ARCHITECTURAL: Kaplan Gaunt DeSantis Architects, LLC
241 Maple Avenue, Red Bank, NJ 07701
(732) 842-8021

MECHANICAL/ELECTRICAL/PLUMBING/FIRE SUPPRESSION: French and Parrello Associates
1800 Route 34, Suite 101, Wall, NJ 07719
(732) 312-9800

STRUCTURAL: French and Parrello Associates
1800 Route 34, Suite 101, Wall, NJ 07719
(732) 312-9800

ACOUSTICAL: Lewis S. Goodfriend & Associates
415 Route 24, Chester, NJ 07930
(908) 955-7763

February 1, 2018

COMM. NO. 2010-18

VOLUME TWO
TABLE OF CONTENTS

Bidding Procedures, Requirements, Contract Documents and Conditions will be by Owner.

VOLUME 2 - of 2

Division 21 - Fire Suppression
- 21 0517 Sleeves and Sleeve Seals for Fire-Suppression Piping
- 21 0518 Escutcheons for Fire-Suppression Piping
- 21 0548 Vibration and Seismic Controls for Fire-Suppression Piping and Equipment
- 21 0553 Identification for Fire Suppression Piping and Equipment
- 21 1200 Fire-Suppression Standpipes
- 21 1313 Wet-Pipe Sprinkler Systems

Division 22 – Plumbing
- 22 0513 Common Motor Requirements for Plumbing Equipment
- 22 0516 Expansion Fittings and Loops for Plumbing Piping
- 22 0517 Sleeves and Sleeve Seals for Plumbing Piping
- 22 0518 Escutcheons for Plumbing Piping
- 22 0523 General-Duty Values for Plumbing Piping
- 22 0529 Hangers and Supports for Plumbing Piping and Equipment
- 22 0553 Identification for Plumbing Piping and Equipment
- 22 0719 Plumbing Piping Insulation
- 22 1116 Domestic Water Piping
- 22 1119 Domestic Water Piping Specialties
- 22 1123 Domestic Water Pumps
- 22 1123.13 Packaged Booster Pumps
- 22 1316 Sanitary Waste and Vent Piping
- 22 1319 Sanitary Waste Piping Specialties
- 22 1413 Facility Storm Drainage Piping
- 22 1423 Storm Drainage Piping Specialties
- 22 1429 Sump Pumps
- 22 1513 General-Service Compressed -Air Piping
- 22 1519 General-Service Packaged Air Compressors and Receivers
- 22 3400 Fuel-Fired, Domestic-Water Heaters
- 22 4213.13 Commercial Water Closets
- 22 4213.16 Commercial Urinals
- 22 4216.13 Commercial Lavatories
- 22 4216.16 Commercial Sinks
- 22 4223 Commercial Showers
- 22 4500 Emergency Plumbing Fixtures
- 22 4716 Pressure Water Coolers
VOLUME TWO (continued)

Division 23 - Heating Ventilating and Air Conditioning
23 0513 Common Motor Requirements for HVAC Equipment
23 0517 Sleeves and Sleeve Seals for HVAC Piping
23 0518 Escutcheons for HVAC Piping
23 0529 Hangers and Supports for HVAC Piping and Equipment
23 0548 Vibration and Seismic Controls for HVAC
23 0549 Vibration Insulation for Noise Control
23 0553 Identification for HVAC Piping and Equipment
23 0593 Testing, Adjusting, and Balancing for HVAC
23 0713 Duct Insulation
23 0714 Fire Barrier Duct and Plenum Wrap
23 0719 HVAC Piping Insulation
23 0900 Instrumentation and Control for HVAC
23 0993 Sequence of Operations for HVAC Controls
23 1123 Facility Natural-Gas Piping
23 2113 Hydronic Piping and Specialties
23 2300 Refrigerant Piping
23 3113 Metal Ducts
23 3300 Air Duct Accessories
23 3423 HVAC Power Ventilators
23 3713 Diffusers, Registers and Grilles
23 5100 Breechings, Chimneys and Stacks
23 7200 Air-to-Air Energy Recovery Equipment – Plate Type
23 7414 Packaged, Outdoor, Rooftop and Energy Recovery Units
23 7423.16 Packaged, Indirect-Fired, Outdoor, Heating-Only Makeup-Air Units
23 8129 Variable Refrigerant Volume and Split Systems
23 8238 Cabinet Heaters

