimum number of keys:

1. Change Keys per Cylinder: Three (3).
2. Master Keys (per Master Key Level/Group): Five (5).
4. Construction Control Keys (where required): Two (2).
5. Permanent Control Keys (where required): Two (2).

G. Construction Keying: Provide temporary keyed construction cores.

H. Key Registration List (Bitting List):

1. Provide keying transcript list to Owner's representative in the proper format for importing into key control software.
2. Provide transcript list in writing or electronic file as directed by the Owner.
2.4 MECHANICAL LOCKS AND LATCHING DEVICES

A. Mortise Locksets, Grade 1 (Heavy Duty): ANSI/BHMA A156.13, Series 1000, Operational Grade 1 certified. Locksets are to be manufactured with a corrosion resistant steel case and be field-reversible for handing without disassembly of the lock body.

1. Acceptable Manufacturers:
 b. Sargent Manufacturing (SA) – 8200 Series.
 c. Architect-approved equal.

2.5 LOCK AND LATCH STRIKES

A. Strikes: Provide manufacturer's standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:

1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
2. Aluminum-Frame Strike Box: Provide manufacturer's special strike box fabricated for aluminum framing.
3. Double-lipped strikes: For locks at double acting doors. Furnish with retractable stop for rescue hardware applications.

B. Standards: Comply with the following:

2. Strikes for Bored Locks and Latches: BHMA A156.2.
3. Strikes for Auxiliary Deadlocks: BHMA A156.5.
4. Dustproof Strikes: BHMA A156.16.

2.6 DOOR CLOSERS

A. All door closers specified herein shall meet or exceed the following criteria:

1. General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.

2. Standards: Closers to comply with UL-10C for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.

3. Cycle Testing: Provide closers which have surpassed 15 million cycles in a test witnessed and verified by UL.
4. Size of Units: Comply with manufacturer's written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units complying with ANSI ICC/A117.1.

5. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware Sets.

6. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics.

7. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates as required for proper installation. Provide through-bolt and security type fasteners as specified in the hardware sets.

B. Door Closers, Surface Mounted (Heavy Duty): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one piece cast iron or aluminum alloy body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control. Provide non-handed units standard.

1. Acceptable Manufacturers:
 a. Sargent Manufacturing (SA) - 351 Series.
 b. Corbin Russwin (RU) – DC6000 Series.
 d. Architect approved equal.

2.7 ARCHITECTURAL TRIM

A. Door Protective Trim

1. General: Door protective trim units to be of type and design as specified below or in the Hardware Sets.

2. Size: Fabricate protection plates (kick, armor, or mop) not more than 2" less than door width (LDW) on stop side of single doors and 1" LDW on stop side of pairs of doors, and not more than 1" less than door width on pull side. Coordinate and provide proper width and height as required where conflicting hardware dictates. Height to be as specified in the Hardware Sets.

3. Protection Plates: ANSI/BHMA A156.6 certified protection plates (kick, armor, or mop), fabricated from the following:
 a. Stainless Steel: 300 grade, 050-inch thick.
4. Options and fasteners: Provide manufacturer's designated fastener type as specified in the Hardware Sets. Provide countersunk screw holes.

5. Acceptable Manufacturers:
 a. Burns Manufacturing (BU).
 b. Rockwood Manufacturing (RO).
 c. Trimco (TC).
 d. Architect-approved equal.

2.8 DOOR STOPS AND HOLDERS

A. General: Door stops and holders to be of type and design as specified below or in the Hardware Sets.

B. Door Stops and Bumpers: ANSI/BHMA A156.16, Grade 1 certified door stops and wall bumpers. Provide wall bumpers, either convex or concave types with anchorage as indicated, unless floor or other types of door stops are specified in Hardware Sets. Do not mount floor stops where they will impede traffic. Where floor or wall bumpers are not appropriate, provide overhead type stops and holders.

1. Acceptable Manufacturers:
 a. Burns Manufacturing (BU).
 b. Rockwood Manufacturing (RO).
 c. Trimco (TC).
 d. Architect-approved equal.

2.9 ARCHITECTURAL SEALS

A. General: Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.

B. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

C. Acceptable Manufacturers:
 1. National Guard Products (NG).
 2. Pemko Manufacturing (PE).
2.10 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.

2.11 FINISHES

A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.

B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware.

C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.2 PREPARATION

A. Insulated Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.

3.3 INSTALLATION

A. Install each item of mechanical and electromechanical hardware and access control equipment to comply with manufacturer's written instructions and according to specifications.

1. Installers are to be trained and certified by the manufacturer on the proper installation and adjustment of fire, life safety, and security products including: hanging devices; locking devices; closing devices; and seals.
B. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:

2. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."
3. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.

C. Retrofitting: Install door hardware to comply with manufacturer's published templates and written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant.

E. Storage: Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.6 CLEANING AND PROTECTION

A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

B. Clean adjacent surfaces soiled by door hardware installation.
C. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

3.7 DEMONSTRATION

A. Instruct Owner's maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

3.8 DOOR HARDWARE SETS

A. The hardware sets represent the design intent and direction of the owner and architect. They are a guideline only and should not be considered a detailed hardware schedule. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.

B. The supplier is responsible for handing and sizing all products as listed in the door hardware sets. Quantities listed are for each pair of doors, or for each single door.

C. Manufacturer’s Abbreviations:

 1. MK - McKinney
 2. RO - Rockwood
 3. RU - Corbin Russwin
 4. BE - Stanley Security Solutions Inc (BE)

Hardware Schedule

Set: 1.0

Doors: 100.1, 100.4 and 100.7

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>TA2314 NRP 4-1/2" x 4-1/2"</td>
<td></td>
<td>US32D MK</td>
</tr>
<tr>
<td>1 Mortise Lock (storeroom)</td>
<td>64 8204 LNL</td>
<td></td>
<td>US26D SA</td>
</tr>
<tr>
<td>1 Core</td>
<td>1C (to suit)</td>
<td></td>
<td>626 BE</td>
</tr>
<tr>
<td>1 Closer (surface)</td>
<td>351 CPS</td>
<td></td>
<td>EN SA</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" x 34" 4BE CSK</td>
<td></td>
<td>US32D RO</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>279x224AFGT MSES25SS</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S773BL</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Rain Guard</td>
<td>346C</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Sweep</td>
<td>3452CNB</td>
<td></td>
<td>PE</td>
</tr>
</tbody>
</table>
END OF SECTION 087100
SECTION 089119 - FIXED LOUVERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:
 1. Fixed extruded-aluminum louvers.
 B. Related Requirements:
 1. Section 081113 "Hollow Metal Doors and Frames" for louvers in hollow-metal doors.

1.3 DEFINITIONS

 A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to
 this Section unless otherwise defined in this Section or in referenced standards.
 B. Horizontal Louver: Louver with horizontal blades (i.e., the axis of the blades are horizontal).
 C. Vertical Louver: Louver with vertical blades (i.e., the axis of the blades are vertical).
 D. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to
 channels in jambs and mullions, which carry it to bottom of unit and away from opening.
 E. Wind-Driven-Rain-Resistant Louver: Louver that provides specified wind-driven-rain
 performance, as determined by testing according to AMCA 500-L.
 F. Windborne-Debris-Impact-Resistant Louver: Louver that provides specified windborne-debris-
 impact resistance, as determined by testing according to AMCA 540.

1.4 ACTION SUBMITTALS

 A. Product Data: For each type of product.
 1. For louvers specified to bear AMCA seal, include printed catalog pages showing
 specified models with appropriate AMCA Certified Ratings Seals.
B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.

1. Show weep paths, gaskets, flashings, sealants, and other means of preventing water intrusion.
2. Show mullion profiles and locations.

C. Samples: For each type of metal finish required.

1.5 INFORMATIONAL SUBMITTALS

A. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.

B. Sample Warranties: For manufacturer's special warranties.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
3. AWS D1.6/D1.6M, "Structural Welding Code - Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.8 WARRANTY

A. Special Finish Warranty: Manufacturer agrees to repair or replace components on which finishes fail in materials or workmanship within specified warranty period.

1. Deterioration includes, but is not limited to, the following:

 a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fixed louvers from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

2.2 PERFORMANCE REQUIREMENTS

A. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver-blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.

1. Wind Loads: Determine loads based on a uniform pressure of 20 lbf/sq. ft. (957 Pa), acting inward or outward.

B. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.3 FIXED EXTRUDED-ALUMINUM LOUVERS

A. Horizontal, Wind-Driven-Rain-Resistant Louver:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Air Balance; a division of MESTEK, Inc.
 b. Air Flow Company, Inc.
 c. Airline Louvers; a division of Mestek, Inc.
 d. Airolite Company, LLC (The).
 e. All-Lite Architectural Products.
 f. American Warming and Ventilating; a Mestek Architectural Group company.
 g. Architectural Louvers; Harray, LLC.
 h. Arrow United Industries.
i. Construction Specialties, Inc.

j. Greenheck Fan Corporation.

k. Industrial Louvers Inc.

l. NCA Manufacturing, Inc.

m. Pottorff.

n. Reliable Products, Inc.

o. Ruskin Company.

p. Safe Air - Dowco Products.

q. United Enertech.

r. Architect-approved equal

2. Louver Depth: 4 inches (100 mm).

3. Frame and Blade Nominal Thickness: Not less than 0.060 inch (1.52 mm) for blades and 0.080 inch (2.03 mm) for frames.

4. Louver Performance Ratings:

a. Free Area: Not less than 7.0 sq. ft. for 48-inch wide by 48-inch high louver.

b. Air Performance: Not more than 0.10-inch wg static pressure drop at 600-fpm free-area exhaust velocity.

C. Wind-Driven Rain Performance: Not less than 99 percent effectiveness when subjected to a rainfall rate of 3 inches per hour and a wind speed of 29 mph at a core-area intake velocity of 300 fpm.

2.4 LOUVER SCREENS

A. General: Provide screen at each exterior louver.

1. Screen Location for Fixed Louvers: Interior face.

2. Screening Type: Insect screening.

B. Secure screen frames to louver frames with machine screws with heads finished to match louver, spaced a maximum of 6 inches (150 mm) from each corner and at 12 inches (300 mm) o.c.

C. Louver Screen Frames: Fabricate with mitered corners to louver sizes indicated.

1. Metal: Same type and form of metal as indicated for louver to which screens are attached

2. Finish: Same finish as louver frames to which louver screens are attached.

3. Type: Rewirable frames with a driven spline or insert.

D. Louver Screening for Aluminum Louvers:

1. Insect Screening: Aluminum, 18-by-16 (1.4-by-1.6-mm) mesh, 0.012-inch (0.30-mm) wire.
2.5 MATERIALS

A. Aluminum Extrusions: ASTM B221 (ASTM B221M), Alloy 6063-T5, T-52, or T6.

B. Aluminum Sheet: ASTM B209 (ASTM B209M), Alloy 3003 or 5005, with temper as required for forming, or as otherwise recommended by metal producer for required finish.

C. Fasteners: Use types and sizes to suit unit installation conditions.
 1. Use Phillips flat-head screws for exposed fasteners unless otherwise indicated.
 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.
 3. For fastening galvanized steel, use hot-dip-galvanized-steel or 300 series stainless-steel fasteners.
 4. For fastening stainless steel, use 300 series stainless-steel fasteners.
 5. For color-finished louvers, use fasteners with heads that match color of louvers.

2.6 FABRICATION

A. Factory assemble louvers to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.

B. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.

C. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

D. Include supports, anchorages, and accessories required for complete assembly.

E. Provide subsills made of same material as louvers for recessed louvers.

F. Join frame members to each other and to fixed louver blades with fillet welds, threaded fasteners, or both, as standard with louver manufacturer unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.7 ALUMINUM FINISHES

A. Finish louvers after assembly.

B. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils (0.04 mm). Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 1. Color and Gloss: As selected by Architect from manufacturer's full range.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

A. Locate and place louvers level, plumb, and at indicated alignment with adjacent work.

B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

C. Form closely fitted joints with exposed connections accurately located and secured.

D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

E. Protect unpainted galvanized- and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.

F. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

A. Clean exposed louver surfaces that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.

B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
C. Restore louvers damaged during installation and construction, so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION 089119
SECTION 220000 – GENERAL PROVISIONS FOR PLUMBING WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 B. Where items of the General Conditions are repeated in this Section of the Specifications, it is intended to qualify or to call particular attention to them; it is not intended that any other parts of the General Conditions shall be assumed to be omitted if not repeated herein.
 C. This Section applies equally and specifically to all Plumbing Sections of the Specifications.
 D. Section 01810 – Special Requirements for Mechanical and Electrical Work shall apply to this Section.

1.2 SUMMARY
 A. Section includes general requirements for all plumbing work to be executed under this Contract.

1.3 SCOPE OF WORK
 A. Except as otherwise specified, provide all labor, materials, equipment and appliances necessary and required to complete all Plumbing Work as indicated on the Drawings and/or described and/or referred to in the Specifications.

1.4 WARRANTY
 A. Provide full 2 year warranty as specified under the General Conditions.

1.5 RELATED WORK NOT INCLUDED
 A. The following principal items of work shall be provided under other sections:
 1. Drainage piping from HVAC equipment to and spilling over floor drain, mop sink, sump or roof, except as noted.
 2. Final make-up water piping connections to hydronic HVAC systems.

1.6 LIST OF SHOP DRAWINGS
A. Submit shop drawings for all work prior to installation.

1.7 QUALITY ASSURANCE

A. Manufacturer's Instructions: In addition to the requirements of these Specifications, comply with all manufacturer's instructions and recommendations for all phases of the work.

B. Additional Standards and Codes for Plumbing Work:

- State of New Jersey Uniform Construction Code
- International Building Code, current New Jersey Edition

C. All work and material not specifically described, but required for a complete and proper installation of the work of this Section, shall be provided by the Contractor and shall be new, first quality of their respective kinds, and subject to approval of the Architect.

D. All water supply connections to plumbing fixtures and other equipment to be installed under this Division shall be in accordance with the rules relative to submerged inlets and protective methods to be applied to prevent contamination of water as required by Local and State Regulations.

1.8 COOPERATION WITH OTHERS

A. Cooperate with other trades whose work is to be correlated with the plumbing work in order to avoid field interference, improper elevations, or inaccessibility to equipment. Any extra expense occasioned by lack of intra-trade cooperation shall be borne by the Contractor.

PART 2 – PRODUCTS

2.1 SPARE PARTS

A. At time of project turnover, provide Owner with the following:

1. One set of gaskets for equipment with handholes, manholes, service heads, etc.

2. One mechanical seal assembly for each circulating pump.

END OF SECTION 220000
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
3. Or approved equal.

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.
6. Or approved equal.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Presealed Systems.
2. Or approved equal.
B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.

2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."
3.2 SLEEVE-SEAL-SYSTEM INSTALLATION
A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION
A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE
A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6 Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

2. Interior Partitions:

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.

E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.
END OF SECTION 220518
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 B. Where items of the General Conditions are repeated in this Section of the Specifications, it is intended to qualify or to call particular attention to them; it is not intended that any other parts of the General Conditions shall be assumed to be omitted if not repeated herein.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze ball valves.
 2. Lubricated plug valves.
 B. Related Sections:
 1. Division 22 Section “Domestic Water Piping Specialties” for specialty valves.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene copolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 D. NRS: Nonrising stem.
 E. OS&Y: Outside screw and yoke.
 F. RS: Rising stem.
 G. SWP: Steam working pressure.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 WARRANTY

A. Provide full 2 year warranty as specified under the General Conditions.

1.6 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
2. ASME B31.1 for power piping valves.
3. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set angle, gate, and globe valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Handwheel: For valves other than quarter-turn types.
 2. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 3. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.

E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Solder Joint: With sockets according to ASME B16.18.
 2. Threaded: With threads according to ASME B1.20.1.

2.2 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Lance Valves; a division of Advanced Thermal Systems, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Or approved equal.
 2. Description:
b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Bronze.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Full.

2.3 LUBRICATED PLUG VALVES

A. Class 125, Regular-Gland, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Or approved equal.

2. Description:
 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Venturi.
 e. Plug: Cast iron or bronze with sealant groove.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
B. Locate valves for easy access and provide separate support where necessary.
C. Install valves in horizontal piping with stem at or above center of pipe.
D. Install valves in position to allow full stem movement.

3.3 ADJUSTING
A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
A. If valve applications are not indicated, use the following:
 1. Domestic Water Shutoff Service: Ball.
B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.

END OF SECTION 220523
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Fiberglass pipe hangers.
4. Metal framing systems.
5. Fiberglass strut systems.
6. Thermal-hanger shield inserts.
7. Fastener systems.
8. Pipe stands.
9. Pipe positioning systems.
10. Equipment supports.

B. Related Sections:

1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 21 fire-suppression piping Sections for pipe hangers for fire-suppression piping.
3. Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Fiberglass strut systems.
3. Pipe stands.
4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS

A. Clevis-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 1, steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.

B. Strap-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless steel.
2.4 FIBERGLASS STRUT SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Tube & Conduit.
2. Champion Fiberglass, Inc.
3. Cooper B-Line, Inc.
4. SEASAFE, INC.; a Gibraltar Industries Company.
5. Or approved equal.

B. Description: Shop- or field-fabricated pipe-support assembly similar to MFMA-4 for supporting multiple parallel pipes.

1. Channels: Continuous slotted fiberglass channel with inturned lips.
2. Channel Nuts: Fiberglass nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.
10. Or approved equal.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.
2.8 PIPE POSITIONING SYSTEMS
 A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for
 positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.9 EQUIPMENT SUPPORTS
 A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-
 steel shapes.

2.10 MISCELLANEOUS MATERIALS
 A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and
 galvanized.
 B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and
 nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION
 A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers,
 supports, clamps, and attachments as required to properly support piping from the building
 structure.
 B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange
 for grouping of parallel runs of horizontal piping, and support together on field-fabricated
 trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or
 install intermediate supports for smaller diameter pipes as specified for individual pipe
 hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being
 supported. Weld steel according to AWS D1.1/D1.1M.
 C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and
 MSS SP-89. Install hangers and attachments as required to properly support piping from
 building structure.
 D. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and
 support together on field-assembled fiberglass struts.
E. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

F. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

G. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.

H. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.

I. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

K. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

L. Install lateral bracing with pipe hangers and supports to prevent swaying.

M. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

N. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

O. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

P. Insulated Piping:
 1. Attach clamps and spacers to piping.
a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and attachments for general service applications.

F. Use stainless-steel pipe hangers and fiberglass pipe hangers and stainless-steel attachments for hostile environment applications.
G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches (100 mm) of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
b. Vertical (MSS Type 55): Mounted vertically.
c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Warning signs and labels.
 2. Pipe labels.
 3. Stencils.
 4. Valve tags.
 5. Warning tags.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Samples: For color, letter style, and graphic representation required for each identification
 material and device.
 C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed
 content for each label.
 D. Valve numbering scheme.
 E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION
 A. Coordinate installation of identifying devices with completion of covering and painting of
 surfaces where devices are to be applied.
 B. Coordinate installation of identifying devices with locations of access panels and doors.
 C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: OSHA Safety Yellow, Federal Standard 595C number 13591.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.

 2. Lettering Size: At least 1-1/2 inches high.
2.3 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material: Fiberboard or metal.
2. Stencil Paint: Exterior, gloss, siloxane epoxy black unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior, siloxane epoxy in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Pipe Label Color Schedule:

1. Domestic Cold Water Piping:

2. Natural Gas Piping:
3.3 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Color:

3. Letter Color:

3.4 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at pipe expansion joints for each type of insulation.
 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 4. Detail removable insulation at piping specialties, equipment connections, and access panels.
 5. Detail application of field-applied jackets.
 6. Detail application at linkages of control devices.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
 d. Or approved equal.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
d. K-Flex USA; R-373 Contact Adhesive.
e. Or approved equal.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 SEALANTS

2.4 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 e. Or approved equal.

2. Adhesive: As recommended by jacket material manufacturer.
3. Color: Color-code jackets based on system.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.5 TAPES

A. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
c. Venture Tape; 1506 CW NS.
d. Or approved equal.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

2.6 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
 c. Or approved equal.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Wire: 0.062-inch soft-annealed, stainless steel.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2.7 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Engineered Brass Company.
 b. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 c. McGuire Manufacturing.
 d. Plumberex.
 e. Truebro; a brand of IPS Corporation.
 f. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
 g. Or approved equal.
2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated):
Install insulation continuously through walls and partitions.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.
C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to five locations of straight pipe, five locations of threaded fittings, five locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Existing piping, except where modified under this contract.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS 1 and Smaller: Insulation shall be one of the following:

 a. Flexible Elastomeric: 3/4 inch thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:

1. None.
2. Painted Aluminum, Smooth: 0.016 inch thick.
3. Stainless Steel, Type 304, Smooth 2B Finish: 0.010 inch thick.

END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside
 buildings.
 2. Encasement for piping.

1.3 ACTION SUBMITTALS
 A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
 A. System purging and disinfecting activities report.
 B. Field quality-control reports.

1.5 FIELD CONDITIONS
 A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by
 Owner or others unless permitted under the following conditions and then only after arranging
 to provide temporary water service according to requirements indicated:
 1. Notify Construction Manager no fewer than five business days in advance of proposed
 interruption of water service.
 2. Do not interrupt water service without Owner's written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type L water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

G. Copper Pressure-Seal-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elkhart Products Corporation.
 b. NIBCO Inc.
 c. Viega.
 d. Or approved equal.
 2. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 3. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

H. Copper Push-on-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
a. Victaulic Company.
b. NIBCO Inc.
c. Watts Inc.
d. Or approved equal.

2. Description:
 a. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B16.22.
 b. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

I. Copper-Tube, Extruded-Tee Connections:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. T-Drill Industries Inc.
 b. Columbia Pipe.
 c. Mueller Streamline Co.
 d. Or approved equal.
 2. Description: Tee formed in copper tube according to ASTM F 2014.

J. Appurtenances for Grooved-End Copper Tubing:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Shurjoint Piping Products.
 c. Victaulic Company.
 d. Or approved equal.
 2. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75 copper tube or ASTM B 584 bronze castings.
 3. Mechanical Couplings for Grooved-End Copper Tubing:
 a. Copper-tube dimensions and design similar to AWWA C606.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating: 300 psig.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe:
1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Standard-Pattern, Mechanical-Joint Fittings:
1. AWWA C110/A21.10, ductile or gray iron.
2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

C. Compact-Pattern, Mechanical-Joint Fittings:
1. AWWA C153/A21.53, ductile iron.
2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

D. Push-on-Joint, Ductile-Iron Pipe:
1. AWWA C151/A21.51.
2. Push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

E. Standard-Pattern, Push-on-Joint Fittings:
1. AWWA C110/A21.10, ductile or gray iron.

F. Compact-Pattern, Push-on-Joint Fittings:
1. AWWA C153/A21.53, ductile iron.

H. Appurtenances for Grooved-End, Ductile-Iron Pipe:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Shurjoint Piping Products.
 b. Star Pipe Products.
 c. Victaulic Company.
 d. Or approved equal.
2. Fittings for Grooved-End, Ductile-Iron Pipe: ASTM A47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions that match pipe.
3. Mechanical Couplings for Grooved-End, Ductile-Iron-Piping:
 a. AWWA C606 for ductile-iron-pipe dimensions.
b. Ferrous housing sections.
c. EPDM-rubber gaskets suitable for hot and cold water.
d. Bolts and nuts.

2.4 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:

1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

F. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.

1. CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105/A21.5.

B. Form: Sheet or tube.

C. Color: Natural.

2.6 TRANSITION FITTINGS

A. General Requirements:

1. Same size as pipes to be joined.
2. Pressure rating at least equal to pipes to be joined.
3. End connections compatible with pipes to be joined.
B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cascade Waterworks Manufacturing.
 b. Dresser, Inc.; Piping Specialties Products.
 c. Ford Meter Box Company, Inc. (The).
 d. JCM Industries.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc.; a Sensus company.
 g. Viking Johnson.
 h. Or approved equal.

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Capitol Manufacturing Company; member of the Phoenix Forge Group.
 b. Central Plastics Company.
 d. Jomar International.
 e. Matco-Norca.
 g. Watts; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Or approved equal.

3. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Capitol Manufacturing Company; member of the Phoenix Forge Group.
 b. Central Plastics Company.
c. Matco-Norca.
d. Watts; a division of Watts Water Technologies, Inc.
e. Wilkins; a Zurn company.
f. Or approved equal.

3. Factory-fabricated, bolted, companion-flange assembly.
4. Pressure Rating: 125 psig minimum at 180 deg F.
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 e. Or approved equal.

2. Nonconducting materials for field assembly of companion flanges.
4. Gasket: Neoprene or phenolic.
5. Bolt Sleeves: Phenolic or polyethylene.

E. Dielectric Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elster Perfection Corporation.
 b. Grinnell Mechanical Products; Tyco Fire Products LP.
 c. Matco-Norca.
 d. Precision Plumbing Products, Inc.
 e. Victaulic Company.
 f. Or approved equal.

3. Electroplated steel nipple complying with ASTM F 1545.
4. Pressure Rating and Temperature: 300 psig at 225 deg F.
5. End Connections: Male threaded or grooved.
PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install underground copper tube and ductile-iron pipe in PE encasement according to ASTM A 674 or AWWA C105/A21.5.

E. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Division 22 Section "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Division 22 Section "Domestic Water Piping Specialties."

F. Install shutoff valve immediately upstream of each dielectric fitting.

G. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Division 22 Section "Domestic Water Piping Specialties."

H. Install domestic water piping level without pitch and plumb.

I. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

L. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

M. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

N. Install piping to permit valve servicing.
O. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

P. Install piping free of sags and bends.

Q. Install fittings for changes in direction and branch connections.

R. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Push-on Joints for Copper Tubing: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.
H. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

I. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

J. Joint Construction for Grooved-End, Ductile-Iron Piping: Make joints according to AWWA C606. Cut round-bottom grooves in ends of pipe at gasket-seat dimension required for specified (flexible or rigid) joint. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.

K. Joint Construction for Grooved-End Steel Piping: Make joints according to AWWA C606. Roll groove ends of pipe as specified. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.

L. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

M. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger, support products, and installation in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code. Comply with requirements for connection sizes in Division 22 plumbing fixture Sections.
4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Division 22 Section "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.

c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.

d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.

e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.

f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Repeat procedures if biological examination shows contamination.
e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed joints.
E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger shall be one of the following:

1. Mechanical-joint, ductile-iron pipe; standard- or compact-pattern, mechanical-joint fittings; and mechanical joints.
2. Push-on-joint, ductile-iron pipe; standard- or compact-pattern, push-on-joint fittings; and gasketed joints.
3. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.

F. Under-building-slab, combined domestic water, building-service, and fire-service-main piping, NPS 6 to NPS 12, shall be one of the following:

1. Mechanical-joint, ductile-iron pipe; standard- or compact-pattern, mechanical-joint fittings; and mechanical joints.
2. Push-on-joint, ductile-iron pipe; standard- or compact-pattern, push-on-joint fittings; and gasketed joints.
3. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.

G. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; copper push-on-joint fittings; and push-on joints.

H. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; grooved-joint, copper-tube appurtenances; and grooved joints.

I. Aboveground domestic water piping, NPS 5 to NPS 8, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; grooved-joint, copper-tube appurtenances; and grooved joints.

J. Aboveground, combined domestic water-service and fire-service-main piping, NPS 6 to NPS 12, shall be one of the following:

1. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.
3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vacuum breakers.
 2. Backflow preventers.
 4. Temperature-actuated, water mixing valves.
 5. Strainers.
 6. Outlet boxes.
 7. Hose bibbs.
 8. Wall hydrants.
 10. Air vents.
 11. Trap-seal systems.
 12. Flexible connectors.

B. Related Requirements:
 1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 22 Section "Domestic Water Piping" for water meters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.
 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 and NSF 14.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products.
 b. Cash Acme; a division of Reliance Worldwide Corporation.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 h. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 i. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
 j. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 k. Or approved equal.

5. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers, RPZ:
1. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 b. Conbraco Industries, Inc.
 c. FEBCO; a division of Watts Water Technologies, Inc.
 d. Flomatic Corporation.
 e. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 f. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 g. Or approved equal.

2. **Standard:** ASSE 1013.

3. **Operation:** Continuous-pressure applications.

4. **Pressure Loss:** 12 psig maximum, through middle third of flow range.

5. **Size:** NPS 2.

6. **Design Flow Rate:** 80 gpm.

7. **Pressure Loss at Design Flow Rate:** 13 psig.

8. **Body:** Bronze for NPS 2 and smaller.

9. **End Connections:** Threaded for NPS 2 and smaller.

10. **Configuration:** Designed for horizontal, straight-through flow.

11. **Accessories:**

 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.

B. **Reduced-Pressure-Detector, Fire-Protection, Backflow-Preventer Assemblies, RPDA:**

1. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 b. Conbraco Industries, Inc.
 c. FEBCO; a division of Watts Water Technologies, Inc.
 d. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 e. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 f. Or approved equal.

2. **Standard:** ASSE 1047 and is FM Global approved or UL listed.

3. **Operation:** Continuous-pressure applications.

4. **Pressure Loss:** 12 psig maximum, through middle third of flow range.

5. **Size:** NPS 6.

6. **Design Flow Rate:** 500 gpm.

7. **Pressure Loss at Design Flow Rate:** 14 psig.

8. **Body:** Cast iron with interior lining that complies with AWWA C550 or that is FDA approved.

9. **End Connections:** Flanged.

10. **Configuration:** Designed for horizontal, straight-through flow.

11. **Accessories:**
a. Valves: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.
c. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.

2.5 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flo Fab Inc.
 c. ITT Corporation; Bell & Gossett Div.
 d. NIBCO Inc.
 e. TAC.
 f. TACO Incorporated.
 g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 h. Or approved equal.

2. Type: Ball valve with two readout ports and memory-setting indicator.
4. Size: Same as connected piping, but not larger than NPS 2 (DN 50).
5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices, TMV-1:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Cash Acme; a division of Reliance Worldwide Corporation.
 c. Conbraco Industries, Inc.
 d. Honeywell International Inc.
 e. Legend Valve.
 f. Leonard Valve Company.
 g. Powers; a division of Watts Water Technologies, Inc.
 h. Symmons Industries, Inc.
 i. TACO Incorporated.
 j. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 k. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 l. Or approved equal.

4. Type: Thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 90 deg F.
10. Valve Finish: Rough bronze.

B. Individual-Fixture, Water Tempering Valves, TV-1:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Cash Acme; a division of Reliance Worldwide Corporation.
 b. Conbraco Industries, Inc.
 c. Honeywell International Inc.
 d. Lawler Manufacturing Company, Inc.
 e. Leonard Valve Company.
 f. Powers; a division of Watts Water Technologies, Inc.
 g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 h. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.

2. Standard: ASSE 1016, thermostatically controlled, water tempering valve.
3. Pressure Rating: 125 psig minimum unless otherwise indicated.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.
8. Tempered-Water Setting: 105 deg F.
9. Tempered-Water Design Flow Rate: 0.5 gpm.

2.7 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 c. Strainers NPS 5 and Larger: 0.10 inch.

2.8 HOSE BIBBS

A. Hose Bibbs, HB-1:

4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Service Areas: Chrome or nickel plated.
9. Finish for Finished Rooms: Chrome or nickel plated.
10. Operation for Equipment Rooms: Wheel handle or operating key.
11. Operation for Service Areas: Wheel handle.
12. Include operating key with each operating-key hose bibb.
13. Include wall flange with each chrome- or nickel-plated hose bibb.

2.9 WALL HYDRANTS

A. Nonfreeze Wall Hydrants, NFWH:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products.
 g. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 h. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
 i. Zurn Industries, LLC; Plumbing Products Group; Specification Drainage Products.
 j. Or approved equal.

4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounted with cover.
12. Operating Keys(s): One with each wall hydrant.

2.10 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters, WHA:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. Precision Plumbing Products, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products.
 i. Zurn Industries, LLC; Plumbing Products Group; Specification Drainage Products.
 j. Or approved equal.

3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.11 AIR VENTS

A. Bolted-Construction Automatic Air Vents:

1. Body: Bronze.
2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.
5. Size: NPS 1/2 minimum inlet.

B. Welded-Construction Automatic Air Vents:

2. Pressure Rating: 150-psig (1035-kPa) minimum pressure rating.
3. Float: Replaceable, corrosion-resistant metal.

2.12 TRAP-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Provent Systems.
 2. Wade.
 3. J. R. Smith.
 4. SureSeal.

C. Type: Elastometric trap-seal system.

2.13 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Flex-Hose Co., Inc.
 2. Flexicraft Industries.
 3. Flex Pression, Ltd.
 4. Flex-Weld Incorporated.
 5. Hyspan Precision Products, Inc.
 7. Metraflex, Inc.
 8. Proco Products, Inc.
 9. TOZEN Corporation.
 10. Unaflex.
 11. Universal Metal Hose; a Hyspan company.
 12. Or approved equal.

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
3. Do not install bypass piping around backflow preventers.

B. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

C. Install water-control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.

E. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

1. Install cabinet-type units recessed in or surface mounted on wall as specified.

F. Install Y-pattern strainers for water on supply side of each control valve.

G. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Division 06 Section "Rough Carpentry."

H. Install hose stations with check stops or shutoff valves on inlets and with thermometer on outlet.

1. Install cabinet-type units recessed in or surface mounted on wall as specified. Install 2-by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Division 06 Section "Rough Carpentry."

I. Install water-hammer arresters in water piping according to PDI-WH 201.

J. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.
3.2 CONNECTIONS

A. Comply with requirements for piping specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements for ground equipment in Division 26 Section "Grounding and Bonding for Electrical Systems."

C. Fire-retardant-treated-wood blocking is specified in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:

1. Pressure vacuum breakers.
2. Intermediate atmospheric-vent backflow preventers.
3. Reduced-pressure-principle backflow preventers.
5. Carbonated-beverage-machine backflow preventers.
7. Reduced-pressure-detector, fire-protection, backflow-preventer assemblies.
10. Calibrated balancing valves.
11. Primary, thermostatic, water mixing valves.
14. Primary water tempering valves.
15. Outlet boxes.
17. Supply-type, trap-seal primer valves.
18. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each pressure vacuum breaker, and reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 230000 - SPECIAL REQUIREMENTS FOR HVAC WORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. This Section is coordinate with and complementary to the General and Supplementary Conditions, and Division 01 Specification Sections, wherever applicable to HVAC Work.

B. Where items of the General Conditions are repeated in this Section of the Specifications, it is intended to qualify or to call particular attention to them; it is not intended that any other parts of the General Conditions shall be assumed to be omitted if not repeated herein.

C. This Section applies equally and specifically to all HVAC Sections of the Specifications.

1.2 SCOPE OF WORK

A. Except as otherwise specified, provide all labor, materials, equipment and appliances necessary and required to complete all HVAC Work as indicated on the Drawings and/or described and/or referred to in the Specifications.

1.3 ADDITIONAL CODES AND STANDARDS FOR HVAC WORK

A. ADC Air Diffusion Council

B. IMC International Mechanical Code 2018

C. IFC International Fuel Gas Code 2018

D. NFPA-90A Air Conditioning and Ventilation Systems

1.4 SUBMITTALS

A. Refer to Section 013300 – Submittal Procedures

B. The Contractor shall submit shop drawings with such promptness as to cause no delay in his own work or that of another contractor.

C. Submit shop drawings complete in every detail for items as described in the contract documents, or as may be required by the Architect.

D. Submit shop drawings as indicated in subsequent Sections of this Specification.
2.1 SPARE PARTS

A. At time of project turnover, provide Owner with the following:

1. Two complete sets of media for units that have filters.
2. One set of belts for belt driven equipment.
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Where items of the General Conditions are repeated in this Section of the Specifications, it is intended to qualify or to call particular attention to them; it is not intended that any other parts of the General Conditions shall be assumed to be omitted if not repeated herein.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Equipment supports.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
1. Trapeze pipe hangers.
2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS
A. Welding certificates.

1.6 QUALITY ASSURANCE
A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS
A. Carbon-Steel Pipe Hangers and Supports (and copper piping applications where hanger is applied outside of the insulation system):
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
B. Copper Pipe Hangers (for applications with hanger indirect contact with pipe):
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS
A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Install hangers and supports complete with necessary bolts, rods, nuts, washers, and other accessories. Hangers shall only be attached to structural steel members, or miscellaneous steel that is designed, furnished, installed and properly fastened to the building steel by contractor.

F. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

G. Install lateral bracing with pipe hangers and supports to prevent swaying.

H. Fasten building attachments in concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

K. Insulated Piping:

1. Attach clamps and spacers to piping.
a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles on steel pipe if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on hot non-ferrous and all cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 and Larger: 24 inches long and 0.075 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS
A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings.

D. Use copper-plated pipe hangers and copper attachments that are in direct contact with copper piping and tubing.

E. Use thermal-hanger shield inserts for insulated piping and tubing.
F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 2.
2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 and larger, requiring clamp flexibility and up to 4 inches of insulation.
3. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 and larger.
4. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 2 and larger, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
5. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 2 and larger, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
6. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 2-1/2 to NPS 4, from two rods if longitudinal movement caused by expansion and contraction might occur.
7. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 5 and larger if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 and larger.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
4. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
5. C-Clamps (MSS Type 23): For structural shapes.
6. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
7. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
8. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

L. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

END OF SECTION 230529
SECTION 230548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Vibration isolators.
 2. Restrained vibration isolation roof curb rails.
 3. Vibration isolation equipment bases.
 4. Restrained spring isolators.

1.3 DEFINITIONS

1.4 PERFORMANCE REQUIREMENTS
 A. Wind-Restraint Loading shall be as indicated on the contract drawings, in the
 architectural/structural code analysis.

1.5 ACTION SUBMITTALS
 A. Product Data: For the following:
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation
 device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each
 type and size of restraint component used.
 a. Tabulate types and sizes of restraints, complete with report numbers and rated
 strength in tension and shear as evaluated by an agency acceptable to authorities
 having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with
 requirements.
3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Delegated-Design Submittal: For vibration isolation details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, and wind forces required to select vibration isolators, wind restraints, and for designing vibration isolation bases.

 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 23 Sections for equipment mounted outdoors.

2. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes. Include certification that riser system has been examined for excessive stress and that none will exist.

3. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.

4. Wind-Restraint Details:
 a. Design Analysis: To support selection and arrangement of wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Indicate association with vibration isolation devices.
 c. Coordinate vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Division 23 Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control test reports.
1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

B. Comply with restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:

1. Ace Mountings Co., Inc.
2. Amber/Booth Company, Inc.
4. Isolation Technology, Inc.
7. Vibration Eliminator Co., Inc.
8. Vibration Isolation.
10. Or approved equal.

B. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

C. Spring Hangers with Vertical-Limit Stop: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.
1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

D. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

E. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard prime-coat finish ready for field painting.

B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and wind-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits.

3.3 VIBRATION-CONTROL DEVICE INSTALLATION

A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

B. Equipment Restraints:
 1. Install snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

C. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 20 feet o.c.
3. Brace a change of direction longer than 12 feet.

D. Install cables so they do not bend across edges of adjacent equipment or building structure.

E. Install restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

I. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post-connection testing has been approved), and with at least seven days' advance notice.
4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. Verify snubber minimum clearances.
10. Air-Mounting System Operational Test: Test the compressed-air leveling system.
11. Test and adjust air-mounting system controls and safeties.
12. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust air-spring leveling mechanism.

D. Adjust active height of spring isolators.

E. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 01 Section "Demonstration and Training."

3.7 HVAC VIBRATION-CONTROL DEVICE SCHEDULE

A. Supported or Suspended Equipment: Rooftop Units, Condensing Units, Fans, Fan Coil Unit, Radiant Panels, Unit Heaters.
HVAC Equipment Schedule of Isolators

<table>
<thead>
<tr>
<th>ON GRADE, BASEMENT OR SLAB ON GRADE</th>
<th>ABOVE GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT (See Note!)</td>
<td>MTNG</td>
</tr>
<tr>
<td>Unit Heaters</td>
<td>Clg</td>
</tr>
</tbody>
</table>

Minimum Deflection Over-Ride for Table “A” Based on RPM

<table>
<thead>
<tr>
<th>R.P.M.</th>
<th>DEFLECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 400</td>
<td>3.50”</td>
</tr>
<tr>
<td>401 to 600</td>
<td>2.50”</td>
</tr>
<tr>
<td>601 to 900</td>
<td>1.50”</td>
</tr>
<tr>
<td>OVER 900</td>
<td>0.75”</td>
</tr>
</tbody>
</table>

Isolator Notes:

Note 1: For equipment with variable speed drives, select isolation based on minimum operating speed.

Note 2: Isolated roof curbs shall use sound barrier when there is no concrete under roof top units.

Note 3: Deflection indicated are minimums at actual load and shall be selected for manufacturer’s nominal 5”, 4”, 3” 2” and 1” deflection spring series, RPM is defined as the lowest operating speed of the equipment.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Where items of the General Conditions are repeated in this Section of the Specifications, it is intended to qualify or to call particular attention to them; it is not intended that any other parts of the General Conditions shall be assumed to be omitted if not repeated herein.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tags.

1.3 ACTION SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Yellow.

C. Background Color: White.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches high.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link, beaded chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces and exterior exposed locations as follows:

1. Near each valve.
2. Near each branch connection. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors and similar access points that permit view of concealed piping.
5. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

B. Pipe Label Color Schedule: ANSI/OHSA Standards shall apply.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape: 2 inches round.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Where items of the General Conditions are repeated in this Section of the Specifications, it is intended to qualify or to call particular attention to them; it is not intended that any other parts of the General Conditions shall be assumed to be omitted if not repeated herein.

1.2 SUMMARY
A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.

1.3 PERFORMANCE REQUIREMENTS
A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 2. Service Regulators: 100 psig minimum unless otherwise indicated.
B. Natural-Gas System Pressure within Buildings: Refer to Drawings for nominal operating pressure of each system.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
1.5 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.7 QUALITY ASSURANCE
A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS
A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

2.2 PIPING SPECIALTIES
A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller.
 3. Strainer Screen: [40] [60]-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
B. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound: Blue-Block for natural gas, no substitutes.

2.4 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves: Comply with ASME B16.33.

2. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
4. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
5. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

B. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:

 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
 f. Or approved equal

3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 DIELECTRIC UNIONS

A. Dielectric Unions:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:

 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Or approved equal

2. Description:

 b. Pressure Rating: 150 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.

S. Do not use natural-gas piping as grounding electrode.

T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

U. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.2 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas fired appliance.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.3 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

3.5 CONNECTIONS
A. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
B. Install piping adjacent to appliances to allow service and maintenance of appliances.
C. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
D. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.6 LABELING AND IDENTIFYING
A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.7 FIELD QUALITY CONTROL
A. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
B. Natural-gas piping will be considered defective if it does not pass tests and inspections.
C. Prepare test and inspection reports.

3.8 PIPING SCHEDULE
A. Piping shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints for 2 NPS and smaller.
 2. Steel pipe with wrought-steel fittings and welded joints for 2-1/2 NPS and larger.

3.9 MANUAL GAS SHUTOFF VALVE SCHEDULE
A. Valves shall be two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123

FACILITY NATURAL-GAS PIPING
SECTION 235533 - GAS-FIRED UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes gas-fired unit heaters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of fuel-fired unit heater indicated. Include rated capacities, operating characteristics, and accessories.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Preparing by or under the supervision of a qualified professional engineer detailing fabrication and assembly of fuel-fired unit heaters, as well as procedures and diagrams.

2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members to which equipment will be attached.

2. Items penetrating roof and the following:

 a. Combustion air, vent and gas piping rough-ins and connections.

B. Manufacturer Seismic Qualification Certification: Submit certification that fuel-fired unit heaters, accessories, and components will withstand seismic forces defined in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." Include the following:
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control test reports.

D. Warranty: Special warranty specified in this Section.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired unit heaters to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One for each belt-driven fan size.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace heat exchanger of fuel-fired unit heater that fails in materials or workmanship within specified warranty period.
PART 2 - PRODUCTS

2.1 GAS-FIRED UNIT HEATERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:

1. Reznor/Thomas & Betts Corporation – Basis of Design.
3. Sterling HVAC Products; Div. of Mestek Technology Inc.
4. Lennox Industries, Inc.
5. Or approved equal.

D. Description: Factory assembled, piped, and wired, and complying with ANSI Z83.8/CSA 2.6.

E. Fuel Type: Design burner for natural gas having characteristics same as those of gas available at Project site.

F. Type of Venting: Separated combustion, power vented.

G. Housing: Steel, with integral draft hood and inserts for suspension mounting rods.

1. External Casings and Cabinets: Baked enamel over corrosion-resistant-treated surface.
2. Suspension Attachments: Reinforce suspension attachments at connection to fuel-fired unit heaters.

a. Seismic Fabrication Requirements: Fabricate suspension attachments of fuel-fired unit heaters, accessories mountings, and components with reinforcement strong enough to withstand seismic forces defined in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" when fuel-fired unit heater is anchored to building structure.

I. Burner Material: Stainless steel.
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

J. Unit Fan: Formed-steel propeller blades riveted to heavy-gage steel spider bolted to cast-iron hub, dynamically balanced, and resiliently mounted.

1. Fan-Blade Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
2. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

 a. Motors: Totally enclosed with internal thermal-overload protection and complying with Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 c. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

K. Unit Fan: Steel, centrifugal fan dynamically balanced and resiliently mounted.

1. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:

 a. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.

2. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

 a. Motors: Totally enclosed with internal thermal-overload protection and complying with Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 c. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

L. Controls: Regulated redundant gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.

1. Gas Control Valve: Two stage.
2. Ignition: Electronically controlled electric spark with flame sensor.
3. Fan Thermal Switch: Operates fan on heat-exchanger temperature.
4. High Limit: Thermal switch or fuse to stop burner.
5. Thermostats: Devices and wiring are specified in Division 23 Section "Instrumentation and Control for HVAC."
6. Thermostat: 2-stage, wall-mounting type with 50 to 90 deg F operating range and fan on switch.

M. Discharge Louvers: Independently adjustable horizontal blades.
N. Accessories:

1. Vertical discharge louvers.
2. Discharge Nozzle: Discharge at 45 degrees from horizontal.
3. Four-point suspension kit.
4. Summer fan switch.
5. Power Venter: Centrifugal aluminized-steel fan, with stainless-steel shaft; 120-V ac motor.
6. Concentric, Terminal Vent Assembly: Combined combustion-air inlet and power-vent outlet with wall or roof caps. Include adapter assembly for connection to inlet and outlet pipes, and flashing for wall or roof penetration.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and connect gas-fired unit heaters and associated fuel and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written installation instructions.

B. Suspend unit heaters from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.

1. Restrain the unit to resist code-required horizontal acceleration.

C. Substrate-Mounted Units: Provide supports connected to substrate. Secure units to supports.

1. Spring hangers and seismic restraints are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment".
2. Anchor the unit to resist code-required horizontal acceleration.