Division 26 – Electrical
26 0500 Common Work Results for Electrical
26 0519 Low Voltage Electrical Power Conductors and Cables
26 0526 Grounding and Bonding for Electrical Systems
26 0529 Hangers and Supports for Electrical Systems
26 0533 Raceways and Boxes for Electrical Systems
26 0543 Underground Ducts and Raceways for Electrical Systems
26 0544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
26 0548.16 Seismic Controls for Electrical Systems
26 0553 Identification for Electrical Systems
26 0923 Lighting Control Devices
26 2213 Low Voltage Distribution Transformers
26 2413 Switchboards
26 2416 Panelboards
26 2726 Wiring Devices
26 2813 Fuses
26 2816 Enclosed Switches and Circuit Breakers
26 5119 LED Interior Lighting
26 5219 Emergency and Exit Lighting

Division 28 Electronic Safety and Security
28 3111 Digital, Addressable Fire-Alarm System

END OF TABLE OF CONTENTS
SECTION 21 0517
SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by the following:
2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
3. Or engineer approved equal
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.
6. Or engineer approved equal

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Presealed Systems.
2. Or engineer approved equal

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."
3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6nd Larger: Cast-iron wall sleeves with sleeve-seal system or Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system or Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system or Galvanized-steel wall sleeves with sleeve-seal system.

1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:

b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

5. Interior Partitions:

END OF SECTION 21 0517
SECTION 21 0518
ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 h. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 i. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 21 0518
SECTION 21 0548
VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
1. Isolation pads.
2. Isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Restraining braces.

1.3 DEFINITIONS
C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic-Restraint Loading:
1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 a. Component Importance Factor: 1.5.
 c. Component Amplification Factor: 4.0.
3. Design Spectral Response Acceleration at Short Periods (0.2 Second): .365
4. Design Spectral Response Acceleration at 1-Second Period: .071

1.5 SUBMITTALS
A. Product Data: For the following:
1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators, seismic restraints, and for designing vibration isolation bases.
2. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Preapproval and Evaluation Documentation: an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

C. Welding certificates.

D. Qualification Data: For professional engineer.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC and NFPA 13 unless requirements in this Section are more stringent.

C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
1. Amber/Booth Company, Inc.
2. California Dynamics Corporation.
3. Cooper B-Line, Inc.; a division of Cooper Industries.
4. Hilti, Inc.
7. Mason Industries.
8. TOLCO Incorporated; a brand of NIBCO INC.
9. Unistrut; Tyco International, Ltd.
10. Or engineer approved equal

B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod.

E. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

F. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.

G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

H. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

I. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 2. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

B. Piping Restraints:
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction providing required submittals for component.

E. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

F. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

G. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
H. Drilled-in Anchors:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 21 Section "Water-Based Fire-Suppression Systems" for piping flexible connections.

END OF SECTION 21 0548
SECTION 21 0553
IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.
D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
 d. Champion America.
 e. Craftmark.
f. emedco.
g. Kolbi Pipe Marker Co.
h. LEM Products Inc.
i. Marking Services Inc.
j. Seton Identification Products.
k. Or engineer approved equal

2. Material and Thickness: Brass, 0.032-inch-thick, with predrilled holes for attachment hardware.
4. Background Color: Black.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark.
6. emedco.
7. LEM Products Inc.
8. Marking Services Inc.
10. Seton Identification Products.
11. Stranco, Inc.
12. Or engineer approved equal

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8-inch-thick, with predrilled holes for attachment hardware.