3.2 CONNECTIONS

A. Comply with Division 23 Section "Facility Natural-Gas Piping". Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.

B. Vent Connections: Provide gas tight and heavy gauge galvanized sheetmetal flue and combustion air intake duct. Terminate above roof with concentric adapter furnished by unit manufacturer.

C. Electrical Connections: Comply with applicable requirements in Division 26 Sections.

1. Install electrical devices furnished with heaters but not specified to be factory mounted.
3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
2. Verify bearing lubrication.
3. Verify proper motor rotation.
4. Test Reports: Prepare a written report to record the following:
 a. Test procedures used.
 b. Test results that comply with requirements.
 c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.

3.4 ADJUSTING

A. Adjust initial temperature set points.

B. Adjust burner and other unit components for optimum heating performance and efficiency.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fuel-fired unit heaters.

END OF SECTION 235533
SECTION 260000 - GENERAL PROVISIONS FOR ELECTRICAL WORK

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. This Section is coordinate with and complementary to the General Conditions and Supplementary General Conditions of the work, wherever applicable to Mechanical and Electrical Work.

B. Drawing and General Provision of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections.

C. Drawings are diagrammatic and are a graphic representation of contract requirements to the best available standards at the scale required. Sizes and locations of equipment are shown to scale where possible, but may be distorted for clarity on the Drawings. Final locations of outlets and equipment shall be as shown in enlarged details or as approved by the Architect or his representative.

D. Light and power and system riser diagrams and schematic diagrams generally indicate equipment connections to be used for various systems. System conduit and wiring shall be as required for actual systems installed on this project. Provide all work shown on diagrams whether or not it is duplicated on the plans.

1.2 SCOPE OF WORK

A. The Specifications and the accompanying Drawings are intended to secure the provisions of all material, labor, equipment, and services necessary to install complete, test, and make ready for operation the Electrical Systems in accordance with the Specifications and Drawings. All systems shall be complete with necessary appurtenances and minor auxiliaries, including pull boxes, offsets to clear interferences, and supports which are not shown but are needed to make each system complete in every respect. All work described in the Specifications and not shown on the Drawings, or vice versa, shall be furnished in complete working order. If mention has been omitted of any item of work or material necessary for completion of the system, then such items must be and are hereby included. The work includes but is not limited to the following:

1. Raceways and installation components.
2. Wire and Cable.
3. Panelboards – Modifications
4. Safety and disconnect switches.
6. Control equipment.
7. Grounding system.
8. Lighting fixtures.
10. Demolition.
11. Furnishing of access doors.
12. Furnishing and setting of all sleeves through the floors, roof, and walls where required, including waterproofing and fireproof sealing and cap flashing.
13. Hardware, such as inserts, bolts, etc., associated with concrete pads.
14. Cutting, drilling and boring associated with electrical work.
15. Prime painting, where required for electrical equipment and installation.
16. Removal of existing electrical work in accordance with Architectural Demolition Scheme or as directed and required.
17. Provisions for temporary light and power.
18. Final connection of all equipment unless otherwise noted.

1.3 QUALITY ASSURANCE AND STANDARDS

A. The complete installation shall be in accordance with the applicable requirements and standards of National Electrical Manufacturers Association (NEMA), National Fire Protection Association (NFPA), Local Inspection Agency, along with state and local municipal codes and all applicable codes and authorities having jurisdiction. Any items or requirements noted in the Specifications or on Drawings which conflict with these shall be referred to the Architect for decision. All work necessary to comply with these requirements shall be performed by the Contractor at no extra cost to the Owner.

B. All electrical equipment, materials, and appliances shall have the listing of Underwriter's Laboratories, Inc., and shall bear labels attesting to UL listing.

1.4 SUBMITTALS

A. Refer to Section 013300 – Submittal Procedures
B. The Contractor shall submit shop drawings with such promptness as to cause no delay in his own work or that of another contractor.

C. Submit shop drawings complete in every detail for items as described in the contract documents, or as may be required by the Architect.

D. Submit shop drawings as indicated in subsequent Sections of this Specification.

1.5 EXAMINATION OF EXISTING CONDITIONS ON PREMISES

A. Before submitting his bid, this Contractor shall visit the site of the work and shall thoroughly familiarize himself with the observable existing conditions affecting the work. By the act of submitting a bid, the Contractor shall be deemed to have made such an examination and to have accepted such conditions and to have made allowance therefore in preparing his bid. No additional compensation will be granted on account of extra work made necessary by the Contractor's failure to investigate such existing conditions. Verify all grades, elevations, dimensions and clearances at the site.

B. Existing conditions, equipment, material, and sizes are shown for reference only. Verify existing conditions and bring any discrepancies to Architect's attention in writing prior to submission of bid.

1.6 REMOVAL AND RELOCATION OF EXISTING WORK

A. Disconnect, remove and/or relocate electrical material, equipment, devices, components, and other work noted and required by demolition or alterations in existing construction.

B. Provide new material and equipment required for relocated equipment.

C. Remove conductors from existing raceways to be rewired. Clean raceways as required prior to rewiring.

D. Tape both ends of abandoned conductors, and cap outlets and abandoned raceways.

E. Cut and cap abandoned floor raceways flush with concrete floor or behind walls and ceilings.

F. Dispose of removed raceways and wiring. Turn over removed electrical equipment to Owner or dispose of as directed.

G. All electrical work in adjoining areas, whether indicated on the Drawings or not, which is to continue to function but is affected by demolition work shall be reconnected and restored to present function as part of the electrical system of the building.

H. Connect new work to existing work in a neat and acceptable manner, with minimum interference to existing facilities.
GENERAL PROVISIONS FOR ELECTRICAL WORK

I. Maintain continuous operation of existing facilities affected by the work.

J. Alarm and emergency systems shall be interrupted only with the written consent of the Owner.

K. Temporary shutdowns, when required, shall be made only with written consent of Owner at times not to interfere with normal operations.

L. Where indicated on the Drawings or required by alteration scheme, the Contractor shall remove all electrical outlets, switches, and other devices, complete with associated wiring, conduit, etc., from partitions, walls, and floors that are to be removed. When the removal of these makes dead electrical wiring that is to remain, Contractor shall install junction boxes or other devices necessary to make the circuits affected continuous and ready for operation. Otherwise, wiring shall be removed back to the nearest electrical outlet box that is to remain, or to the panelboard.

M. All raceways, which become exposed beyond finished surfaces because of the alteration work, shall be removed and rerouted behind finished surfaces.

N. Wiring that is to be removed as a result of demolition work but is required to continue to function, shall be interrupted at convenient locations, rerouted (new wiring and conduits) and reconnected. New materials shall be equivalent to existing ones in all respects, conductor ampacity, conduit size, etc.

1.7 COORDINATION OF WORK WITH OTHER TRades

A. The work of this Section shall be coordinated with the work of all other Contracts, the Utility Companies, Power and Telephone. It shall be so arranged that there will be no delay in the proper installation and completion of all work.

B. Examine all Architectural, Structural, Heating, Ventilating and Air Conditioning, Sprinkler and Plumbing Drawings relating to this Project, and verify all governing conditions at the site and become fully informed as to the extent and character of the work required and its relation to other work in the building. No consideration will be granted for any alleged misunderstanding of the materials to be furnished for work to be done.

C. Scaled and figured dimensions with respect to the items are approximate only; sizes of equipment have been taken from typical equipment items of the class indicated. Before proceeding with work, the Contractor shall carefully check all dimensions and sizes and shall assume full responsibility for the fitting-in of equipment and materials to the building and to meet architectural and structural conditions.

D. Coordinate work with other disciplines. Confer with other contractors whose work might affect this installation; and arrange all parts of this work and equipment in proper relation to the work and equipment of others, with the building construction and with architectural finish so that this work will harmonize in service, appearance, and function.
E. Examine all work prepared by others to receive the work of this Section and report any defects affecting installation to the General Contractor for correction. Commencement of work will be construed as complete acceptance of preparatory work by others.

F. Exposed piping shall be installed to provide the maximum amount of headroom but in no case shall piping be installed less than seven feet six inches clear (7'-6") above the finished floor. Piping installed in areas where hung ceilings or other furred spaces are indicated shall be installed concealed.

G. The Contractor is referred to the Architectural Drawings for locations and types of hung ceilings and furred spaces.

H. Verify locations of all electrical equipment with Architectural Drawings, interior details, elevations and finishes. In centering devices and locating boxes and outlets, allow for pipes, ducts, trim, paneling, hung ceilings and the like, and correct any inaccuracy that may result. Failure to do so shall result in the contractor relocating equipment with no expense to Owner.

I. The Electrical Contractor shall coordinate all ceiling work with Ceiling Contractor and shall determine ceiling type prior to the purchasing and installation of lighting fixtures, smoke detectors, exit lights or any other ceiling mounted electrical elements. Electrical work shall also be coordinated with location of diffusers, sprinklers and other mechanical work.

1.8 INSPECTION AND TESTS

A. At the time of the final inspection and tests, all connections at the panels and all splices, etc., must have been completed. All fuses must be in place and the circuits continuous from service switches to all receptacles, outlets, motors, etc. Each entire wiring system must test free from short circuits and grounds. When wiring systems are "megger" tested, the insulation resistance between conductors and between conductors and grounds, based on maximum load, shall not be less than that required by the National Electrical Code and local authorities having jurisdiction. A written record (5 copies) of all test data shall be supplied to the Architect. The tests shall cover but not be limited to the following:

1. 10% of all power installations and motor controls randomly selected by the Engineer.

2. 10% of all light installations and circuit switching randomly selected by the engineer.

3. Any part of the work called for in the Specifications and/or on the Drawings and as designated by the Architect or Engineer.

B. Provide all necessary testing equipment, instruments, and skilled personnel for the tests. If in the opinion of the Architect, the results of such tests show that the work has not complied with the requirements of the Specifications or Drawings, the Contractor shall
make all additions or changes necessary to put the system in proper working condition and shall pay for all expenses and for all subsequent tests which are necessary to determine whether the work is satisfactory. Any additional work or subsequent tests shall be carried out at the convenience of the Owner prior to final payment.

1.9 PERMITS, CERTIFICATES AND FEES

A. Obtain and deliver a final Certificate of Approval from the applicable inspection authority having jurisdiction. Make delivery to the Architect for transmittal to the Owner upon completion of the work and before final payment. Pay all charges made by the inspection authority and include their cost in the bid.

B. This work shall include the procurement of and payment for all permits, certificates and fees for the performance of the electrical work in compliance with codes, applicable laws and municipal regulations including those from local utilities for services.

1.10 PROTECTION, MAINTENANCE AND PRODUCT HANDLING OF ELECTRICAL EQUIPMENT

A. Electrical equipment shall be delivered and stored at the site, properly packed and crated until finally installed. Store materials in spaces as designated. Investigate each space through which equipment must be moved. If necessary, equipment shall be shipped from manufacturer in crated sections of size suitable for moving through restricted spaces.

B. Provide effective protection against damage for all material and equipment during shipment and storage at the Project Site. Cover all stored equipment to exclude dust and moisture. Place stored conduit on dunnage with appropriate weather cover and caps on exposed ends.

C. Uninstalled equipment and materials shall be adequately protected against loss or theft; damage caused by water, paint, fire, plaster, moisture, acids, fumes, dust or other environmental conditions; or physical damage; during delivery, storage, installation and shutdown conditions. This Contractor shall replace any damaged or stolen material without extra cost to the Owner.

D. Provide effective protection for all material and equipment against damage that may be caused by environmental conditions. Do no work when conditions or temperature in area or moisture on materials or substrates are not in accordance with material manufacturer's recommend conditions for installation.

E. This Contractor shall be responsible for the maintenance of all installed equipment and systems until final acceptance by the Architect and the Owner. The operation of the equipment by the Owner does not constitute an acceptance of the work. Work will be accepted only after the Contractor has adjusted his equipment, demonstrated that it fulfills the requirements of the Drawings and Specifications, and has furnished all required certificates.
F. This Contractor shall guarantee in writing to the Owner that all work installed by him shall be free of defects in workmanship and materials and that all apparatus will develop the capacities and characteristics as indicated, and that, if during a period of two years from date of substantial completion of work by the Architect, any defects in workmanship, materials or performance appear, he will remedy them without any cost to the Owner. Guarantee requirements shall consist of the aforementioned and other requirements, as established under applicable contract documents.

G. After boxes are installed, cover openings to prevent entrance of water and foreign materials. Close conduit openings with temporary metal or plastic caps, including those terminated in cabinets.

H. Protect all rough and finished floors and other finished surfaces from damage, which may be caused by construction materials and methods. Protect floors with tarpaulins, chip pans and oil-proof floor covering. Protect finished surfaces from welding and cutting splatters with baffles and splatter blankets. Protect finished surfaces from paint droppings, adhesive and other marring agents with drop cloths. Protect other surfaces with appropriate protective measures.

I. Have materials delivered to site. Unload and store materials in designated location, and protect from damage. Deliver materials to their point of installation.

J. Deliver materials to Project site in manufacturer's original unopened containers with manufacturer's name and product identification clearly marked thereon.

1.11 DELIVERY AND RECEIVING

A. Owner-furnished equipment will be delivered, crated or otherwise packaged to the Site delivery point selected. This Contractor shall accept delivery of all Owner-furnished items that are under his trade jurisdiction and place them in their final location.

B. Where items cannot be immediately placed in their final position, this Contractor shall store and protect all Owner-furnished items until the time of their final installation. He shall be responsible for the care and protection of the items until acceptance by the Owner.

1.12 ACCESSIBILITY AND MEASUREMENTS

A. All work shall be installed so as to be readily accessible for operation, maintenance and repair. Minor deviations from the plans may be made to accomplish this, subject to the approval of the Architect.

B. Before ordering any material or doing any work, the Contractor shall verify all measurements at the Building, and shall be responsible for the correctness of same as related to the work under this Contract.
1.13 TEMPORARY LIGHT AND POWER

A. Electric services for temporary light and power shall be obtained from temporary construction service.

B. The Electrical Contractor shall furnish, install and maintain the temporary lighting and power system for all Contractors. Provide temporary power for all construction trailers or as directed. The use of electricity shall be kept to a minimum.

C. The General Contractor will pay for all energy required by the temporary lighting and power system.

D. Provide all wiring, supports, lamp sockets, receptacle sockets and any other materials, supplies or equipment necessary for temporary light and power system.

E. Ground fault protection required by OSHA for temporary receptacle circuits shall be accomplished by providing branch circuit panels containing ground fault protection circuit breakers.

F. Provide a grounding conductor connection to each receptacle-grounding terminal. Minimum size branch circuit and grounding conductors shall be No. 12 AWG.

G. Install separate stringer circuits for lighting and receptacles. Provide 1 lamp socket and 1 duplex receptacle (or two single receptacles) for every 400 square feet of new general construction area. (Approximately 20’ on centers). In addition, provide one lamp socket and one duplex receptacle every 20’ along the peripheral walls of the construction areas for temporary conditions. Each lamp socket shall be provided with a 100-watt lamp. Replace burned out lamps as required for as long as the temporary lighting system is maintained in operation.

H. Provide sufficient supplementary temporary lighting to permit proper execution of the work. This supplementary lighting shall consist of but not be limited to the following:

1. Construction hoist landings.

2. Interior rooms not covered with general construction area lighting.

I. Keep the temporary lighting and power system operational commencing 15 minutes before the established starting time of that trade which starts work earliest in the morning and ending 15 minutes after the established quitting time of that trade which stops work latest in the evening. This applies to all weekdays, Monday through Friday inclusive, which are established as regular working days for any trade engaged in the work, and shall continue until Final Acceptance of the work or until these services are ordered terminated by the Owner or the Owner's Representative.

1.14 NAMES AND TRADE NAMES

GENERAL PROVISIONS FOR ELECTRICAL WORK 260000 - 8
A. Where trade and manufacturers’ names are specified or indicated on the Drawings, they are intended to indicate the standard of material or articles required. This shall not remove the responsibility of the Contractor from verifying the equipment's compliance with all rules and regulations governing the use of such equipment. No purchase of any equipment shall be done without written authorization if such equipment will not abide with all rules and regulations covering its intended use.

1.15 MATERIAL AND WORKMANSHIP

A. All material shall be new and of the best quality and shall have the Underwriters Laboratories label attached. The Label shall be of the type for the intended application. The work throughout shall be executed in the best and most thorough manner under the direction of, and to the satisfaction of the Architect, who will interpret the meaning of the Drawings and Specifications. The Architect shall have the power to reject any work and materials, which, in his opinion, is not in full accordance therewith.

B. If, after installation, operation of the equipment proves to be unsatisfactory to the Owner by reason of defects, errors or omissions, the Owner reserves the right to operate equipment until it can be removed from service for correction by Contractor. Contractor shall pay for damages to work of other trades caused by this defective equipment and its replacement.

1.16 OPERATING INSTRUCTIONS (SYSTEMS AND EQUIPMENT FURNISHED UNDER ELECTRICAL WORK)

A. Two months prior to the completion of all work and the final inspection of the installation by the Owner, 5 copies of a complete Instruction Manual, bound in booklet form and suitably indexed, shall be submitted to the Architect for approval. All written material contained in the Manual shall be typewritten or printed and in accordance with Section 017823 “Operation and Maintenance Data”.

B. The Manual shall contain the following items:

1. Table of Contents
3. Description of system or equipment.
 a. Complete schematic drawings of all systems.
 b. Functional and sequential description of all systems.
4. Systems operation:
 a. Operation procedures.
b. All posted instruction charts.

5. Maintenance:
 b. Procedures for checking out functions.
 c. Recommended list of spare parts.

7. Manufacturer's Data (where multiple model, type and size listings are included, clearly and conspicuously indicate those that are pertinent to this installation):
 a. Description - literature, drawings, illustrations, certified performance charts, technical data, etc.
 b. Operation.
 c. Maintenance - including complete trouble-shooting charts.
 d. Parts list.
 e. Names, addresses and telephone numbers of recommended repair and service companies.
 f. Guarantee data.

PART 2 - (NOT USED)

PART 3 - (NOT USED)

END OF SECTION 260000
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.
B. Field quality-control test reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Alcan Products Corporation; Alcan Cable Division.
3. General Cable Corporation.
4. Senator Wire & Cable Company.
5. Southwire Company.
6. Or Approved Equal

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN and XHHW.

D. Multiconductor Cable: Comply with NEMA WC 70 for metal-clad cable, Type MC with ground wire.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.
6. Or Approved Equal

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS
A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
A. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway Metal-clad cable, Type MC.
B. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway Metal-clad cable, Type MC.
C. Class 1 Control Circuits: Type THHN-THWN, in raceway.
D. Class 2 Control Circuits: Type THHN-THWN, in raceway Power-limited cable, concealed in building finishes.

3.3 INSTALLATION OF CONDUCTORS AND CABLES
A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS
A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Division 26 Section "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

END OF SECTION 260519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes: Grounding systems and equipment

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. Informational Submittals: Plans showing dimensioned as-built locations of grounding features
 specified in "Field Quality Control"
 B. Qualification Data: For qualified testing agency and testing agency's field supervisor.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For grounding to include in emergency, operation, and
 maintenance manuals. In addition to items specified in Division 01 Section "Operation and
 Maintenance Data," include the following:
 1. Instructions for periodic testing and inspection of grounding features based on NFPA
 70B.
 a. Tests shall determine if ground-resistance or impedance values remain within
 specified maximums, and instructions shall recommend corrective action if values
 do not.
 b. Include recommended testing intervals.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.2 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.

1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch in diameter by 10 feet in length.
B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.

C. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.
3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

3.4 LABELING

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems" Article for instruction signs. The label or its text shall be green.

B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.5 FIELD QUALITY CONTROL

A. Testing Agency Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Report measured ground resistances that exceed the following values:

 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.

H. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 ACTION SUBMITTALS

A. Product Data: For the following:
1. Steel slotted support systems.
2. Nonmetallic slotted support systems.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:

1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Nonmetallic slotted channel systems. Include Product Data for components.
4. Equipment supports.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 h. Or approved equal.
2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch diameter holes at a maximum of 8 inches o.c., in at least 1 surface.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasafe, Inc.
 e. Or approved equal.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non- armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1) Hilti Inc.
2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
3) MKT Fastening, LLC.
4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
5) Or approved equal.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Cooper B-Line, Inc.; a division of Cooper Industries.
2) Empire Tool and Manufacturing Co., Inc.
3) Hilti Inc.
4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
5) MKT Fastening, LLC.
6) Or approved equal.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To New Concrete: Bolt to concrete inserts.
2. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
3. To Existing Concrete: Expansion anchor fasteners.
4. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
5. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
6. To Light Steel: Sheet metal screws.
7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount disconnect switches, pull and junction boxes, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Boxes and enclosures.

1.3 DEFINITIONS

A. GRC: Galvanized Rigid Steel Conduit.
B. IMC: Intermediate Metal Conduit.
C. NECA: Standard for Installing Steel Raceway.

1.4 ACTION SUBMITTALS

A. Product Data: For raceways, fittings, boxes and enclosures

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.
C. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. AFC Cable Systems, Inc.
4. Republic Conduit.
5. Southwire Company.
7. Wheatland Tube Company; a division of John Maneely Company.
8. Or Approved equal.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC:
 1. Comply with ANSI C80.1 and UL 6.
 2. Shall be full weight steel pipe, hot dip galvanized inside and outside, threaded, minimum ¾”.
 3. Shall be painted with 2 protective coats of asphaltic compound where located underground or below slabs on grade or fill.

D. IMC:
 1. Comply with ANSI C80.6 and UL 1242.
 2. Shall be intermediate steel pipe, hot dip galvanized, threaded, minimum ⅜”.
 3. Shall be painted with 2 protective coats of asphaltic compound where located underground or below slab.

E. EMT:
 1. Comply with ANSI C80.3 and UL 797.
 2. Shall be steel thin wall pipe, galvanized, threadless, minimum ¾”, maximum 2”.
 3. It shall not be used for cable rated above 600 volts.

F. FMC: Comply with UL 1; zinc-coated steel or aluminum.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel or malleable iron.
 b. Type compression.
3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.

I. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 BOXES AND ENCLOSURES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Cooper Technologies Company; Cooper Crouse-Hinds.
2. EGS/Appleton Electric.
4. Hoffman; a Pentair company.
5. Hubbell Incorporated; Killark Division.
7. RACO; a Hubbell Company.
8. Spring City Electrical Manufacturing Company.
10. Wiremold / Legrand.
11. Or Approved equal.

B. General Requirements for Boxes and Enclosures: Boxes and enclosures installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep or 4 inches by 2-1/8 inches by 2-1/8 inches deep.
PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC, IMC.
2. Concealed Conduit, Aboveground: GRC IMC.
3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed: GRC, IMC.
2. Concealed in Ceilings and Interior Walls and Partitions: EMT.
3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
4. Damp or Wet Locations: GRC, IMC.
5. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10. Setscrew fittings will not be accepted.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies.
B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Division 26 Section "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. A. Support conduit within 12 inches of enclosures to which attached.

H. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

I. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

K. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

L. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

M. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

N. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

O. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

P. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
Q. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

R. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

U. Expansion-Joint Fittings:

1. Install in each run of aboveground RMC and IMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

V. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

W. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

X. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
Y. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

Z. Locate boxes so that cover or plate will not span different building finishes.

AA. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

BB. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Division 26 Section "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
 B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
 C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
 D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.
 f. Or approved equal.
 2. Sealing Elements: Nitrile (Buna N) rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel.
 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Presealed Systems.
 b. Pipeline Seal and Insulator, Inc.
2.4 GROUT
A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS
A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
 2. Sealant shall have VOC content of 150 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS
A. Comply with NECA 1.
B. Comply with NEMA VE 2 for cable tray and cable penetrations.
C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."
b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
4. Warning labels and signs.
5. Instruction signs.
7. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:

1. Black letters on an orange field.
2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch with stamped legend, punched for use with self-locking cable tie fastener.

G. Write-On Tags: Polyester tag, 0.010 thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.
2.2 METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

D. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

E. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

F. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.5 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs:
 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 10 by 14 inches.
E. Warning label and sign shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.6 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.

1. Engraved legend with black letters on white face.
2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.7 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.8 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30A: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 2. Power.
 3. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in pull and junction boxes, use color-coding conductor tape to identify the phase.
 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 240/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 c. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.

F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

H. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

I. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Stenciled legend 4 inches high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Enclosed switches.
 e. Enclosed circuit breakers.
 f. Enclosed controllers.
 g. Push-button stations.
 h. Contactors.
 i. Remote-controlled switches and control devices.
 j. Monitoring and control equipment.

END OF SECTION 260553
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Isolated-ground receptacles.
 3. Weather-resistant receptacles.
 4. Cord and plug sets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:

1. Cooper Wiring Devices; Division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
5. Or approved equal.

B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.
2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5351 (single), CR5362 (duplex).
 b. Hubbell; HBL5351 (single), HBL5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
 d. Pass & Seymour; 5361 (single), 5362 (duplex).
 e. Or approved equal.

B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; IG5362RN.
 b. Hubbell; IG5362.
 c. Leviton; 5362-IG.
 d. Pass & Seymour; IG5362.
 e. Or approved equal.

2. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.4 GFCI RECEPTACLES

A. General Description:

1. Straight blade, non-feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; VGF20.
 b. Hubbell; GFR5352L.
 c. Pass & Seymour; 2095.
 d. Leviton; 7590.
2.5 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.6 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120V, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Single Pole:
 1) Cooper; AH1221
 2) Hubbell; HBL1221
 3) Leviton; 1221-2
 4) Pass & Seymour; CSB20AC1
 b. Three Way:
 1) Cooper; AH1223
 2) Hubbell; HBL1223
 3) Leviton; 1223-2
 4) Pass & Seymour; CSB20AC3
 c. Four Way:
 1) Cooper; AH1224
 2) Hubbell; HBL 1224
 3) Leviton; 1224-2
 4) Pass & Seymour; CSB20AC4

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch thick, satin-finished, Type 302 stainless steel.
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.8 FINISHES

A. Device Color:
1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
2. Wiring Devices Connected to UPS Power System: Red.
3. TVSS Devices: Blue.
4. Isolated-Ground Receptacles: Orange.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
b. Straighten conductors that remain and remove corrosion and foreign matter.
c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.

 1. Wiring Diagrams: For power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified testing agency.
 B. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
 C. Manufacturer's field service report.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.7 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
 B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than ten days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

1.10 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Where ample space is not available or wall surface not suitable for directly mounting equipment, provide galvanized steel unistrut with all necessary galvanized steel hardware for complete mounting and installation of equipment. All clearances shall be in accordance with the NEC.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Compression type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
3. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. Hookstick Handle: Allows use of a hookstick to operate the handle.
6. Lugs: Compression type, suitable for number, size, and conductor material.
7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 ENCLOSURES

A. Enclosed Switches: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 4.
3. Wash-Down Areas: NEMA 250, Type 4X stainless steel.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Division 26 Section 260548 "Vibration and Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.

E. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Perform the following infrared scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.

 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.

 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study".

END OF SECTION 262816
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior lighting fixtures.
 2. Exit signs.
 3. Lighting fixture supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color-rendering index.

C. LER: Luminaire efficacy rating.

D. Lumen: Measured output of lamp and luminaire, or both.

E. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:

 1. Physical description of lighting fixture including dimensions.
 2. Emergency lighting units including battery and charger.
 4. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.

b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom lighting fixtures. Include plans, elevations, sections, details, and attachments to other work.

 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Installation instructions.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 1. Lighting fixtures.
 2. Structural members to which suspension systems for lighting fixtures will be attached.

B. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.

C. Product Certificates: For each type of ballast from manufacturer.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.

 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Plastic Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
2. Drivers: One for every 100 of each type and rating installed. Furnish at least one of each type.
3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

1.9 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.10 WARRANTY

A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.

2. Warranty Period for Self-Powered Exit Sign Batteries: Seven years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining six years.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated on Drawings.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.

C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions.

D. Diffusers and Globes:

1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
 b. UV stabilized.

2. Glass: Annealed crystal glass unless otherwise indicated.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp and ballast characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. CCT and CRI for all luminaires.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:

1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
b. Charger: Fully automatic, solid-state type with sealed transfer relay.
c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.4 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Lighting fixtures:

1. Set level, plumb, and square with walls unless otherwise indicated.

B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

C. Pendant Fixtures: support to structure.

1. Install ceiling support system rods or wires, for each fixture. Locate not more than 6 inches from lighting fixture corners.
2. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
3. Install in accordance with all recommendations of security ceiling manufacturer.
D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION
A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL
A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.
C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.4 STARTUP SERVICE
A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner.

END OF SECTION 265100
SECTION 311200 – SELECTIVE SITE CLEARING

PART 1 GENERAL

1.1 DESCRIPTION

A. Site clearing consists of clearing of the site within the limits of construction to include the following:

1. Removal and legal disposal of trees, brush, weeds, roots and similar materials within areas where work is to be performed.

2. Removal and disposal of structures and all other obstructions which are designated for removal by the ARCHITECT during construction.

PART 2 PRODUCTS

2.1 MATERIALS

A. Tree paint: Applicable section of the Standard Specifications.

B. Other materials: At Contractor's option, subject to the approval of the ARCHITECT.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Referenced sections in the Standard Specifications.

1. Section 201: Clearing Site.

2. Section 801: Miscellaneous Landscaping Materials.

B. Protection: Roads, structures, pavement areas, grass or landscaping to remain shall be protected by Contractor in a manner approved by the ARCHITECT.

C. General: Site Clearing shall conform to Section 201 of the Standard Specifications, and as designated on Plans or as directed by the ARCHITECT.

1. Clear the project site within the limits shown on the Plans, or as directed by the ARCHITECT.

2. Repair all injuries to bark, trunk, limbs, and roots of remaining plants by properly dressing, cutting, bracing, and painting using approved tree surgery methods, tools and equipment.

3. Clear designated area of brush, weeds, trees, roots, debris, and other unsuitable material.
4. Trim tree branches overhanging proposed structures and pavements, and along proposed trails. Trim tree branches overhanging roadways, driveways, or other paved areas to height of sixteen feet.

5. Remove existing structures required for construction of roadways, driveways or other paved areas. Notify property owners forty-eight hours prior to removal of privately owned structures.
 a. Coordinate removal of privately owned structures with individual property owners.
 b. Remove privately owned structures desired to be retained by property owner in a manner which will minimize damage. If desired, property owner shall be given opportunity to remove said structures himself, provided this work is completed within time limit which will not conflict with Contractor's operations.
 c. Upon removal, property owner shall be given opportunity to remove privately owned structures from the project site.
 d. Coordinate this work with ARCHITECT.
 e. This work shall be subject to approval of ARCHITECT.

7. Grade all grubbed and cleared areas as specified in applicable sections.

END OF SECTION
SECTION 312300.10 - SITE EXCAVATION, FILLING AND GRADING

PART 1 GENERAL

1.1 DESCRIPTION

A. Description of work:

B. Excavation, filing and grading includes but is not limited to:

1. Excavating for pavement and foundations.
2. Filling and backfilling to attain indicated grades.
3. Trenching and trench backfilling, if and where directed by the ARCHITECT.
4. Rough and finish grading of site; furnishing and installing broken stone subbase for slabs, foundations and structures.
5. Furnishing and installing quarry blend stone subbase material for pavements and other structures.
6. Any additional work as may be specified in the Statement of Work.

C. Definitions:

1. Excavation: Removal and disposal of all material encountered when establishing required grade elevations, including pavements and other obstructions visible on the ground surface, and underground structures and utilities indicated to be demolished and removed.

2. Unauthorized excavation: Removal of material beyond specified subgrade elevations without approval of ARCHITECT.

PART 2 PRODUCTS

2.1 MATERIALS

A. General: All fill and backfill materials shall be subject to the approval of the ARCHITECT.

B. Notifications: For approval of borrow materials, notify the ARCHITECT at least five (5) working days in advance of intention to import material, designate the proposed borrow area, and perform sampling and testing at CONTRACTOR'S expense, if directed by the ARCHITECT, to prove the quality and suitability of the material.

C. On-Site Fill:
1. All on-site materials used for fill shall be subject to the approval of the ARCHITECT, and to the following requirements:

 a. Free from deleterious substances, stumps, brush, weeds, roots, sod, rubbish, garbage and matter that may decay.

 b. Free of large rocks of lumps that, in the opinion of the ARCHITECT, may create voids or prevent proper compaction.

D. Borrow fill materials:

 Free from deleterious substances, stumps, brush, weeds, roots, sod, rubbish, garbage and matter that may decay, and shall conform to the Standard Specifications, except as modified by the supplemental requirements below:

 1. Containing no rocks or lumps over one inch (1") in greatest dimension.

 2. Composed of soil aggregate, or soil aggregate and rock. The portion passing the four inch sieve shall contain not more than fifteen percent (15%) by weight of material passing the number 200 sieve. When composed of soil aggregate and rock, the portion passing the number 13. Soil aggregate select backfill materials, when designated, shall conform to Section 901.11 of the Standard Specifications.

E. Trench and structural backfill material:

 1. Shall conform to the requirements specified for on-site fill material except as modified by the supplemental requirements below:

 2. Backfill to a height of two feet above the top of pipes, culverts and other structures and immediately adjacent to structures with material free from stones or rock fragments larger than two inches in greatest dimension.

 3. Select backfill material shall be soil aggregate I-13. Soil aggregate select backfill materials, when designated, shall conform to Section 901.11 of the Standard Specifications.

F. Broken stone material:

 1. Broken stone subbase material under slabs, foundations and structures shall conform to Section 901.03.01 of the Standard Specifications, and meeting the gradations specified in Table 901-1.03.01-1. Size shall be 3/8".

 2. Trench stabilization material for bedding shall conform to the above requirements. Size shall be as shown on the Plans.

G. Subbase Material: Quarry blend stone subbase for bituminous and concrete pavements and other structures shall be Type I-5 conforming to the requirements for Dense Graded Aggregate Base Course in Section 302 of the Standard Specifications.
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

H. Other materials: All other materials, not specifically described for a complete and proper installation, shall be as selected by the CONTRACTOR and approved by the ARCHITECT.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Requirements of regulatory agencies:

1. All excavations shall be in compliance with Federal Occupational Safety and Health Act and Rules and Regulations of State of New Jersey Department of Labor and Industry, Bureau of Engineering and Safety, N.J.A.C. 12:180.

2. Excavation work shall be in compliance with applicable requirements of other governing authorities having jurisdiction.

B. Reference standards included in this Specification section:

1. Standard Specifications:
 a. Section 202: Excavation
 b. Section 301: Subbase
 c. Subsection 302: Aggregate Base Coarse
 d. Subsection 901: Aggregates

 a. D-1556-64 (Reapproved 1974): Density of Soil in Place by the Sand-Cone Method
 b. D-1557-78: Moisture Density Relations of Soils and Soil Aggregate Mixtures Using 10 lb. Rammer and 18-Inch Drop
 c. D-2049-69: Relative Density of Cohesionless Soils
 d. D-2166-66 (Reapproved 1979): Unconfined Compressive Strength of Cohesive Soil
 e. D-2922-78: Density of Soil and Soil Aggregate in Place by Nuclear Methods (Shallow Depth).

C. Existing utilities:
1. Should uncharted, or incorrectly charted, piping or other utilities be encountered during excavation, consult the Utility Owner immediately for directions. Cooperate with owner and utility companies in keeping respective services and facilities in operation. Repair damaged utilities to satisfaction of Utility Owner.

2. Do not interrupt existing utilities serving facilities occupied and used by OWNER or others, except when permitted in writing by ARCHITECT and then only after acceptable temporary utility services have been provided.

3. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies for shut-off of services if lines are active.

D. Use of explosives: The use of explosives is not permitted.

E. Protection of persons and property:

1. Barricade open excavations occurring as part of this work and post with warning lights as required to protect persons on the site. Operate warning lights as recommended by authorities having jurisdiction.

2. Protect trees, shrubs, lawns, and other features remaining as part of final landscaping.

3. Protect structures, utilities, sidewalks, pavements and other facilities from damage caused by settlement, lateral movement, undermining, washout and other hazards created by earthwork operations.

4. Refer to paragraphs of General Conditions regarding protection of vegetation and structures.

5. In the event of damage, immediately make all repairs and replacements to the approval of the ARCHITECT at no cost to the OWNER.

F. Dust control:

1. Use all means necessary to control dust on and near the work if such dust is caused by the CONTRACTOR'S operations during performance of the work or if resulting from the conditions in which the CONTRACTOR leaves the site.

2. Thoroughly moisten all surfaces as required to prevent dust being a nuisance to the public, neighbors and concurrent performance of other work on the site.

G. Weather conditions: Do not place, spread, roll or fill material during freezing, raining, or otherwise unfavorable weather conditions. Do not resume work until conditions are favorable as determined by the ARCHITECT.
H. Inspection by Contractor: Examine the areas and conditions under which excavating, filling and grading are to be performed and notify the ARCHITECT, in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in an acceptable manner.

I. Preparation:

1. Prior to commencement of work, establish location and extent of all utilities in the work areas. Maintain, protect as required existing utilities which pass through the work area.

2. Prior to excavation in pavement areas, cut existing pavement vertically with sharp tool on a straight line to the limits of excavation shown on Plans or as directed by the ARCHITECT. Maintain cut straight and neat, or recut and dress as directed by the ARCHITECT.

J. Excavation:

1. Unauthorized excavation: Unauthorized excavation, including remedial work directed by the ARCHITECT, shall be at the CONTRACTOR'S expense. Lean concrete fill may be used to bring subgrade elevations to proper positions when acceptable to the ARCHITECT.

2. Additional excavation:
 a. When excavation has reached required subgrade elevations, notify the ARCHITECT who will make an inspection of conditions.
 b. If unsuitable bearing materials are encountered at the required subgrade elevations, carry excavations deeper and replace the excavated material as directed by the ARCHITECT.
 c. Removal of unsuitable material and its replacement as directed will be paid on the basis of contract conditions relative to changes in work if payment has not been provided for in the Proposal.

3. Dewatering:
 a. Prevent surface water and subsurface or groundwater from flowing into excavations and from flooding project site and surrounding area.
 b. Do not allow water to accumulate in excavations. Remove water to prevent softening of foundation bottoms, undercutting footings, and soil changes detrimental to stability of subgrades and foundations. Provide and maintain pumps, well points, sumps, suction and discharge lines, and other dewatering system components necessary to convey water away from excavations.
c. Convey water removed from excavations and rain water to collecting or run-off areas. Establish and maintain temporary drainage ditches and other diversions outside excavation limits for each structure. Do not use trench excavations as temporary drainage ditches.

4. Material storage:
 a. Stockpile satisfactory excavated materials where directed until required for use as backfill or fill. Place, grade and shape stockpiles for proper drainage.

b. Locate and retain soil materials away from edge of excavations.

c. Dispose of excess soil material and waste materials as herein specified. Excavated material unsuitable for backfilling shall be kept separate from other materials excavated, and disposed of. Materials suitable for backfilling shall not be disposed of until completion of filling or backfilling operations.

5. Excavation for pavements: Cut surface under pavements to comply with cross-sections, elevations and grades as shown.

6. Excavation for trenches, if and where directed by the ARCHITECT:
 a. Dig trenches to the uniform width required for the particular item to be installed, sufficiently wide to provide ample working room.

 (1) Maximum trench width to a point of two feet (2') above the outside top of pipe shall be the pipe outer diameter plus twenty-four inches (24”).

 (2) Maximum trench width at ground surface shall be as shown on Plans.

 b. Excavate trenches to the depth indicated or required. Carry the depth of trenches for piping to establish the indicated flow lines and invert elevations. Beyond the building perimeter, keep bottoms of trenches for which elevations are not given sufficiently below finish grade to avoid freeze-ups.

 c. Trenches for pipes shall not be operated more than the numbers of linear feet of pipe that can be placed and backfilled in one (1) day.

 d. Place the various types of materials in the areas as designated on the Plans, or as directed by the ARCHITECT.

 e. Pipe bedding shall be as shown on Plans.
7. Cold weather protection: Protect excavation bottoms against freezing when atmospheric temperature is less than thirty-five (35) degrees.

K. Backfill, fill and compaction:

1. General:
 a. Place acceptable material in layers to required subgrade elevations.
 b. Fills: Use material obtained from on-site excavation, except use borrow material when specified and/or shown on the Plans.
 c. Backfilling: Use material obtained from on-site excavation, except use select backfill where indicated on Plans or as directed by the ARCHITECT. Backfill to a height of two feet (2') above top of pipe with earth free from stones, rock fragments, dirt clods or frozen material greater than one inch (1") in largest dimension.
 d. Do not provide borrow material until all acceptable excavated materials on the site have been utilized in the work.
 e. Place the various types of materials in the areas as designated on the Plans, or as directed by the ARCHITECT.

2. Backfill excavation as promptly as work permits, but not until completion of the following:
 b. Removal of trash and debris.
 c. Inspection, testing, approval and recording locations of underground utilities.

3. Backfilling prior to approvals:
 a. Should any of the work be so enclosed or covered up before it has been approved, uncover all such work at no additional cost to the OWNER.
 b. After the work has been completely tested, inspected and approved, make all repairs and replacements necessary to restore the work to the condition in which it was found at the time of uncovering, all at no additional cost to the OWNER.

4. Ground surface preparation prior to filling:
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

a. Remove vegetation, debris, unsatisfactory soil materials, obstructions and deleterious materials from existing ground surface to a depth of not less than four inches (4") and not more than six inches (6") prior to placement of fills. Plow, strip or break-up sloped surfaces steeper than one (1) vertical to four (4) horizontal to a depth of not less than six inches (6") so that fill material will bond with existing surface.

b. When existing ground surface has a density less than that specified under "Compaction," for the particular area classification, break up the ground surface, pulverize, moisture- condition to the optimum moisture content, and compact to required depth and percentage of maximum density.

5. Placement and compaction:

a. Place backfill materials in layers not more than six inches (6") in loose depth.

b. Control soil compaction during construction providing minimum percentage of density specified for each area classification listed below.

c. Pavement areas defined, for the purpose of this Paragraph, as extending a minimum of five feet (5') beyond the pavement.

d. Compact soil to not less than the following percentages of maximum dry density for soils which exhibit a well-defined moisture density relationship determined in accordance with ASTM D-1557; and not less than the following percentages of relative density determined in accordance with ASTM D-2049, for soils which will not exhibit a well defined moisture-density relationship.

(1) Structures: Compact top twelve inches (12") of subgrade and each layer of backfill of fill material at ninety-five percent (95%) maximum dry density or ninety percent (90%) relative dry density.

(2) Lawn or Unpaved Areas: Compact top six inches (6") of subgrade and each layer of backfiller or fill material at 90 percent (90%) maximum dry density.

(3) Walkways: Compact top six inches (6") of subgrade and each layer of backfill or fill material at 95 percent (95%) maximum dry density or 90 percent (90%) relative dry density.

(4) Pavement Areas: Compact top twelve inches (12") of subgrade and each layer of backfill or fill material at 95 percent (95%) maximum dry density or 90 percent (90%) relative dry density.

(5) Subbase Materials: Compact each layer of subbase material to 95 percent (95%) of maximum dry density.
(6) Trench stabilization materials: Compact each layer of material to ninety-five percent (95%) of maximum dry density.

e. Moisture control:

(1) Where subgrade or layer of soil material must be moisture conditioned before compaction, uniformly apply water to surface of subgrade, or layer of soil material, to prevent free water appearing on surface during or subsequent to compaction operations.

(2) Remove and replace, or scarify and air dry, soil material that is too wet to permit compaction to specified density.

(3) Soil material that has been removed because it is too wet to permit compaction may be stockpiled or spread and allowed to dry. Assist drying by dicing, harrowing or pulverizing until moisture content is reduced to a satisfactory value.

f. Puddling or jetting will not be permitted.

g. Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice, or other unsuitable materials.

h. Place backfill and fill materials evenly adjacent to structures, to required elevations. Take care to prevent wedging action of backfill against structures by carrying the material uniformly around structure to approximately same elevation in each lift.

L. Grading:

1. General: Uniformly grade areas within limits of grading under this section, including adjacent transition areas. Smooth finish surface within specified tolerances, compact with uniform levels or slopes between points where elevations are shown, or between such points and existing grades.

2. Grading:

a. Lawn or unpaved areas: Finish area to receive topsoil to within not more than 0.10 feet above or below the required subgrade elevations.

b. Walks: Shape surface of areas under walks to line, grade and cross-section, with finish surface not more than 1/2 inch above or below the required subgrade elevation.

c. Pavement: Shape surface of areas under pavement line, grade and cross-section, with finish surface not more than 1/2 inch above or below the required subgrade elevation.
3. Compaction: After grading, compact subgrade surface to the depth and percentage of maximum density for each area classification.

4. Treatment after grading:
 a. After grading is completed and the ARCHITECT has finished his inspection, permit no further excavating, filling or grading except with the approval of and inspection of the ARCHITECT.
 b. Use all means necessary to prevent erosion of freshly graded areas during construction and until such time as permanent drainage and erosion control measures have been installed.

5. Subgrade preparation: All subgrade preparation shall be performed in accordance with the applicable Articles of the New Jersey State Highway Department Standard Specifications except as may be modified by this Specification Section.

M. Subbase course:

1. General:
 a. Subbase Course consists of placing quarry blend stone subbase materials in layers of specified thickness over subgrade, as shown on Plans.
 b. Provide Subbase Course in accordance with Section 301 of the Standard Specifications, except as otherwise modified by this Specification Section.

2. Grade control: During construction, maintain lines and grades including crown and cross-slope of subbase course.

3. Placing:
 a. Prior to placing subbase course under bituminous concrete or other non-portland cement concrete surfaces, apply an herbicide to the subgrade material. They type of herbicide and the method of application shall be approved by the ARCHITECT prior to beginning this work.
 b. Place subbase course material on prepared subgrade in layers of uniform thickness, conforming to indicated cross-section and thickness. Maintain optimum moisture content for compacting subbase material during placement operations.
 c. When a compacted subbase course is shown to be eight inches (8") or less, place material in equal layers, except no single layer shall be more than eight inches (8") in thickness when compacted.
d. Spread, shape and compact all subbase course material deposited on the subgrade during the same day.

N. Broken (crushed) stone subbase course:

1. General: Broken Stone Subbase Course consists of placing material in layers of specified thickness, over subgrade to support structures as shown on the Plans.

2. Placing: Place Broken Stone Subbase Course as specified for Quarry Blend Stone Subbase Course.

O. Field quality control:

1. Quality control testing during construction: Allow testing service to inspect and approve subgrades and fill layers before further construction work is performed.

 a. Subgrade. The subgrade shall be in a proper finished condition conforming to the proper line and grade and free of any soft spots or other deficiencies. The subgrade shall be tested by running a roller of a weight at least equal to that used in the paving operation over the entire subgrade. If the deformation of the subgrade is excessive, in the opinion of the ARCHITECT, the subgrade must be stabilized in a manner satisfactory to the ARCHITECT.

 b. Subbase course. If the subgrade has a CBR value of twenty (20) or greater, as determined by the American Society for testing and Materials Method for Bearing ratio of Laboratory Compacted Soils (ASTM Designation D 1883), no subbase course is required. Subgrade soils of Type A-1, A-2-4 and A-2-5 of the American Association of State Highway Officials Classification System for Soils (AASHO Designation M 145) will not normally require a subbase course. Subgrade soils of other types will normally require a subbase course of Soil Aggregate Type 2, Class A or B, with a minimum thickness of four (4) inches, to provide the required CBR value.

 c. Take all tests at locations as directed by the ARCHITECT.

2. If in the opinion of ARCHITECT based on testing service reports, subgrade or fill which have been placed are below specified density, provide additional compaction and testing as directed by the ARCHITECT, at no expense to the OWNER. This shall include compaction and testing at areas initially tested and at other locations as directed.

P. Maintenance:

1. Protection of graded area:
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

a. Protect newly graded areas from traffic and erosion. Keep free of trash and debris.

b. Repair and re-establish grades in settled, eroded and rutted areas to specified tolerances.

2. Reconditioning compacted areas: Where completed compacted areas are disturbed by subsequent construction operations or adverse weather, scarify surface, reshape and compact to required density prior to further construction.

Q. Disposal of excess and waste materials:

1. Removal and disposal of excess material shall be the responsibility of the CONTRACTOR.

END OF SECTION
PART 1 GENERAL

1.1 DESCRIPTION

A. The excavation and removal of all earth, rock, brick, stone, concrete, small structures, existing pavements, and all other materials of whatever character encountered, required for the construction of roadways and their appurtenances; the transportation of the excavated materials; the construction of embankment with the materials excavated; all grading, fertilizing, seeding, and mulching; the disposal of unsuitable and surplus materials; and all other work as specified in this section.

PART 2 PRODUCTS

2.1 MATERIALS

A. No materials are involved.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Reference Standards used in this Specification section.

1. Standard Specifications:
 a. Section 202: Excavation
 b. Section 203: Embankment

B. Protection:

1. Protect trees, shrubs, lawns and other features remaining as part of final landscaping.

2. Protect curbs, inlets, manholes, utility poles, and all other existing structures to remain.

3. Protect vegetation and structures.

4. Protect newly graded areas from traffic and erosion. Keep free of trash and debris.

5. Repair and reestablish grades in settled, eroded, and rutted areas to specified tolerance.
6. Where completed compacted areas are disturbed by subsequent construction operations or adverse weather, scarify surface, reshape and compact to required density prior to further construction.

C. Preparation:

1. Field measurements:
 a. Layout work limits. Coordinate this work with the CONSTRUCTION MANAGER.
 b. Set grade stakes.

2. Prior to commencement of work, establish location and extent of all utilities in the work areas. Maintain, protect as required existing utilities which pass through the work area.

3. Prior to excavating, cut existing pavement vertically with sharp tool on a straight line at a distance of six (6") inches beyond limits of excavation shown on plans. Maintain cut straight and neat, or recut and dress as directed by the ENGINEER.

D. Grading:

1. Grade project site to required levels, profiles, contours, and elevation, ready for finish grading and paving.

3. Grades shall be uniform levels or slopes between points where elevations are given or between such points and existing finished grades. Abrupt change in slopes shall be rounded.

4. Use all means necessary to prevent dust being a nuisance to the public.

5. Soil shall not be worked, or fill placed, during freezing weather, when frozen, or unstable due to excessive moisture.

6. Unstable or unsuitable material encountered at the prescribed bottom limits of roadway excavation shall be removed within limits as directed by the CONSTRUCTION MANAGER. Backfill the excavated areas with suitable material obtained from project excavation as directed by the CONSTRUCTION MANAGER.

7. Compaction: Compact any embankment for this project as specified in Section 203.03.02, Placing and Compacting Methods, of the Standard Specifications. Embankment material shall be free of stumps, brush, weeds, roots, and other material that may decay.
8. Compact subgrade in all paved areas as specified in Section 203.03 of the Standard Specifications.

9. Dispose of surplus or unsuitable excavated materials.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes construction dewatering.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Verify availability of Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review condition of site to be dewatered including coordination with temporary erosion-control measures and temporary controls and protections.
3. Review geotechnical report.
4. Review proposed site clearing and excavations.
5. Review existing utilities and subsurface conditions.
6. Review observation and monitoring of dewatering system.

1.4 ACTION SUBMITTALS

A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.

1. Include plans, elevations, sections, and details.
2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
B. Existing Conditions: Using photographs or video recordings, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.

C. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.7 FIELD CONDITIONS

A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
2. The geotechnical report is included in the Appendix of this Project Manual.
3. The Soil and Foundation Engineering Report is included in the Appendix of this Project Manual.

B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer.
2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.
3. Prevent surface water from entering excavations by grading, dikes, or other means.
4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
5. Remove dewatering system when no longer required for construction.

B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.
 1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.
 2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Protect and maintain temporary erosion and sedimentation controls during dewatering operations.

3.2 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.
 1. Space well points or wells at intervals required to provide sufficient dewatering.
 2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.
C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
3. Maintain piezometric water level a minimum of 24 inches (600 mm) below bottom of excavation.

C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

3.4 FIELD QUALITY CONTROL

A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.

1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.

B. Survey-Work Benchmarks: Resurvey benchmarks regularly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify
Architect if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.

D. Prepare reports of observations.

3.5 PROTECTION

A. Protect and maintain dewatering system during dewatering operations.

B. Promptly repair damages to adjacent facilities caused by dewatering.
SECTION 312500 - TEMPORARY SOIL EROSION AND SEDIMENT CONTROL MEASURES

PART 1 GENERAL

1.1 DESCRIPTION

A. This work shall consist of temporary control measures ordered by the ARCHITECT during the life of the contract and as shown on Plans, to control erosion and sediment through use of berms, dikes, dams, sediment basins, fiber mats, netting, gravel, mulches, grasses, and other erosion control devices or methods.

B. The primary objective of this specification is to control soil erosion to the maximum extent possible with reasonable and economical construction practices.

C. The temporary control provisions contained herein shall be coordinated with the permanent erosion control features (grass, pavement and other restorations) specified elsewhere in the contract to the extent practical to assure economical, effective and continuous erosion control throughout the construction and post-construction period.

D. The erosion control measures described herein shall be continued until the construction is complete and final restorations installed.

E. Wherever construction exposes work which is subject to erosion, the extent of such exposure in advance of the subsequent construction shall be subject to the approval of the ARCHITECT. Erosion control features or other work to be completed within such areas shall follow as soon after exposure as practical.

F. All materials and methods of construction shall be in accordance with the New Jersey State Standards for Soil Erosion and Sediment Control.

PART 2 PRODUCTS

2.1 MATERIALS

A. Mulches may be hay, straw, fiber mats, netting, wood cellulose, corn or tobacco stalks, bark, corn cobs, wood chips, or other suitable material acceptable to the ARCHITECT and shall be reasonable clean and free of noxious weeds deleterious materials.

B. Grass shall be a quick growing species (such rye grass, Italian rye grass, or cereal grasses) suitable to the area providing a temporary cover.

C. Fertilizer and soil conditioners shall be a standard commercial grade acceptable to the ARCHITECT.

D. Others as specified by the ARCHITECT.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION
A. Preconstruction conference: At the preconstruction conference or prior to the start of the applicable construction, the CONTRACTOR shall submit for acceptance his schedules for accomplishment of temporary and permanent erosion control work, as are applicable for excavation work, and any other elements of the project which may contribute to ground erosion or siltation.

B. Construction requirements:

1. The ARCHITECT has the authority to limit the surface area of erodible earth material exposed by excavation and grading operations, and to direct the CONTRACTOR to provide immediate permanent or temporary pollution control measures to prevent contamination of adjacent streams, water sources, or bodies of water. Such work may involve the construction of temporary berms, dikes, dams, sediment basins, slopes drains, and use of temporary mulches, mats, seeding or other control devices or methods as necessary to control erosion. Cut slopes shall be temporarily seeded and mulched as the excavation proceeds to the extent considered desirable and practical.

2. The CONTRACTOR will be required to incorporate all permanent erosion control features to include the required pavement and grass restorations into the project at the earliest practical time as out-lined in his accepted schedule. Temporary control measures will be used to correct conditions that develop during construction that were not foreseen during the design stages that are needed prior to installation or permanent control features; or that are needed temporarily to control erosion that develops during normal construction practices, but are not associated with permanent control features on the project.

3. Where erosion is likely to be a problem, excavation and grading operation shall be so scheduled and performed that permanent erosion control features can follow immediately; otherwise temporary erosion control measures may be required between successive construction stages.

4. The ARCHITECT will limit the area of excavation and grading operations in progress commensurate with the CONTRACTOR's capability and progress in keeping the finish permanent pollution control measures current in accordance with the accepted schedule. Should seasonal limitations make such coordination unrealistic, temporary erosion control measures shall be taken immediately to the extent feasible and justified.

5. The ARCHITECT may increase or decrease the amount of surface area of erodible earth material to be exposed at one time by excavation and grading operations as determined by his analysis of project conditions.

6. Project soil conditions and the demonstrated ability and performance of the CONTRACTOR in controlling erosion will be the prime factors used by the ARCHITECT in the determination of reasonable areas.

7. In the event of conflict between these requirements and pollution control laws,
rules, or regulations of other federal or state or location agencies, the more restrictive laws, rules, or regulations shall apply.

8. The CONTRACTOR will be responsible for maintaining all soil erosion and sediment control measures in an acceptable manner. All temporary measures shall be removed by the CONTRACTOR if and as directed by the ARCHITECT.

END OF SECTION
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components, and profiles for termite control products.
 2. Include the EPA-Registered Label for termiticide products.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Product Certificates: For each type of termite control product.
C. Application Notification: Scheduled application date with the Owner. Do not apply treatment without Owner's approval of the application date.
D. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:
 1. Date and time of application.
 2. Moisture content of soil before application.
 3. Termiticide brand name and manufacturer.
 4. Quantity of undiluted termiticide used.
 5. Dilutions, methods, volumes used, and rates of application.
 6. Areas of application.
 7. Water source for application.
E. Sample Warranties: For special warranties.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located and who employs workers trained and approved by manufacturer to install manufacturer's products.

1.6 FIELD CONDITIONS

A. Soil Treatment:
 1. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of authorities having jurisdiction.
 2. Related Work: Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

1.7 WARRANTY

A. Soil Treatment Special Warranty: Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work consisting of applied soil termiticide treatment will prevent infestation of subterranean termites, including Formosan termites (Coptotermes formosanus). If subterranean termite activity or damage is discovered during warranty period, re-treat soil and repair or replace damage caused by termite infestation.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

A. Source Limitations: Obtain termite control products from single source from single manufacturer.

2.2 SOIL TREATMENT

A. Termiticide: EPA-Registered termiticide acceptable to authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation.
 1. Service Life of Treatment: Soil treatment termiticide that is effective for not less than five years against infestation of subterranean termites.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Application Notification: Scheduled application date with the Owner. Do not apply treatment without Owner’s approval of the application date.

B. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for moisture content of soil per termiteicide label, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.

C. Proceed with application only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. General: Prepare work areas according to the requirements of authorities having jurisdiction and according to manufacturer's written instructions before beginning application and installation of termite control treatment(s). Remove extraneous sources of wood cellulose and other edible materials, such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.

B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated, except previously compacted areas under slabs and footings. Termitecides may be applied before placing compacted fill under slabs if recommended in writing by termiteicide manufacturer.

1. Fit filling hose connected to water source at the site with a backflow preventer, according to requirements of authorities having jurisdiction.

3.3 APPLYING SOIL TREATMENT

A. Application: Mix soil treatment termitecide solution to a uniform consistency. Distribute treatment uniformly. Apply treatment at the product's EPA-Registered Label volume and rate for maximum specified concentration of termitecide to the following so that a continuous horizontal and vertical termitecidal barrier or treated zone is established around and under building construction.

1. Slabs-on-Grade and Basement Slabs: Under ground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.

2. Foundations: Soil adjacent to and along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing.
3. Penetrations: At expansion joints, control joints, and areas where slabs and below-grade walls will be penetrated.

B. Post warning signs in areas of application.

C. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

3.4 PROTECTION

A. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.

B. Protect termiticide solution dispersed in treated soils and fills from being diluted by exposure to water spillage or weather until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.

3.5 MAINTENANCE SERVICE

A. Continuing Maintenance Proposal: Provide from termite-control-treatment Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

1. Include annual inspection for termite activity and effectiveness of termite treatment according to manufacturer's written instructions.

END OF SECTION 313116
SECTION 321123 - DENSE GRADED AGGREGATE BASE COURSE

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Dense Grade Aggregate (D.G.A.) base course.

1.2 REFERENCES

A. AASHTO T180 - Moisture-Density Relations of Soils Using a 10-lb (4.54 kg) Rammer and an 18-in. (457 mm) Drop.
B. ASTM D698 - Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures, Using 5.5 lb (2.49 Kg) Rammer and 12 inch (304.8 mm) Drop.
C. ASTM D1557 - Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 10 lb (4.54 Kg) Rammer and 18 inch (457 mm) Drop.
D. ASTM D2167 - Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.
E. ASTM D2922 - Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).
F. ASTM D3017 - Test Methods for Moisture Content of Soil and Soil-Aggregate Mixtures.

1.3 SUBMITTALS FOR REVIEW

A. Submit one (1) sample and gradation from a certified material laboratory which shall include the name of source location of material.

PART 2 PRODUCTS

2.1 MATERIALS

A. Dense Graded Aggregate: As specified in Section 901.10.01 and Table 901.10.01-1 Gradation Requirements for D.G.A. of the Standard Specifications shall be met.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify subbase has been excavated and compacted, gradients and elevations are correct, and is dry.

3.2 PREPARATION
A. Correct irregularities in subbase gradient and elevation by scarifying, reshaping, and re-compacting.

B. Do not place D.G.A. on soft, muddy, or frozen surfaces.

3.3 AGGREGATE PLACEMENT

A. Spread aggregate over prepared subbase to a total compacted thickness as specified on the Plans.

B. Place aggregate in maximum 8" inch layers, and compact to specified density.

C. Level and contour surfaces to elevations and gradients indicated.

D. Add small quantities of fine aggregate to coarse aggregate as appropriate to assist compaction.

E. Add water to assist compaction. If excess water is apparent, remove aggregate and aerate to reduce moisture content.

F. Use mechanical tamping equipment in areas inaccessible to compaction equipment.

3.4 TOLERANCES

A. Flatness: Maximum variation of 1/2" inch measured with 10 foot (3 m) straight edge.

B. Scheduled Compacted Thickness: Within 1/2" inch.

C. Variation From Design Elevation: Within 1/2" inch.

3.5 FIELD QUALITY CONTROL

A. Compaction testing will be performed in accordance with referenced standards.

B. If tests indicate Work does not meet specified requirements, remove Work, replace and retest.

C. Frequency of Tests: One (1) test per 1000 sy, if and where directed by ARCHITECT.

3.6 SCHEDULES

A. Under Asphalt Pavement:

1. Compact placed dense graded aggregate materials to achieve dry density compaction of 95% percent.

B. Under Concrete Pavement:
1. Compact placed dense graded aggregate materials to achieve dry density compaction of 95% percent.

C. Surface Course

1. Compact placed dense graded aggregate materials to achieve dry density compaction of 95% percent.

END OF SECTION
SECTION 321216 - HOT-MIXED ASPHALT (HMA-MIX)

PART 1 GENERAL

1.1 DESCRIPTION

A. General: The quality of materials and performance of work specified in this Specification section shall be in accordance with the Standard Specifications.

B. The work of this section includes construction and overlay of the bituminous pavement areas as specified and/or shown on the Plans or as directed by the ARCHITECT with hot-mixed bituminous concrete materials.

1.2 RELATED SECTIONS

A. Section 312300.10: Site Excavation, Filling, and Grading.

1.3 REFERENCE STANDARDS

A. Standard Specifications.

1.4 DEFINITIONS

A. Subgrade: Surface upon which pavement structure will be constructed.

B. Subbase: That portion of the pavement cross section consisting of quarry processed stone and/or soil aggregate.

PART 2 PRODUCTS

2.1 MATERIAL

A. Paving materials and mixtures - Materials and mixtures shall comply with the following sections of the Standard Specification:

1. Hot Mix Asphalt surface course and level course:
 b. Mixture: HMA 9.5M64 Surface Course, Section 902.02.

2. Hot Mix Asphalt base course:
 a. Material: Section 902.02
 b. Mixture: HMA 19M64 Base Course, Section 902.02.
3. Tack coat: Grade RC-70 or RC-T cutback asphalt or Grade SS-1 emulsified asphalt, Section 401.03.02 of the Standard Specifications.

4. Prime coat: Grade MC-30 or MC-70 cutback asphalt: Section 401.03.02 of the Standard Specifications.

B. Job mix formula requirements:

1. Provide job mix formulas for each required bituminous aggregate mixture as specified in Section 902.02.03-1 of the Standard Specifications, and as specified by the testing laboratory.

2. Submit for the ARCHITECT's approval prior to beginning paving operations.

C. Mix design and control requirements: The design and control requirements for all paving mixtures shall conform to Section 902.02.03 of the Standard Specifications.

D. Sampling and testing for conformance to job mix formula and mix design requirements:

1. Methods and rates of sampling bituminous mixtures shall conform to Section 902.02.04 of the Standard Specifications:
 a. Sampling shall be performed by the CONTRACTOR under the supervision of the ARCHITECT unless otherwise directed by the ARCHITECT.
 b. For small scale projects where it is not possible to attain the minimum lot size specified, a total of five (5) samples shall be taken at random for each type of mix specified.

2. Testing of bituminous concrete mixtures to determine the quantity of bitumen, gradation of the aggregate, and conformance to mix design requirements shall be performed by the CONTRACTOR'S quality control technician, as approved by the ARCHITECT as specified in Section 902.02.04 of the Standard Specifications.

3. Submit results of tests on forms acceptable to the ARCHITECT. Forms shall be signed by producer's quality control technician and forwarded to the ARCHITECT as directed.

E. Preparation of mixtures: The preparation of all bituminous mixtures shall conform to Section 902 of the Standard Specifications.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION
A. Qualifications of bituminous concrete producer: Use only materials which are furnished by a bulk bituminous concrete producer regularly engaged in the production of hot-mix, hot-laid bituminous concrete.

B. Paving methods - Methods shall comply with the following sections of the Standard Specification:

1. Section 401: Hot Mix Asphalt Courses
2. Section 301.03.01: Subbase.

C. The method of construction to include bituminous concrete plant and equipment, bituminous concrete paver, vehicles for transporting bituminous mixtures, rollers, and all construction methods shall conform to Section 401 of the Standard Specifications for hot mix asphalt courses, except as modified by the Supplemental Requirements below:

1. Equipment shall be as specified in Section 401.02.02 of the Standard Specifications.
2. Excavation for base pavement:
 a. Prior to excavating, cut existing pavements vertically with a sharp tool on a straight line along designated excavation limits, as directed by the ARCHITECT.
 b. Remove existing pavement, subgrade material, earth, rock, stone and all other materials encountered to required depth.
 c. Promptly dispose of excess excavated materials.
 d. Prepare subgrade for base repairs and paving as specified in Specification Section entitled “Site Excavation, Filling and Grading”.
3. Proof roll:
 a. Proof roll subgrade surfaces using a vehicle equal to, or greater than the weight of the vehicles used to construct the paving, approved by the ARCHITECT.
 (1) Check for unstable areas.
 (2) Check for areas requiring additional compaction.
 b. Notify ARCHITECT of unsatisfactory conditions.
 c. Do not begin paving work until such conditions have been corrected and are ready to receive paving.
4. Surface preparation:
 a. Earth and subbase surfaces:
 (1) Remove loose and foreign material from compacted subgrade surface immediately before application of paving.
 (2) Use power broom or blowers and hand brooming as required.
 (3) Do not displace subgrade material.
 b. Existing pavement surfaces:
 (1) Remove loose and foreign material from existing pavement surfaces immediately before application of paving.
 (2) Use self-propelled mechanical sweepers. Supplement with hand brooming as required.
 (3) Pay particular attention to cleaning of gutterlines and outer edges of pavement areas.
 (4) Remove all weeds, grass or other vegetative matter growing in pavement areas, particularly along curbs.
 c. Minor patching:
 Existing pavement surfaces: Fill in depressions, and patch pavement in overlay areas that are not marked out for base repairs. Patch as directed by ARCHITECT in the field.

5. Tack coat:
 a. Apply to cleaned surfaces of all pavements to be overlaid and at adjoining curb lines.
 b. Apply to cleaned surfaces of newly constructed base pavement if coated with dust, dirt, foreign materials in sufficient amount to prevent bond with surface course paving as determined by ARCHITECT.
 c. Apply to edges of paving where base repairs are to be made.
 d. Apply tack coat material at temperatures, and observe safety precautions, specified in Section 401.03.02 of the Standard Specifications.
e. Apply at rate of 0.02 to 0.08 gallon per square yard for cut back asphalt or 0.04 to 0.15 gallons per square yard for diluted emulsified asphalt as directed by ARCHITECT, immediately prior to placing pavement.

f. Apply track coat by brush to contact surfaces of pavement cold joints, curbs, gutters, manholes, and other structures projecting into or abutting asphalt concrete pavement.

g. Allow surface to dry until material is in a condition of tackiness to receive pavement.

h. Take precautions to insure tack coat is not applied to exposed surfaces or curbs or other exposed surfaces. Tack coat so applied shall be removed by CONTRACTOR at no additional cost to OWNER.

6. Prime coat (subbase surfaces): If and Where Directed

a. Uniformly apply at rate of 0.15 to 0.35 gallon per square yard over compacted and cleaned subbase surface.

b. Apply enough material to penetrate and seal, but not flood the surface.

c. Allow to cure and dry as long as required to attain penetration and evaporation of volatile components, and in no case less than twelve (12) hours unless otherwise acceptable to the ARCHITECT.

d. Apply prime coat material at temperatures, and observe safety precautions, specified in Section 401.03.02 of the Standard Specifications.

7. Perform work as additionally described in the Statement of Work.

8. For pavement replacement, install compacted thickness indicated on Plans of bituminous stabilized base course over excavated area and dense graded aggregate subbase.

9. For pavement replacement install compacted thickness indicated on Plans of hot mix asphalt surface course over base course.

10. For new pavements, install hot mix asphalt base course in layers of not more than two and one-half (2 1/2") inches compacted thickness, except in those areas where stone mix is prescribed and the total combined thickness of the surface course, binder course, if any, and base course is seven (7") inches or greater, the CONTRACTOR may construct layers of not more than four (4") inches compacted thickness.
11. The requirements for string line or ski type reference systems for bituminous concrete pavers is deleted.

12. General surface requirements:

a. Test finish surface of each concrete course for smoothness using a ten (10) foot straightedge.

b. The straightedges shall have projections on the bottom at each end, either built-in or firmly attached, so that it is supported six (6") inches above the pavement surface at the ends. It shall be free from warp and deflection, subject to approval by the ARCHITECT, and furnished by the CONTRACTOR without additional compensation.

c. Check surfaced areas at intervals and in directions specified by ARCHITECT.

d. Check surfaces for pavement smoothness immediately after initial compaction, and correct variations by removing or adding material as may be necessary. Then rolling shall be continued as specified.

e. Immediately after final rolling and while the pavement is still hot, the smoothness of the course shall be checked again and all projections or depressions exceeding the specified tolerances shall be corrected by removing defective work and replacing it with new surface course as specified. Portions of the surface otherwise unsatisfactory shall be replaced to the satisfaction of the ARCHITECT.

f. Finished surfaces shall be free of all roller marks, ridges and voids.

13. Surface requirements:

a. Base courses will not be acceptable if exceeding 1/4 inch in ten feet (10\) when tested in any direction.

b. Intermediate courses and surface courses will not be acceptable if exceeding 1/4 inch in ten feet (10\) when tested in any direction.

D. Field quality control:

1. Pavement cores and testing for the determination of conformance to control air voids and pavement thickness shall be provided by the CONTRACTOR as required by the ARCHITECT in accordance with Section 401.03.05 of the Standard Specifications.

2. Areas of pavement removed for field quality control testing shall be replaced by the CONTRACTOR as follows:
a. Clean debris from core area. Cut all exposed pavement edges vertical.

b. Apply tack coat to exposed surfaces before installing replacement pavement.

c. Fill core area with surface course mixture for the full depth of the core.

d. Compact and grade mixture; seal repaired area with tack coat; apply a thin layer of sand over tack coat in a manner satisfactory to the ARCHITECT.

END OF SECTION
SECTION 321723 - TRAFFIC STRIPIING AND MARKINGS

PART 1 GENERAL

1.1 DESCRIPTION

A. The work of this section includes providing striping, pavement markings and symbols as specified herein and/or shown on the Plans.

1.2 REFERENCE STANDARDS

A. Reference standards included in this section shall be the Standard Specifications:

1. Section 610: Traffic Stripes
2. Section 912: Traffic Paint
3. Section 912: Glass Beads

PART 2 PRODUCTS

2.1 MATERIALS

A. Latex traffic paint - Striping shall conform to Section 912.03.01 of the Standard Specifications.

B. Thermoplastic traffic paint - Striping shall conform to Section 912.03.02 of the Standard Specifications.

B. Glass beads: Shall conform to Section 912 of the Standard Specifications.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Methods of construction shall conform to Section 610.03 of the Standard Specifications except as modified herein.

1. Latex striping.
a. Apply latex stripes or markings when the ambient and surface
temperatures are above forty-five degrees Fahrenheit (45°F) and rising.
Apply the latex traffic paint in a wet film thickness of 6 ± 1 mil where
traffic stripes are required for 14 days or less when used for interim
applications prior to the placement of long life material. Apply the
traffic paint in a wet film thickness of 15 ± 1 mil where stripes or
markings are to be visible to traffic 15 days and beyond, or when stripes
or markings are to be placed in intermediate pavement layers to be
opened to traffic due to stage construction.

b. Apply glass beads, according to the gradation specified for latex traffic
paint, to the wet paint in a uniform pattern and at the rate of 12 pounds
per gallon of paint.

c. When traffic stripes or traffic markings are intended to remain visible
beyond 14 days, apply prior to acceptance and when directed, additional
applications of latex traffic paint and glass beads. Apply these
applications at least 15 days after the initial application and after any
sawing or sealing of joints in bituminous concrete overlay.

2. Thermoplastic striping.

a. Place preformed thermoplastic or hot extruded thermoplastic traffic
markings on thoroughly dry surfaces and during dry weather conditions.
Apply using equipment and procedures that produce markings of the
specified color, width, and thickness with well-defined edges, uniform
retroreflectivity, and proper bonding to the pavement. Apply the
thermoplastic material as follows:

(1) Extruded Thermoplastic. Uniformly heat the thermoplastic
material. When the ambient and surface temperatures are at least
50°F, apply the melted material at a temperature of between 400
and 425°F. Extrude the thermoplastic traffic markings on the
HMA or concrete pavement ensuring a thickness of 90 ± 1 mils.

(2) Immediately after, or in conjunction with, the thermoplastic
extrusion, uniformly apply glass beads to the wet material at a
minimum rate of 10 pounds per 100 square feet of markings.
Apply glass beads by mechanical means only.

(3) Preformed Thermoplastic. Melt the preformed thermoplastic
tape to bond the traffic markings permanently in position
according to the manufacturer’s recommendations.

(4) Meet the minimum initial retroreflectance value, as specified in
610.03.01.D for thermoplastic tape, by applying additional glass
beads to the hot-wet material in a uniform pattern as necessary.
3. Immediately before marking the pavement surface, clean the surface of dirt, oil, grease, and foreign material, including curing compound on new concrete. Clean the surface 2 inches beyond the perimeter of the marking to be placed.

4. Replace, at no cost to the owner, all types of long life traffic stripes or traffic markings determined to be in nonconformance with the specifications, or not placed at the locations or in the dimensions specified on the plans. Remove the defective stripes or markings according to subsection 610.03.08.

5. Traffic stripes shall be completed before opening to traffic.

END OF SECTION
SECTION 323300 - SITE FURNISHINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Steel Pipe Bollards.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For site furnishings to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 BOLLARDS
 A. Bollard Construction:
 1. Pipe OD: Not less than 6.625-inches.
 a. Steel: Schedule 40 pipe.
 2. Overall Height: As indicated.
 3. Infill: Filled solid with concrete.

2.2 MATERIALS
 A. Steel and Iron: Free of surface blemishes and complying with the following:
1. Steel Pipe: Standard-weight steel pipe complying with ASTM A53/A53M, or electric-resistance-welded pipe complying with ASTM A135/A135M.

B. Plastic Bollard Covers: Color impregnated, color and UV-light stabilized, and mold resistant.
 1. Polyethylene: Fabricated from virgin plastic HDPE resin.
 2. Wall Thickness: .125-inches thick.
 3. Height: As shown on the drawings.
 4. Field Color: As selected by Architect from manufacturer’s standards colors.
 5. Reflective Tape: As selected by Architect from manufacturer’s standards colors.
 6. Warranty: Manufacturer’s standard 5-year warranty.
 7. Installation Options: Manufacturer’s adhesive-applied gripper tabs.
 8. Manufacturer: Bollardgard; Innoplast Polymer Products or architect-approved equivalent.

C. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M; recommended in writing by manufacturer, for exterior applications.

2.3 GENERAL FINISH REQUIREMENTS

A. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for correct and level finished grade, mounting surfaces, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written installation instructions unless more stringent requirements are indicated.

B. Install site furnishings level, plumb, true, and positioned at locations indicated on Drawings.

C. Post Setting: Set cast-in support posts in concrete footing with flush top. Protect portion of posts above footing from concrete splatter. Verify that posts are set plumb or at correct angle
and are aligned and at correct height and spacing. Hold posts in position during placement and finishing operations until concrete is sufficiently cured.

D. Install plastic bollard covers on steel pipe, anchor per manufacturer’s recommendations and trim to fit flush.

END OF SECTION 323300
SECTION 329113.16 - MULCHING

PART 1 GENERAL

1.1 DESCRIPTION

A. Provide straw mulch for seeded areas.

B. Provide binder for straw mulch.

1.2 SUBMITTALS

A. Manufacturer's Literature and Recommendations:
 1. Submit manufacturer's descriptive literature and printed application instruction for synthetic plastic emulsion, fiber mulch and vegetable based gel binders.
 2. Submit all of the above for ARCHITECT'S approval.

PART 2 PRODUCTS

2.1 MATERIALS

A. Mulch:

 1. Straw:
 a. Threshed, unrotted stalks of rye, barley, or wheat; relatively free from seeds, noxious weeds, and other foreign material.
 b. Not ground or chopped into short pieces.

B. Straw mulch binder gels:

 1. Vegetables based gels:
 Materials which can be classified as naturally occurring powder based hydrophyllic additives formulated to provide gels, which when applied under satisfactory curing conditions, will form membranded networks of water insoluble polymers. Physiologically harmless and not having phytotoxic or crop damaging properties.

 2. High polymer synthetic plastic emulsion:
 Miscible with all normally available water when diluted to any proportion. No longer soluble or dispersible in water after adequate drying, but tacky until grass seed has germinated. Physiologically harmless, and not having any phytotoxic or crop damaging properties.
3. Fiber mulch:

Made from wood or plant fibers containing no growth of germination inhibiting materials.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Product delivery, storage and handling:

1. Deliver all binder materials in manufacturer's original packaging with all tags and labels intact and legible.

2. Store and handle binder materials in accordance with manufacturer's instructions.

B. Job conditions:

1. Existing conditions: Perform mulching only after preceding related work is accepted.

2. Environmental requirements:

 Do not apply synthetic plastic emulsion binder or vegetable based gel binder during rain or freezing weather.

3. Protection: Restrict foot and vehicular traffic from mulched areas to end of maintenance period.

C. Inspection:

Verify that seeding and all work affecting ground surface have been completed.

D. Preparation:

Immediately before mulching, relime, refertilize, and reseed areas which have become eroded or otherwise disturbed.

E. Installation:

1. General:

 a. Apply straw mulch to seeded areas within seven (7) days of seed application.

 b. Leave all mulch in place and allow to disintegrate, except remove excessive amounts of straw when directed by the ARCHITECT.
INTERIM BAYS
RELIEF FIRE COMPANY-ADDITION & RENOVATION
REGAN YOUNG ENGLAND BUTERA, PC PROJECT #5475C

2. Straw mulch:
 a. Spread straw uniformly in layer 1 to 1 ½ inches thick, loose measurement.

3. Binder for straw mulch:
 a. Evenly distribute binder over mulch.
 b. In areas where pedestrian traffic would make use of asphalt binder objectionable, ARCHITECT may direct spreading of small quantities of topsoil on the mulch as an alternative method of securing the mulch in place.
 c. Bind mulch in place using one (1) of the following binder materials:
 (1) Vegetable Base Gels: Mix with water and apply by hydraulic pressure equipment. Apply in accordance with manufacturer's printed instructions, do not mix less than 40 pounds of dry material in 750 gallons of water.
 (2) High Polymer Synthetic Plastic Emulsion: Apply by hydraulic pressure equipment at rate of 30 gallons of undiluted material per acre. Dilute in water at ratio of 1:15. Apply in accordance with manufacturer's printed instructions.
 (3) Fiber Mulch: Mix with water and apply by hydraulic equipment. Apply in accordance with manufacturer's printed instructions, except do not use less than 400 pounds of dry product per acre.

F. Mulch maintenance:
 1. Remulch all areas requiring reseeding.
 2. Relime, refertilize, reseed and remulch all areas where straw mulch is displaced.
 3. Perform all mulch maintenance work in accordance with the specifications without additional compensation.
 4. Mulch maintenance period to extend until acceptance of project by ARCHITECT.

G. Cleaning:

In addition to cleaning required in Section Cleaning and Restorations:
 1. Immediately clean spills from paved and finished surface areas.
 2. Remove debris and excess materials from project site.

END OF SECTION
SECTION 329119.13 - TOPSOILING

PART 1 GENERAL

1.1 DESCRIPTION

A. Prepare topsoil subsoil.

B. Prepare topsoil stripped from the site, furnish topsoil required in excess of that obtained from stripping of site form approved sources located outside the project limits.

PART 2 PRODUCTS

2.1 MATERIALS

A. Topsoiling: General requirements for topsoil furnished from within or outside the project limits.

1. Containing no stones, lumps, roots or other objects larger than ½ inch in any dimension.

2. Acid-Alkaline Range: pH 5.8 to 6.5

3. Free of pests, pest larvae, and matter toxic to plants.

4. Maximum soluble salts: 500ppm

5. Free of viable Bermudagrass, quackgrass, Johnsongrass, nutsedge, poison ivy, Canada thistle, and other objectionable grassy or broadleaf weeds.

6. Contractor shall submit a sample of topsoil prior to installation. If borrow material is proposed, the topsoil must be tested by CONTRACTOR for compliance with these specifications, and screened, if necessary, to remove objects larger than specified dimension.

B. Topsoil furnished from outside project limits:

1. Gradation range:

 Sand (2.00mm to 0.05mm) 40 - 80 percent
 Silt (0.050mm to 0.005mm) 10 - 30 percent
 Clay (0.005mm and smaller) 0-10 percent

 a. When one-half of the sand content is larger than 0.500 mm., the maximum sand content shall be seventy-five percent; and maximum clay content shall be fifteen percent.
b. Lower limits of silt and clay shall be flexible to extent that soils with minimum combined silt and clay content of twenty percent shall be satisfactory. However, if more than one-half of the sand is larger than 0.500mm., then the minimum combined silt and clay content shall be twenty-five percent.

2. Organic content:
 a. Minimum of 2.75 percent by weight.
 b. If necessary, add peat at rate necessary to attain minimum organic content.

3. Taken from borrow area acceptable to ARCHITECT.

C. Soil conditioners:

Peat:

1. Sedge or reed peat:
 a. Consisting of incompletely decomposed plant residues resulting from anaerobic activity in water-saturated areas.
 b. Containing no gravel, debris, or toxic compounds. Average Water Content: Not to exceed sixty-five percent by weight.
 c. pH value: Not less than 4.
 d. Not cultivated or aged.
 e. Shredded or resemble texture of cultivated peat.
 f. Minimum organic content: 75 percent by weight.
 g. Inorganic materials: Consisting only of sand, silt and clay.

2. If required, add peat to topsoil obtained from sources outside project limits, at rate necessary to attain minimum organic content of 2.75 percent.

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Submittals:

1. Legal documents:
 a. One executed copy of each legal right or easement required for storage of topsoil on private property located outside the limits of easement of right-of-way areas acquired by the OWNER.
 b. Submit to ARCHITECT prior to storing of topsoil on any private property.
2. Delivery slips:
 a. Accompany all shipments of topsoil with delivery slip showing the product weight and name of supplier.
 b. Submit delivery slip to ARCHITECT at end of each working day.

B. Product delivery and storage.

1. Transport topsoil from outside project limits in accordance with local regulations.

2. Obtain all legal rights or easements necessary from private owners on whose lands topsoil may be stored. Furnish rights or easements in written form satisfactory to ARCHITECT, and signed by both CONTRACTOR and property owner involved, or their duly authorized representatives.

C. Job conditions:

1. Existing conditions:
 a. Perform topsoiling only after preceding work affecting ground surface is completed.

2. Environmental requirements:
 a. Do not prepare or place frozen or saturated topsoil.

3. Protection:
 a. Protect trees and shrubs to remain as part of final landscaping against damage.

D. Preparation:

1. Verify that clearing, earthwork, grading and other preceding work affecting ground surface have been completed.

2. Verify that trees, shrubs, and other plants to remain as part of final landscaping have been identified.

3. Assure that area to be topsoiled is cleared, shaped, dressed, and approved by ARCHITECT.

4. Do not proceed with topsoiling until conditions are satisfactory.

5. Preparation of topsoil subsoil:
a. Shape and dress area to be topsoiled. This work included grading to required lines and elevations; removal of all stones, clods, lumps one-half inches (½") or larger in any dimension; removal of all wires, cables, pieces of concrete, tree roots, and debris or other unsuitable material.

b. Do not proceed with installation of topsoil until this work has been approved by the ARCHITECT.

E. Installation:

1. Plane an even layer that will produce a prescribed compacted thickness of four inches.

2. If quantity of topsoil obtained from stripping is insufficient for the project requirements, provide required topsoil from approved sources located outside project limits.

3. Remove stones, lumps, roots, and other objects larger than one-half inches (½") in any dimension from graded topsoil surface.

F. Protection:

When directed by ARCHITECT, erect temporary signs and barriers to protect topsoiled areas.

G. Maintenance:

1. Immediately before establishment of ground cover, retopsoil and regrade areas which become eroded or otherwise disturbed.

2. Perform all maintenance work in accordance with the Specifications without additional compensation.

3. Maintenance period to extend until installation of ground cover.

H. Cleaning:

In addition to cleaning required in Specification entitled, "Cleaning and Restoration for Sitework":

1. Immediately clean spills, soil, and conditioners on paved and finished areas.

2. Distribute, stockpile, or haul topsoil in excess of the quantity required for the project as directed by the ARCHITECT.

3. Dispose of protective barricades and warning signs at termination of maintenance period.

END OF SECTION
SECTION 329219 - FERTILIZING AND SEEDING

PART 1 GENERAL

1.1 DESCRIPTION

A. Provide topsoil, lime, fertilizer and Type "A-3" seed:
 1. Restoration of existing grass areas disturbed by CONTRACTOR's operations.
 2. Temporary soil erosion control.

1.2 SUBMITTALS

A. Certificates:
 1. Seed producer's certified analysis of composition, purity, and germination of seed mixture, dated within nine (9) months of sowing.
 2. Manufacturer's certificate chemical analysis of fertilizer composition.
 3. Manufacturer's certified chemical and physical composition analysis of ground limestone.
 4. Submit all of the above the ARCHITECT prior to incorporation of materials into project.

B. Delivery slips: Accompany each delivery of seed, ground limestone, and fertilizer with delivery slip showing the product weight.

C. Test reports:
 1. Submit results of test report for pH analysis of soil, and when ground limestone is required, the total amount of magnesium and calcium oxides required.

PART 2 PRODUCTS

2.1 MATERIALS

A. Seed Mixture:
1. Type "A-3" Seed Mixture:

<table>
<thead>
<tr>
<th>Kind of Seed</th>
<th>Percent Mixture</th>
<th>Minimum Germination Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perennial Ryegrass</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>Tall Fescue</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Chewings Fescue</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>Kentucky Bluegrass</td>
<td>10</td>
<td>75</td>
</tr>
</tbody>
</table>

2. Use clean, dry, new crop seed. Use seed listed in the top 100 of the NTEP.

B. Topsoil: As specified in Specification Section entitled, "Topsoiling."

C. Ground limestone:

1. Minimum total calcium and magnesium oxides content: 40 percent (40%).

2. Physical Properties:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Total Percent Passing Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 20</td>
<td>100</td>
</tr>
<tr>
<td>No. 60</td>
<td>80</td>
</tr>
<tr>
<td>No. 100</td>
<td>60</td>
</tr>
</tbody>
</table>

D. Fertilizer:

1. Use fertilizer having commercial designation of 10-20-10 or and 1-2-1 ratio fertilizer.

2. Minimum available nutrients, percent by total weight:
 a. 5, Nitrogen (N)
 b. 10, Phosphoric Oxide (P2O5)
 c. 5, Potash (K20).

3. For fertilizer to be applied with mechanical spreader in dry form, a minimum of 75 percent (75%) shall pass a No. 8 sieve, minimum of 75 percent (75%) shall be retained on a No. 16 sieve, and maximum free moisture content shall be 2 percent (2%).

E. Water: Free of substances harmful to plant growth.
F. Mulch: As specified in Specification Section entitled, "Mulching."

PART 3 EXECUTION

3.1 METHODS OF CONSTRUCTION

A. Product delivery, storage and handling:
 1. Deliver all materials in accordance with manufacturer's printed instructions, and in such manner as to protect from moisture.
 2. Store and handle material in accordance with manufacturer's printed instructions, and in such manner as to protect from moisture.

B. Job conditions:
 1. Existing conditions: Perform seeding only after preceding work affecting ground surface is completed.
 2. Environmental requirements:
 a. Plant seed on unfrozen soil. Soil shall be in friable condition at time of seeding.
 b. Do not perform seeding when wind exceeds 15 mph.
 c. Do not seed between calendar dates from May 15th to August 15th, and from October 15th to March 1st, except when weather and soil conditions are favorable as determined by ARCHITECT.
 3. Protection: Restrict foot and vehicular traffic from seeded areas after planting to end of the establishment period.

C. Protection (prior to seeding):
 1. Check that clearing, soil preparation and proceeding work affecting around surface is completed.
 2. Verify that soil is unfrozen and within allowable moisture content.
 3. Do not start work until conditions are satisfactory.
 4. When specified, install bed of topsoil.
5. When soil to be seeded has a pH value of less than 5.8, evenly spread ground limestone, which is dry and free flowing, over area to be seeded at rate that will change soil pH value to 6.5. Thoroughly mix limestone into upper 3 to 4 inches of soil by dicing, harrowing, or other approved method.

6. Within limits set forth under materials, select fertilizer for use on the project. Use one selection throughout project. Apply fertilizer in quantity necessary to yield 60 pounds of nitrogen per acre. Thoroughly mix fertilizer into upper 3 to 4 inches of soil by dicing, harrowing, or other approved method.

7. Water dry soil at least 24 hours prior to seeding to obtain a loose friable seed bed.

8. Before applying seed, remove all stones, rocks, lumps, roots, wires, clods, and other objects measuring 1 inch or larger in any dimension.

D. Application:

1. Broadcast half of seed with mechanical seeder.

2. Broadcast remaining half of seed at right angles to first seeding pattern, using same broadcast method.

3. Apply seed at the rate of 100 lbs./acre:

 Type "A-3" Seed Mixture: 100 lbs/acre.

4. Cover seed to depth of 1/8 inch by raking or other method approved by ARCHITECT.

5. Roll seeded area with roller weighing maximum of 159 pounds per foot of width.

6. Water seeded area until water penetrates to a depth of 3 to 4 inches.

7. Finished seeded areas shall be smooth, even, and to prescribed lines and contour.

E. Protection (after seeding): When directed by ARCHITECT, erect temporary signs and barriers to protect seeded areas from pedestrian and vehicular traffic.

F. Lawn establishment:

1. Watering:
 a. Keep soil moist during seed germination period.
 b. Method of watering shall provide equal distribution and coverage to all areas seeded.
 c. CONTRACTOR shall water area to a depth of 2" once a week until final acceptance.
2. Mowing: Mow unacceptable weedy areas in fertilized and seeded area as directed by ARCHITECT if, prior to the establishment of a satisfactory stand of grass, an excess amount of weed growth becomes established. Mow at CONTRACTOR's expense.

3. Relime, refertilize and reseed, as directed by the ARCHITECT, all seeded areas which become eroded or otherwise disturbed; or which require mowing of weedy areas in order to establish acceptable turf.

4. Relime, refertilize and reseed, as directed by ARCHITECT, spots larger than one square foot not having uniform stand of grass practically weed free, and not containing plants in reasonable proportion to the various kinds of seed in the grass seed mixture.

5. Perform all lawn establishment work in accordance with the specifications without additional compensation.

6. Establishment period to extend until acceptance of project by ARCHITECT.

G. Cleaning:

In addition to cleaning required in Specification Section entitled, "Cleaning and Restoration for Sitework":

1. Immediately clean spills on paved and finished surface areas.

2. Remove debris and excess materials from projects site.

3. Dispose of protective barricades and warning signs at termination of lawn establishment period.

H. Field quality control:

Seed mixture:

1. ARCHITECT reserves the right to have certified seed mixtures samples and tested after delivery to the project. CONTRACTOR shall pay for testing and related costs when materials are found not to be in compliance with this specification.

2. Sampling and testing will be conducted in accordance with the New Jersey State Seed Law, Chapter 189, P.L. 1948, and with the rules and regulations for testing seeds adopted by the Association of Official Seed Analysts.
SOIL AND FOUNDATION
ENGINEERING REPORT

MOUNT HOLLY FIRE DEPARTMENT
INTERIM BAYS ADDITION
250 Rancocas Road
Mount Holly
Burlington Township, New Jersey

FOR

Mount Holly Fire District Number 1
100 Garden Street
Mount Holly, NJ 08060

August 11, 2020
UNDERWOOD ENGINEERING COMPANY
8/11/2020

Mount Holly Fire District Number 1
100 Garden Street
Mount Holly, NJ 08060

RE: Soil and Foundation Engineering Report
 Mount Holly Fire Department Interim Bays Addition
 250 Rancocas Road
 Mount Holly
 Burlington County, New Jersey

U.E. Reference No: 4708-20075-1 (20-6034)

Sir / Madame:

Underwood Engineering Company has been retained by Mount Holly Fire District Number 1, to perform a soil investigation, analysis and to make recommendations for the most suitable foundation system for the above referenced project. Presented herewith is the required information.

We appreciate the opportunity of working with you on this project. If we may be of further assistance, please do not hesitate to contact our office.

Respectfully submitted,

Underwood Engineering Company

William R. Underwood, P.E.
President
Table of Contents

I SITE DESCRIPTION ..4
 A. Location ...4
 B. Surface Conditions ..4
 C. Project Plans ..4

II PROJECT DESCRIPTION ..4
 A. Type of Structure ...4
 B. Loads & Spacings ..2
 C. Finished Floor Elevations ...2

III FIELD INVESTIGATION & SUBSURFACE CONDITIONS ...2
 A. Field Investigation ...2
 1) Test Pits ...2
 2) Borings ...3
 3) Water Table ...5

IV RECOMMENDATIONS ...5
 A. Earthwork ..5
 1) Existing Topsoil & Deleterious Conditions ...5
 2) Construction Dewatering ..6
 3) Proofrolling & Densification ...6
 4) Structural Fill Placement ...7
 5) On Site Soils ..7
 6) Backfilling & Densification of Load-Bearing Fill ...8
 7) Compaction ..8
 8) Foundation Compaction ...9
 B. Building Foundation ...9
 1) Type ..9
 2) Elevation ..9
 3) Minimum Depth of Foundation ..10
 4) Allowable Bearing Values ...10
 5) Settlements ..10
 C. Lateral Earth Pressures ..10
 D. Seismic Considerations ...10
 E. Concrete Floor Slabs ...11
 F. Paved Areas ..11
 1) Subgrade Preparation ..11
 2) Design Criteria ...11
 3) Stone Base Course ...11
 4) Reinforcing Fabric ..11

V INSPECTION ..12

VI QUALIFICATIONS ...12

Appendix A - Boring / Test Pit Location Plan
Appendix B - Boring / Test Pit Logs
Appendix C – Mechanical Sieve (Gradation) Analysis Results
Appendix D – General Soil Terms
Appendix E – Important Information about Your Geotechnical Engineering Report -ASFE
I SITE DESCRIPTION

A. Location

The proposed building addition is located along the West side of the Public Works Maintenance Garage at 250 Rancocas Road in Mount Holly, Burlington County, New Jersey.

B. Surface Conditions

The proposed building area is presently occupied by asphalt & stone paving along the West side of the existing Public Works Maintenance Garage. The existing garage is a one-story pole barn structure with concrete slab on grade. In general, the site is flat.

C. Project Plans

Architectural Plans (Sheets IB 1.0-IB 1.4) showing the proposed building addition details were prepared by Regan Young England Butera, dated July 1st, 2020, Entitled “Mount Holly Fire Interim Bays Addition, Rancocas Road, Mount Holly, NJ 08060.”

A geophysical investigation report prepared by Enviroprobe Service Incorporated, dated June 26th, 2020, Entitled “Geophysical Investigation Report, Performed at 250 Rancocas Road, Mount Holly, NJ 08060”.

II PROJECT DESCRIPTION

A. Type of Structure

The project is to consist of the proposed construction of a two (2) bay one story garage addition along the West side of the existing maintenance garage. The proposed addition measures approximately 45 feet wide by 82 feet long by 24.5 to 17 feet in height. Framework for the proposed addition is anticipated to be wood bearing walls and wood roof trusses, concrete slab on grade construction.
B. **Loads & Spacings**

Loads and spacings are anticipated to be typical for this type of construction, i.e., no extraordinary loads are anticipated.

C. **Finished Floor Elevations**

Project grading was not available for review as of the published date of this report. The proposed finished floor elevations are assumed to approximate the existing building finished floor elevations.

Based on existing site slopes observed it is anticipated that approximately zero (0) to one and one half (1.5) feet of fill will be required to achieved finished floor elevations.

III FIELD INVESTIGATION & SUBSURFACE CONDITIONS

A. **Field Investigation**

1) **Test Pits**

The field investigation consisted of two (2) test pits excavated with a rubber tire backhoe to depths of approximately eighty (80) and eighty-two (82) inches below the existing ground surface elevations on August 10th, 2020. The test pits were excavated to investigate the large magnetic anomaly outlined in the Geophysical Report. The test pits were excavated within the boundaries of the magnetic anomaly outlined on Figure 4 EM-31 Anomaly Map for Mt. Holly Fire District No.1.

No miscellaneous fills or buried concrete debris were observed in the test pit investigation.

The findings and locations are shown in Appendices A and B to include the Test Pit Location Plan and Test Pit Logs.

The site soils encountered in the test pits consisted generally of the following profile:
SOIL BORINGS ● SOIL LABORATORY TESTING ● FOUNDATION ENGINEERING

Zone 1

Fine to coarse sands with trace to little amounts of silt and trace amounts of fine gravels were encountered in test pits TP-1 and TP-2 directly below approximately three (3) inches of asphalt and 6 inches of recycled concrete fill to depths of approximately sixty-three (63) and seventy-two (72) inches below the existing ground surface elevations.

Zone 2

Silty clays with trace to little fine sands were encountered in test pits TP-1 and TP-2 directly below the Zone 1 soils. Test pits TP-1 and TP-2 were terminated in the silty clays at depths of approximately eighty (80) to eighty-two (82) inches below the existing ground surface elevations.

See attached Test Pit Logs (Appendix B) for more detailed soil descriptions and profiles.

2) Borings

The field investigation consisted of two (2) test boring advanced to depths of approximately twenty-two (22) feet below the existing ground surface elevations and three (3) test borings advanced to a depth of approximately twenty (20) feet below the existing ground surface elevations with standard penetration resistance per ASTM D-1586 on August 10th, 2020. The findings and locations are shown in Appendices A and B to include the Boring Location Plan and Soil Boring Logs.

The site soils encountered consisted generally of the following profile:

Zone 1

Medium dense fine to coarse sands, trace to little silt and trace to little fine gravels were encountered in test borings TB-1 through TB-5 directly below the existing ground surface elevations to depths of
approximately three (3), four (4) and seven (7) feet below the existing ground surface elevations.

Zone 2

Medium stiff silts and fine to medium sands and soft to stiff silty clays with little / some / and amounts of fine to medium sands were encountered in test borings TB-1 through TB-5 directly below the Zone 1 soils to depths of approximately seven (7) to nine (9) feet below the existing ground surface elevations. Based on Standard Penetration Test (SPT) data recorded during the drilling operations test borings TB-2 through TB-5 are consisted soft to depths of approximately six (6) feet below the existing ground surface elevations.

Zone 3

Medium dense fine to coarse sands with trace to little amounts of silt and trace / little / some amounts of fine gravels were encountered in test borings TB-1, TB-2 and TB-5 directly below the existing ground surface elevations to depths of approximately nine (9) to ten (10) feet below the existing ground surface elevations.

Zone 4

Soft, stiff and very stiff silty clays with some / and amounts of fine to medium sands and medium dense fine to medium sands and silty clays were encountered in test borings TB-1 through TB-5 directly below the Zone 2 & Zone 3 soils to depths of approximately eighteen (18) to twenty (20) feet below the existing ground surface elevations.

Based on Standard Penetration Test (SPT) data recorded during the drilling operations test boring TB-5 is considered very soft between depths of approximately eighteen (18) to twenty (20) feet below the existing ground surface elevations. Test borings TB-2 and TB-4 were terminated in the stiff Zone 4 soils at depths of approximately twenty (20) feet below the existing ground surface elevations.
Zone 5

Medium dense fine to coarse sands with trace / little / some amounts of silty clays were encountered in test borings TB-1, TB-3 and TB-5 directly below the Zone 4 soils. Test boring TB-1 was terminated in the medium dense Zone 5 soils at a depth of approximately twenty (20) feet below the existing ground surface elevations. Test borings TB-3 and TB-5 were terminated in the medium dense Zone 5 soils at depths of approximately twenty-two (22) feet below the existing ground surface elevations.

See attached Soil Boring Logs (Appendix B) for more detailed soil descriptions and profiles.

3) Water Table

The ground water table was encountered in the test pits and test borings at depths of approximately three (3), four (4), six (6) and eight (8) feet below the existing round surface elevations as evidenced by direct observation and saturation of the soil samples.

It should be noted that the ground water data presented on the individual boring logs may not be representative of daily or seasonal variations in the ground water level.

IV RECOMMENDATIONS

A. Earthwork

1) Existing Topsoil & Deleterious Conditions

Any existing topsoil, vegetation, asphalt paving, abandoned utilities, demolition debris and all deleterious materials are to be removed from the proposed building addition area.
2) **Construction Dewatering**

 Based on the test boring / test pit data, groundwater will be encountered during the earthwork activities, excavation for foundations, utilities etc. Should water be encountered, the dewatering specifications should be of a type capable of maintaining the water table a minimum of two (2) feet below the prevailing excavation bottom during the excavations as well as during backfill operations. As stated above, groundwater and/or perched water levels encountered during construction may vary from those encountered during soil boring operations due to seasonal variations or other climatic conditions. Should water be encountered during earthwork activities, foundation excavations and utility trenches, etc., temporary dewatering may be required i.e. installation of sump pits/pumps.

 Clean crushed stone will be required to stabilize excavations and to aid in the control of groundwater in locations.

3) **Proofrolling & Densification**

 The exposed subgrades for the slab on grades and paved areas are to be proofrolled with a vibratory compactor in the presence of the soil engineer to detect and repair any unsuitable soil conditions and to attain a uniform firm subgrade throughout. Any loose soils encountered may be densified by proofrolling and further compaction by additional passes if necessary. This is extremely important due to areas of loose / soft soils encountered in the soil borings.

 Prior to placement of structural fills and foundation elements the building pad area subgrades are to be densified utilizing a 10-ton equivalent vibratory compactor. A minimum of six (6) passes over the building subgrade areas is recommended.
4) **Structural Fill Placement**

 Bring existing grade up to the desired elevation with a granular type soil that complies with the following specifications or soils which are reviewed and approved by the soil engineer and compact it to within the specifications listed under **Compaction**, unless approved by the Soils Engineer.

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>Percent by Weight Passing Square Mesh Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>100</td>
</tr>
<tr>
<td>3/4”</td>
<td>70-100</td>
</tr>
<tr>
<td>#4</td>
<td>30-80</td>
</tr>
<tr>
<td>#50</td>
<td>10-35</td>
</tr>
<tr>
<td>#200</td>
<td>5-12</td>
</tr>
</tbody>
</table>

 It is strongly recommended that bulk samples of material to be used as load bearing structural fill be taken and tested prior to the commencement of work so that moisture / density relationships (compaction) can be determined.

5) **On Site Soils**

 On site silts and clays (Zone 2, 4 & 5) are generally not suitable for use as structural fill due to the difficulty of achieving optimum moisture content ranges for compaction. Any elevation is moisture levels will create compaction and stability issues. These soils are also not suited for reuse during periods of wet weather without the use of moisture reducing agents.

 On site granular soils (Zone 1 & 3), as approved by the Soil Engineer, are suitable for use, as load-bearing fill but will require strict moisture control due to the presence of fine grain material and high
water table on site (i.e. silt and clay). If on site soils are used as structural fill, they must be placed under favorable weather conditions and may require conditioning (i.e. aeration, moisture reducing applications) such that they are dried to within optimum moisture content ranges. This is extremely important in order to properly compact the soils as specified herein. If inclement weather is a factor, the onsite soils may be unsuitable, and provisions should be taken to import suitable structural materials and / or the use of moisture reducing applications.

6) Backfilling & Densification of Load-Bearing Fill

Building subgrades may be brought up to desired elevation with approved on-site soils or imported structural fill in lifts no greater than ten (10) inches loose thickness and compacted to 95% of the material’s maximum dry density per ASTM D-698 as illustrated below. Materials compacted by hand operated equipment shall be placed in lifts no greater than four (4) inches loose thickness.

7) Compaction

All backfill and fill materials should be compacted to the degree noted in the following table in accordance with ASTM D-698 latest standard.

<table>
<thead>
<tr>
<th>Building Area</th>
<th>% Maximum Dry Density (ASTM D-698)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supporting Foundations</td>
<td>95%</td>
</tr>
<tr>
<td>Supporting Floor Slabs</td>
<td>95%</td>
</tr>
<tr>
<td>Pavements</td>
<td>95%</td>
</tr>
<tr>
<td>Site (Non-Load Bearing)</td>
<td>90%</td>
</tr>
</tbody>
</table>
8) **Foundation Compaction**

 All exposed footing subgrades are to be compacted by two (2) passes with a jumping jack compactor immediately prior to the placement of the footing concrete.

 Based on groundwater levels recorded during the test boring program, crushed stone will be required to stabilize excavations and to aid in the control of groundwater in particular locations.

B. **Building Foundation**

1) **Type**

 The proposed garage addition is to be supported by a spread footing foundation system.

 The proposed footings must be extended down through the soft Zone 2 silty clays into the stiff zone 2 materials (required for bearing) approximately six (6) feet below the existing ground surface elevations.

 Deeper excavations may be required where fill or soft soils are encountered in areas other than those identified during the initial subsurface investigation.

 Return to design subgrade elevations utilizing clean crushed ¾ inch stone consolidated in 10 in lifts with the machine bucket.

2) **Elevation**

 The footings may be placed at any elevation provided the minimum depth criteria is met and the recommendations listed herein are performed.

 The footing bottoms for the proposed buildings must bear at the same elevation of the existing structures.
3) **Minimum Depth of Foundation**

 All footing bottoms are to be founded at least three (3) feet beneath or away from atmospherically exposed final soil subgrade.

4) **Allowable Bearing Values**

 The spread footing foundation may be designed for a maximum allowable bearing capacity of 2,000 Pounds per Square Foot provided that the requirements under Earthwork are adhered to strictly.

5) **Settlements**

 Using the allowable bearing value and following the recommendations under Earthwork will keep total and differential settlements negligible.

C. **Lateral Earth Pressures**

 The following values may be used for calculating lateral earth pressures:

 Active Earth Pressure Coefficient, $K_A = 0.32$

 At Rest Earth Pressure Coefficient, $K_R = 0.40$

 Passive Earth Pressure Coefficient, $K_P = 4.00$

 Unit Weight of Soil, $\gamma = 120$ lbs. / ft3

 The above values assume a porous, free draining backfill soil.

D. **Seismic Considerations**

 For Seismic Site Classification, use Site Class D1.

1 Data obtained from International Building Code
E. Concrete Floor Slabs

Concrete floor slabs may be placed on grade provided they are underlain by a minimum of four (4) inches of porous material and all soft areas are to be removed and repaired as recommended under Earthwork.

F. Paved Areas

1) Subgrade Preparation

After the procedures as outlined under Proofrolling are completed, the subgrade should be compacted to 95% of the material’s Maximum Dry Density (ASTM D-698). Prior to the installation of the bituminous base course the subgrade is to be proofrolled with a loaded ten-wheel dump truck in the presence of the soils engineer. This is extremely important and will be the primary criteria for subgrade acceptance. Any localized weak areas are to be repaired as required.

2) Design Criteria

In the design of pavements, a maximum CBR value of ten (10) should be used.

3) Stone Base Course

Pavement areas are to be provided with at least a four (4) inch thick crushed stone or coarse gravel base course.

4) Reinforcing Fabric

A geotechnical reinforcing fabric (Mirafi 500X or equal) should be considered for placement under any heavy traffic areas.
V INSPECTION

It is recommended that all earthwork operations be inspected full time by a qualified representative of the Soil Engineer, especially the proofrolling operations and all footing subgrades immediately prior to placing the footing concrete. Foundation excavation evaluations should be performed to confirm that the design allowable bearing pressure is available. Footing subgrade evaluations should be performed through a combination of visual observation and hand rod probing in conjunction with comparison to the test borings. Concrete placement should be performed immediately after footing subgrade evaluations are made to prevent exposure and potential weakening of foundation subgrades.

VI QUALIFICATIONS

Our recommendations are based on the subsurface conditions as revealed by the test borings, and on the assumptions outlined in the Project Description and Site Description sections of this report.

Our recommendations are also based on the assumption that the provisions for strict field inspection will be followed as outlined.

This report does not reflect any variations, which may be encountered during construction.

We should be informed immediately of such conditions so that we may modify our conclusions and recommendations, if necessary.

Underwood Engineering Company will not be responsible for variations in subsurface soils encountered in areas other than those tested.

Respectfully submitted,

Underwood Engineering Company

William R. Underwood, P.E.
President

SOIL BORINGS • SOIL LABORATORY TESTING • FOUNDATION ENGINEERING
Appendix A
Boring / Test Pit Location Plan
Appendix B
Boring / Test Pit Logs
CLIENT: Mount Holly Fire Company
PROJECT: Interim Bays Addition
250 Rancocas Rd
Mount Holly, NJ
DATE: 8/10/2020
BORING No.: TB-1

UNDERWOOD ENGINEERING COMPANY
143 Harding Avenue, Bellmawr, NJ 08031
Ph. # 856.933.1818 Fx. # 856.933.3121
William R. Underwood, P.E., President

GROUND SURFACE ELEVATION: NA

<table>
<thead>
<tr>
<th>METHOD OF ADVANCING BORING</th>
<th>DEPTH (FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS SPLIT SPOON SAMPLE</td>
<td>0 to 10 ft</td>
</tr>
<tr>
<td>AUGERS</td>
<td>10 to 18 ft</td>
</tr>
<tr>
<td>2" O.D. SPLIT SPOON</td>
<td>18 to 20 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Groundwater</th>
<th>Sampling Interval</th>
<th>Sample #</th>
<th>Blows</th>
<th>N-values</th>
<th>Lithology</th>
<th>Soil Description*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ft</td>
<td>S-1</td>
<td>4-4-5-8</td>
<td></td>
<td></td>
<td></td>
<td>Asphalt: Black ASPHALT</td>
<td>SAND: Brown m.f. SAND (tr) Silty Clay (tr) f. Gravel</td>
</tr>
<tr>
<td></td>
<td>S-2</td>
<td>5-7-7-6</td>
<td></td>
<td></td>
<td></td>
<td>SILT: Reddish Brown/Dark Brown mottles SILT (a) m.f. Sand</td>
<td>SAND: Brown c.f. SAND (s) f. Gravel (tr) Silt</td>
</tr>
<tr>
<td></td>
<td>S-3</td>
<td>7-7-6-5</td>
<td></td>
<td></td>
<td></td>
<td>CLAY: Black Silty CLAY (a) m.f. Sand</td>
<td>CLAY: Black Silty CLAY (s) m.f. Sand</td>
</tr>
<tr>
<td></td>
<td>S-4</td>
<td>2-2-4-6</td>
<td></td>
<td></td>
<td></td>
<td>SAND: Dark Gray m.f. SAND (s) Silty Clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-5</td>
<td>3-5-9-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-6</td>
<td>5-5-7-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-7</td>
<td>4-7-7-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*FIELD CLASSIFICATION ONLY. SOIL CLASSIFICATION FOR PARTICULAR USES SHOULD BE ASCERTAINED BY LABORATORY TESTS.

N - STANDARD PENETRATION RESISTANCE PER 12" (140 lb. HAMMER, 30" DROP)
CLiENT: Mount Holly Fire Company
PROJECT: Interim Bays Addition
250 Rancocas Rd
Mount Holly, NJ
DATE: 8/10/2020
BORING No.: TB-2

UNDERWOOD ENGINEERING COMPANY
143 Harding Avenue, Bellmawr, NJ 08031
Ph. # 856.933.1818 Fx. # 856.933.3121
William R. Underwood, P.E., President

GROUND SURFACE ELEVATION: NA

<table>
<thead>
<tr>
<th>METHOD OF ADVANCING BORING</th>
<th>DEPTH (FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS SPLIT SPOON SAMPLE</td>
<td>0 to 10 ft</td>
</tr>
<tr>
<td>AUGERS</td>
<td>10 to 18 ft</td>
</tr>
<tr>
<td>2" O.D. SPLIT SPOON</td>
<td>18 to 20 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Groundwater</th>
<th>Sampling Interval</th>
<th>Sample #</th>
<th>Bows</th>
<th>N-values</th>
<th>Lithology</th>
<th>Soil Description*</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ft</td>
<td>Sample Saturated with Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*FIELD CLASSIFICATION ONLY. SOIL CLASSIFICATION FOR PARTICULAR USES SHOULD BE ASCERTAINED BY LABORATORY TESTS.

N - STANDARD PENETRATION RESISTANCE PER 12" (140 lb. HAMMER, 30" DROP)
GROUNDSURFACE ELEVATION: NA

<table>
<thead>
<tr>
<th>METHOD OF ADVANCING BORING</th>
<th>DEPTH (FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS SPLIT SPOON SAMPLE</td>
<td>0 to 10 ft</td>
</tr>
<tr>
<td>AUGERS</td>
<td>10 to 18 ft</td>
</tr>
<tr>
<td>2" O.D. SPLIT SPOON</td>
<td>18 to 22 ft</td>
</tr>
</tbody>
</table>

FILL: Brown Sandy RCA
SAND: Brown m.f. SAND (tr) Silt
SAND: Gray m.f. SAND (tr) Silt
CLAY: Brownish Orange/Gray Silty
CLAY (s) m.f. Sand
CLAY: Brownish Orange/Gray mottled
CLAY (l) m.f. Sand
CLAY: Black CLAY (l) m.f. Sand
CLAY: Black Silty CLAY (a) m.f. Sand
SAND: Dark Gray c.f. SAND (l) Silty Clay

*FIELD CLASSIFICATION ONLY. SOIL CLASSIFICATION FOR PARTICULAR USES SHOULD BE ASCERTAINED BY LABORATORY TESTS.

N - STANDARD PENETRATION RESISTANCE PER 12" (140 lb. HAMMER, 30" DROP)
CLIENT: Mount Holly Fire Company
PROJECT: Interim Bays Addition
250 Rancocas Rd
Mount Holly, NJ
DATE: 8/10/2020
BORING No.: TB-4

GROUNDWATER DATA

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>Hours After Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ft</td>
<td>Sample Saturated with Water</td>
</tr>
</tbody>
</table>

METHOD OF ADVANCING BORING

<table>
<thead>
<tr>
<th>METHOD</th>
<th>DEPTH (FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS SPLIT SPOON SAMPLE</td>
<td>0 to 10 ft</td>
</tr>
<tr>
<td>AUGERS</td>
<td>10 to 18 ft</td>
</tr>
<tr>
<td>2" O.D. SPLIT SPOON</td>
<td>18 to 20 ft</td>
</tr>
</tbody>
</table>

Soil Description

- **Asphalt:** Black ASPHALT
- **SAND:** Brown m.f. SAND (l) Silt
- **SAND:** Light Brown c.f. SAND (s) Silty Clay (l) f. Gravel
- **CLAY:** Orange Brown/Dark Brown/Gray Silty CLAY (s) m.f. Sand
- **SAND:** Orange Brown c.f. SAND (s) Silty Clay
- **CLAY:** Black/Orange Brown Silty CLAY (a) m.f. Sand
- **CLAY:** Black Silty CLAY (a) m.f. Sand
- **SAND:** Dark Gray m.f. SAND (a) Silty Clay

FIELD CLASSIFICATION ONLY. SOIL CLASSIFICATION FOR PARTICULAR USES SHOULD BE ASCERTAINED BY LABORATORY TESTS.

N - STANDARD PENETRATION RESISTANCE PER 12" (140 lb. HAMMER, 30" DROP)
Underwood Engineering Company
143 Harding Avenue, Bellmawr, NJ 08031
Ph. # 856.933.1818 Fax. # 856.933.3121
William R. Underwood, P.E., President

Ground Surface Elevation: NA

<table>
<thead>
<tr>
<th>Method of Advancing Boring</th>
<th>Depth (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Split Spoon Sample</td>
<td>0 to 10 ft</td>
</tr>
<tr>
<td>Augers</td>
<td>10 to 18 ft</td>
</tr>
<tr>
<td>2" O.D. Split Spoon</td>
<td>18 to 22 ft</td>
</tr>
</tbody>
</table>

Groundwater Data

<table>
<thead>
<tr>
<th>Depth</th>
<th>Hours After Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ft.</td>
<td>Sample Saturated with Water</td>
</tr>
</tbody>
</table>

Soil Description

- S-1 8-9-8
 - Asphalt: Black ASPHALT
 - Fill: Brown Sandy RCA

- S-2 7-11-8-6
 - Sand: Brown c.f. SAND (I) Silt

- S-3 4-2-3-3
 - Sand: Reddish Brown c.f. SAND (I) Silt (tr) f. Gravel
 - Clay: Reddish Brown micaceous mottled CLAY (a) m.f. Sand

- S-4 3-3-6-9
 - Clay: Wet Orangish Brown/Dark Brown mottled Silty CLAY

- S-5 7-9-12-16
 - Sand: Orange c.f. SAND (I) Silt (tr) f. Gravel

- S-6 6-6-8-8
 - Silty: Black Silt (a) m.f. Sand

- S-7 WOH
 - Clay: Black CLAY (s) m.f. Sand

- S-8 2-8-11-9
 - Clay: Brown CLAY (l) m.f. Sand

 - Sand: Dark Gray m.f. SAND (tr) Silt

*Field classification only. Soil classification for particular uses should be ascertained by laboratory tests.

N - Standard Penetration Resistance per 12" (140 lb. Hammer, 30° drop)
Client: Mount Holly Fire District Number 1
Project: Mount Holly Fire Department Interim Bays Addition
250 Rancocas Road, Mount Holly, NJ
Date Performed: 8/10/2020

Test Pit # 1

<table>
<thead>
<tr>
<th>Depth</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0" - 3"</td>
<td>ASPHALT PAVING</td>
</tr>
<tr>
<td>3" - 9"</td>
<td>RCA</td>
</tr>
<tr>
<td>9" - 42"</td>
<td>Yellow brown fine to medium SAND, little Silt</td>
</tr>
<tr>
<td>42" - 63"</td>
<td>Reddish brown, mottled fine to coarse SAND, little Silt, trace Gravel</td>
</tr>
<tr>
<td>63" - 82"</td>
<td>Gray / reddish yellow SILTY CLAY, little fine Sand</td>
</tr>
</tbody>
</table>

Ground Water Encountered @ 72"

Test Pit # 2

<table>
<thead>
<tr>
<th>Depth</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0" - 3"</td>
<td>ASPHALT PAVING</td>
</tr>
<tr>
<td>3" - 9"</td>
<td>RCA</td>
</tr>
<tr>
<td>9" - 72"</td>
<td>Yellowish brown / red fine to coarse SAND, trace Silt, trace Gravel, mottled @ 32"</td>
</tr>
<tr>
<td>72" - 80"</td>
<td>Gray / yellowish red SILTY CLAY, little fine Sand</td>
</tr>
</tbody>
</table>

Ground Water Encountered @ 47"
Appendix C
Mechanical Sieve (Gradation) Analysis Results
Material Test Report

Client: Mt. Holly Fire District No. 1

Project: Interim Bays
Addition - 250 Rancocas Road, Mount Holly, NJ 08060

Sample Details

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>20-6096-S01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled</td>
<td>8/11/2020</td>
</tr>
<tr>
<td>Specification</td>
<td>I-5 plus No. 100 Sieve</td>
</tr>
<tr>
<td>Location</td>
<td>TB1 @ 2' to 4'</td>
</tr>
</tbody>
</table>

Other Test Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content (%)</td>
<td>ASTM D 2216</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tested By</td>
<td>Cait Brevik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Tested</td>
<td>8/11/2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Particle Size Distribution

Method: AASHTO T 27, AASHTO T 11
Drying by: Oven
Date Tested: 8/11/2020
Tested By: Cait Brevik

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2in</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>¾in</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No.4</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>No.10</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>No.40</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>No.50</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>No.100</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>No.200</td>
<td>5.4</td>
<td></td>
</tr>
</tbody>
</table>

Comments

Gray c.f. SAND (tr) f. Gravel (tr) Silt & Clay
Material Test Report

Client: Mt. Holly Fire District No. 1

Project: Interim Bays
Addition - 250 Rancocas Road, Mount Holly, NJ 08060

Sample Details

Sample ID: 20-6096-S02
Date Sampled: 8/11/2020
Specification: I-5 plus No. 100 Sieve
Location: TB5 13’ to 15’

Other Test Results

<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content (%)</td>
<td>ASTM D 2216</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tested By</td>
<td>Cait Brevik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Tested</td>
<td>8/11/2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Particle Size Distribution

Method: AASHTO T 27, AASHTO T 11
Drying by: Oven
Date Tested: 8/11/2020
Tested By: Cait Brevik

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2in</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>¾in</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No.4</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>No.10</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>No.40</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>No.50</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>No.100</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>No.200</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Comments
Black c.f. SAND (a) Silty Clay (tr) f. Gravel

Page 1 of 1
Material Test Report

Client: Mt. Holly Fire District No. 1

Project: Interim Bays
Addition - 250 Rancocos Road, Mount Holly, NJ 08060

Sample Details
Sample ID: 20-6096-S03
Date Sampled: 8/11/2020
Specification: I-5 plus No. 100 Sieve
Location: TB3 4' to 6'

Other Test Results
<table>
<thead>
<tr>
<th>Description</th>
<th>Method</th>
<th>Result</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content (%)</td>
<td>ASTM D 2216</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tested By</td>
<td>Cait Brevik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Tested</td>
<td>8/11/2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Particle Size Distribution

Method: AASHTO T 27, AASHTO T 11
Drying by: Oven
Date Tested: 8/11/2020
Tested By: Cait Brevik

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2in</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>¾in</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No.4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No.10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>No.40</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>No.50</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>No.100</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>No.200</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

Comments
Dark Green SILTY CLAY (a) m.f. Sand

Submitted By: William R. Underwood, P.E.
Date of Issue: 8/12/2020

© 2000-2019 QESTLab by SpectraQEST.com
Appendix D
General Soil Terms
General Soil Terms

<table>
<thead>
<tr>
<th>Particle Sizes</th>
<th>Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>The major soil constituent is the principal noun, i.e.</td>
</tr>
<tr>
<td>Cobble</td>
<td>clay, silt, sand, gravel. The second major soil</td>
</tr>
<tr>
<td>Gravel-coarse</td>
<td>constituent and other minor constituents are</td>
</tr>
<tr>
<td>Gravel-fine</td>
<td>reported as follows:</td>
</tr>
<tr>
<td>Sand-coarse</td>
<td>Second Major Constituent-Minor Constituents</td>
</tr>
<tr>
<td>Sand-medium</td>
<td>(Percentage by weight)</td>
</tr>
<tr>
<td>Sand-fine</td>
<td>Trace – 1 to 12%</td>
</tr>
<tr>
<td>Silt</td>
<td>Adjective – 12 to 35%</td>
</tr>
<tr>
<td>Clay</td>
<td>Little – 12 to 23</td>
</tr>
<tr>
<td></td>
<td>(clayey, silty, etc.)</td>
</tr>
<tr>
<td></td>
<td>Some – 23 to 33%</td>
</tr>
<tr>
<td></td>
<td>And – Over 35%</td>
</tr>
</tbody>
</table>

Cohesive Soils

If clay content is sufficient so that clay dominates soil properties, clay becomes the principal noun with other major soil constituent as modifier: i.e. silty clay. Other minor soil constituents may be included in accordance with the classification breakdown for cohesionless soils: i.e. silty clay, trace of sand, little gravel

Unconfined Compressive Strength (psf)

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Approximate Range of (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Soft</td>
<td>Below 500</td>
</tr>
<tr>
<td>Soft</td>
<td>500-1000</td>
</tr>
<tr>
<td>Medium</td>
<td>1000-2000</td>
</tr>
<tr>
<td>Stiff</td>
<td>2000-4000</td>
</tr>
<tr>
<td>Very Stiff</td>
<td>4000-8000</td>
</tr>
<tr>
<td>Hard</td>
<td>8000-16000</td>
</tr>
<tr>
<td>Very Hard</td>
<td>Over 16000</td>
</tr>
</tbody>
</table>

Consistency of cohesive soils is bases upon an evaluation of the observed resistance to deformation under load and not upon Standard Penetration Resistance (N)

Cohesionless Soils

<table>
<thead>
<tr>
<th>Density Classification</th>
<th>Relative Density</th>
<th>Approximate Range of (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0-15</td>
<td>0-4</td>
</tr>
<tr>
<td>Loose</td>
<td>16-35</td>
<td>5-10</td>
</tr>
<tr>
<td>Medium Compact</td>
<td>36-65</td>
<td>11-30</td>
</tr>
<tr>
<td>Compact</td>
<td>66-85</td>
<td>31-50</td>
</tr>
<tr>
<td>Very Compact</td>
<td>86-100</td>
<td>Over 50</td>
</tr>
</tbody>
</table>

Relative Density of Cohesionless Soils is based upon the evaluation of the Standard Penetration Resistance (N), modified as required for depth effects, sampling effects, etc.

Standard Penetration Test (ASTM D 1586) – A 2.0” outside-diameter split barrel sampler is driven into undisturbed soil by means of a 140-pound weight falling freely through a vertical distance of 30 inches. The sampler is normally driven three successive 6-inch increments. The total number of blows required for the final 12 inches of penetration is the Standard Penetration Resistance (N).
Appendix E

Important Information about Your Geotechnical Engineering Report-ASFE
GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES, PERSONS, AND PROJECTS

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely to the client. No one except you should rely on your geotechnical engineering report without first conferring with the GEOTECHNICAL engineer who prepared it. And no one—not even you should apply the report for any purpose or project except the one originally contemplated.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client’s goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration: the location of the structure on the site: and the other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on geotechnical engineering report that was:
* not prepared for you,
* not prepared for your project,
* not prepared for the specific site explored, or
* completed before important project changes were made

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:
* the function of the proposed structure, as when its changed from a parking garage to an office
 building, or from a light industrial plant to a refrigerated warehouse
* elevation, configuration, location, orientation, or weight off the proposed structure,
* composition of the design team, or
* project ownership

As general rule, always inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

SUBSURFACE CONDITIONS CAN CHANGE

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.
MOST GEOTECHNICAL FINDINGS ARE PROFESSIONAL OPINIONS

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render and opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A REPORT’S RECOMMENDATIONS ARE NOT FINAL

Do not over rely on the construction recommendations included in your report. Those recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report’s recommendations if that engineer does not perform construction observation.

A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Other design team members’ misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer review pertinent elements of the design team’s plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

DO NOT REDRAW THE ENGINEER’S LOGS

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

GIVE CONTRACTORS A COMPLETE REPORT AND GUIDANCE

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report’s accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer.
A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional studies. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

READ RESPONSIBILITY PROVISIONS CLOSELY

Some clients, design professionals, and contractors do no recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce such risks, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled “limitations”, many of these provisions indicate where geotechnical engineers responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

GEOENVIRONMENTAL CONCERNS ARE NOT CONVERED

The equipment, techniques and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.
1.0 INTRODUCTION

Enviroprobe Service, Inc. (Enviroprobe) is an environmental investigation services firm which provides monitoring well installation (HSA), Geoprobe (DPT) drilling services and Environmental & Engineering Geophysics (EEG) services to the environmental consulting and engineering community.

Enviroprobe conducted a subsurface geophysical investigation at the subject property within client-specified areas of concern. Due to conditions and objectives, the investigation utilized a GSSI UtilityScan HS cart-mounted Ground Penetrating Radar (GPR) unit with a 350 MHz antenna, a Fisher TW-6 metallic locator, a Radiodetection RD7000TX3 multi-frequency transmitter, a Geonics EM31-MK2, and a Radiodetection RD7000PXL receiver.

Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 2,000 MHz) to acquire subsurface information. An EM wave is propagated downward into the ground by a transmitting antenna. Where abrupt changes in electrical properties occur in the subsurface, a portion of the energy is reflected back to the surface. This reflected wave is detected by a receiver antenna and transmitted to a control unit for real time processing and display. The penetration depth of the GSSI unit varies from several inches to tens of feet according to site-specific conditions. The penetration depth decreases with increased soil conductivity. The penetration depth is the greatest in ice, dry sands, and fine gravels. Clayey, highly saline or saturated soils, areas covered by concrete, foundry slag, or other highly conductive materials greatly reduce GPR penetration. GPR is a method that is commonly used for environmental, engineering, archaeological, and other shallow investigations.

The Fisher TW-6 metallic locator is designed to find pipes, cables and other metallic objects such as underground storage tanks (USTs). The TW-6 transmitter generates an electromagnetic field that induces electrical currents in the subsurface. These currents produce a secondary electromagnetic field that is measured by the TW-6 receiver. One surveyor can carry both the transmitter and receiver together to search for underground metallic objects, although the TW-6 response can also be affected by the electrical properties of non-metallic materials in the subsurface.

The Radiodetection (RD) transmitter and receiver are commonly used for pipe and cable locating. The multi-frequency transmitter can be directly connected, clamped, or used to induce a signal in a target line while the multi-frequency receiver is used to measure the signal from energized lines.

The Geonics EM31-MK2 is used to map geological, environmental, geotechnical and other subsurface features associated with variation in ground conductivity. The EM31 contains a transmitter coil that generates an electromagnetic field to induces electrical currents into the subsurface. These eddy currents produce a secondary
electromagnetic field that is measured by a receiver coil within the EM31. The EM31 measures apparent conductivity in millisiemens per meter (mS/m) and the in-phase ratio of the secondary to the primary electromagnetic field in parts per thousand (PPT). The strength of the in-phase reading provides information on the likely presence of underground metallic objects while the apparent conductivity is useful for mapping more subtle changes in subsurface conductivity. The depth of exploration can be as deep as approximately 20 feet; however the effective detecting range may be much shallower depending on the target sizes and host materials.

2.0 SCOPE OF WORK

On March 16, 2020, a geophysicist from Enviroprobe Service Inc. was mobilized to the subject property to perform a geophysical investigation. The purpose of this investigation was to detect possible septic system, USTs and/or associated piping, and delineate underground utilities through client-selected areas. These areas consisted of natural soil, asphalt and concrete surfaces.

3.0 SURVEY RESULTS

The survey was conducted using a cart-mounted GPR unit, a Fisher TW-6 metallic locator, a RD unit and EM31. The RD unit was used to trace common utilities from sources in and around the survey area. The RD receiver was also used in the passive mode to search for live underground electrical power cables and other utilities emitting 60Hz electromagnetic signals. When possible, the locations of utilities were confirmed with the GPR. A TW-6 and GPR survey were also performed in a grid pattern in at least two orthogonal directions to search for underground utilities and USTs.

Designated utilities were marked on-site with spray paint using the following colors: orange – communications, red – electric, blue – water, green – sewers, pink - unknown. Mapped utilities can be seen in Figure 1.

The EM-31 survey was performed in a linear pattern with approximately 5 foot spacing between lines. Based on the results of the EM-31, TW-6 and GPR survey, several metallic underground anomalies were discovered within the client-specified survey area. Anomalies for both the conductivity (Figure 2.), and in-phase (Figure 3.) plots are consistent with proximity of above ground structures/ objects, buried utilities, debris, and some unknown structures.

Two known utility trenches discovered during the utility scan were confirmed with the EM survey. However, a third linear feature (“Possible Trench”) was discovered in the most westerly portion of the site. This negative in-phase anomaly may represent a possible utility or former stream channel. A “Large Magnetic Anomaly” can be seen along the western edge of the main building. This anomaly may represent buried reinforced concrete. An “Unknown” anomaly was discovered along the northern portion
of the lot and may represent former conduits or more. An area identified with the EM in the southeast corner of the site appeared to consist of debris when imaged with the GPR. Other anomalies were likely explained by the presence of above-ground structures. The location of the anomalies can be viewed in Figure 4.

4.0 LIMITATIONS

The client-selected areas contained obstructions including metallic containers, scrap piles, parked vehicles, structures, and overgrown bushes. These objects prevented a thorough investigation of the spaces beneath and immediately adjacent to them.

Due to surface conditions and subsurface content, the GPR signal penetration was estimated at less than 3 ft in the majority of the survey area. This made it difficult to identify the likely cause of EM anomalies. This penetration was reduced in areas of concrete cover.

The TW-6 survey was kept up to 6 feet away from above-ground objects containing metals depending on the sizes, shapes and positions of the metal objects. The TW-6 survey was not effective in areas with reinforced concrete.

The EM-31 survey was kept approximately 10 feet away from above-ground objects.

Due to the dielectric properties of the subsurface, clay, plastic polymer, and fiberglass utilities may not have been detected.

All field services were conducted in compliance with the industry standard of care guidelines found in ASCE 38-02 (Level B).

5.0 WARRANTIES

The field observations and measurements reported herein are considered sufficient in detail and scope for this project. Enviroprobe Service, Inc. warrants that the findings and conclusions contained herein have been promulgated in accordance with generally accepted environmental engineering methods. There is a possibility that conditions may exist which could not be identified within the scope of this project and were not apparent during the site activities performed for this project.

Enviroprobe represents that the services were performed in a manner consistent with that level of care and skill ordinarily exercised by environmental consultants under similar circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.
Enviroprobe Service, Inc. believes that the information provided in this report is reliable. However, Enviroprobe cannot warrant or guarantee that the information provided by others is complete or accurate. No other warranties or guarantees are implied or expressed.

GPR data is subject to signal anomalies and operator interpretation. The GPR data is intended to provide the locations of areas of concern requiring additional investigation or the approximate location of underground structures and utilities. Great care must be utilized when excavating and/or drilling around underground structures and utilities since GPR data can only be used for estimation purposes and GPR data is subject to misinterpretation. Enviroprobe cannot guarantee that utilities, post-tension cables, and/or rebar will not be incurred during drilling, cutting, coring, or excavating activities.

This report was prepared pursuant to the contract Enviroprobe has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Enviroprobe and its client and serves as the basis upon which this report was prepared. Because of the importance of the communication between Enviroprobe and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Enviroprobe.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Enviroprobe contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.
This site plan was produced from data positioned by differential GPS measurements collected in the field. Due to the errors normally present in DGPS data, this document is not intended or represented to be of survey precision. Caution should be used in all field measurements based on this site plan.

As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity of any anomalies indicated in this document. The absence of detected signatures does not preclude the possibility that targets exist. The geophysical data and results presented in this site plan are based upon the application of scientific principles and professional judgements to certain facts with resultant subjective interpretations. Professional judgements expressed herein are based on the facts currently available within the limits of the existing data, scope of work, budget, and schedule.

This document was prepared pursuant to the contract Enviroprobe has with the client. That contractual relationship included an exchange of information about the subject site that was unique and between Enviroprobe and the client, and serves as the basis upon which this document was prepared. Because of the importance of the communication between Enviroprobe and it’s client, reliance or any use of this document by anyone other than the client, for whom it was prepared, is prohibited and therefore not foreseeable to Enviroprobe.

Reliance or use by any such third party without explicit authorization in the document does not make said third party a third party beneficiary to Enviroprobe’s contract with the client. Any such unauthorized reliance on or use of this document, including any of its information or conclusions, will be at the third party’s risk.

For the same reasons, no warranties or representations, expressed or implied in this document, are made to any such third party.
This site plan was produced from data positioned by differential GPS measurements collected in the field. Due to the errors normally present in DGPS data, this document is not intended or represented to be of survey precision. Caution should be used in all field measurements based on this site plan.

As with any geophysical method, it must be assumed that caution be used in any excavation or intrusive testing in proximity of any anomalies indicated in this document. The absence of detected signatures does preclude the possibility that targets exist. The geological data and made present to this site plan are based upon the application of scientific principles and professional judgement to certain facts with inherent subjective interpretations. Professional judgement to expose subsurface features are based on the data currently available within the limits of the existing data, scope of work, budget, and schedule.

This document was prepared pursuant to the contract Enviroprobe has with the client. That contractual relationship included an exchange of information about the subject site that was unique and between Enviroprobe and the client, and serves a crucial role within which this document was prepared. Because of the importance of the communication between Enviroprobe and its client, reliance or any use of this document by anyone other than the client, for whom it was prepared, is prohibited and the client’s contract terms must be satisfied.

The entire field of geophysical science is based on the interpretation and conclusions derived from the data presented herein. The client, therefore, should rely on the qualifications of Enviroprobe and not the interpretations. The content of this document will be subject to the terms of the engagement as signed by both parties. The client is the sole party authorized to reproduce, distribute or sell this report without the express written consent of Enviroprobe. Enviroprobe, its employees, and its subcontractors may not be held responsible for the use of any information contained herein. Any unauthorized use of this report will be at the sole risk of any third party.

For the same reasons, no warranties or representations, expressed or implied in this document, are made to any such third party.
This site plan was produced from data positioned by differential GPS measurements collected in the field. Due to the errors normally present in DGPS data, this document is not intended or represented to be of survey precision. Caution should be used in all field measurements based on this site plan.

As with any geophysical method, it must be assumed that caution be continued as assessment is made of any anomalies indicated in this document. The absence of detected anomalies does not preclude the possibility that targets exist. The geophysical data and the results presented in this site plan are based upon the application of scientific principles and professional judgment to certain facts with inherent subjective interpretations. Professional judgments in express and present are based on the best currently available within the limits of the reliable data, scope of work, budget, and schedule.

This document was prepared pursuant to the contract Enviroprobe has with the client. That contractual relationship included an exchange of information about the subject site that was unique and between Enviroprobe and the client, and serves as a basis upon which this document was prepared. Because of the importance of the communication between Enviroprobe and its client, reliance on any use of this document by anyone other than the client, for whom it was prepared, is prohibited and the confidentiality or communications is preserved.

Reliance or use by any third party without explicit authorization in this document does not make said third party a third party beneficiary to Enviroprobe's contract with the client. Any such unauthorized reliance or use of this document, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this document, are made to any such third party.
This site plan was produced from data positioned by differential GPS measurements collected in the field. Due to the errors normally present in DGPS data, this document is not intended or represented to be of survey precision. Caution should be used in all field measurements based on this site plan.

As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity of any anomalies indicated in this document. The absence of detected signatures does not preclude the possibility that targets exist. The geophysical data and results presented in this site plan are based upon the application of scientific principles and professional judgements to certain facts with resultant subjective interpretations. Professional judgements expressed herein are based on the facts currently available within the limits of the existing data, scope of work, budget, and schedule.

This document was prepared pursuant to the contract Enviroprobe has with the client. That contractual relationship included an exchange of information about the subject site that was unique and between Enviroprobe and the client, and serves as the basis upon which this document was prepared. Because of the importance of the communication between Enviroprobe and its client, reliance or any use of this document by anyone other than the client, for whom it was prepared, is prohibited and therefore not foreseeable to Enviroprobe.

Reliance or use by any such third party without explicit authorization in the document does not make said third party a third party beneficiary to Enviroprobe's contract with the client. Any such unauthorized reliance on or use of this document, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this document, are made to any such third party.