C. Letter Color: Red.

D. Background Color: Black.
E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. ActionCraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.
4. Carlton Industries, LP.
5. Champion America.
6. Craftmark.
7. emedco.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.
11. Seton Identification Products.
12. Or engineer approved equal

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

F. Pipe-Label Colors:

1. Background Color: Safety Red.
2.4 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. ActionCraft Products, Inc.
2. Brady Corporation.
4. Carlton Industries, LP.
5. Champion America.
6. Craftmark.
7. emedco.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.
11. Seton Identification Products.
12. Or engineer approved equal

B. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch, Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark.
6. emedco.
8. LEM Products Inc.
9. Marking Services Inc.
10. Seton Identification Products.
11. Or engineer approved equal

B. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.
3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:
 b. Wet-Pipe Sprinkler System: 2 inches, round.
 c. Dry-Pipe Sprinkler System: 2 inches, round.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 21 0553
SECTION 21 1200
FIRE-SUPPRESSION STANDPIPES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Pipes, fittings, and specialties.
2. Fire-protection specialty valves.
3. Hose connections.
6. Control panels.
7. Pressure gages.
B. Related Requirements:
1. Section 21 1313 "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.

1.3 DEFINITIONS
A. Standard-Pressure Standpipe Piping: Fire-suppression standpipe piping designed to operate at working pressure 175 psig maximum.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For fire-suppression standpipes.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.
C. Delegated-Design Submittal: For standpipe systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Fire-suppression standpipes, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Domestic water piping.
2. Compressed-air piping.

B. Qualification Data: For Installer and professional engineer.

C. Approved Standpipe Drawings: Working plans, prepared according to NFPA 14, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Fire-hydrant flow test report.

G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-suppression standpipes specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing fire-suppression standpipes and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Fire-suppression standpipe equipment, specialties, accessories, installation, and testing shall comply with NFPA 14.
1.8 PROJECT CONDITIONS

A. Interruption of Existing Fire-Suppression Standpipe Service: Do not interrupt fire-suppression standpipe service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary fire-suppression standpipe service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of fire-suppression standpipe service.
2. Do not proceed with interruption of fire-suppression standpipe service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTIONS

A. Automatic Wet-Type, Class I Standpipe System: Includes NPS 2-1/2 hose connections. Has open water-supply valve with pressure maintained and is capable of supplying water demand.

2.2 PERFORMANCE REQUIREMENTS

A. Standard-Pressure, Fire-Suppression Standpipe System Component: Listed for 175-psig minimum working pressure.
B. Fire-suppression standpipe design shall be approved by authorities having jurisdiction.
C. Seismic Performance: Fire-suppression standpipes shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

2.3 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials and for joining methods for specific services, service locations, and pipe sizes.

2.4 BLACK STEEL PIPE AND ASSOCIATED FITTINGS

A. Schedule 40: ASTM A 53/A 53M, Type E, Grade B; with factory- or field-formed ends to accommodate joining method.
B. Uncoated, Steel Couplings: ASTM A 865/A 865M, threaded.
D. Malleable- or Ductile-Iron Unions: UL 860.
F. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
H. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements provide products by one of the following:

 a. Anvil International, Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.

2. Pressure Rating: 175 psig minimum.

3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.5 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick ASME B16.21, nonmetallic and asbestos free.

1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.

2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.6 SPECIALTY VALVES

A. General Requirements:

2. Pressure Rating:

 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.

3. Body Material: Cast or ductile iron.

4. Size: Same as connected piping.

5. End Connections: Flanged or grooved.

2.7 HOSE CONNECTIONS

A. Nonadjustable-Valve Hose Connections:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Guardian Fire Equipment, Inc.
c. Potter Roemer.

2. Standard: UL 668 hose valve for connecting fire hose.
3. Pressure Rating: 300 psig minimum.
4. Material: Brass or bronze.
5. Size: NPS 2-1/2, as indicated.
6. Inlet: Female pipe threads.
7. Outlet: Male hose threads with lugged cap, gasket, and chain. Include hose valve threads according to NFPA 1963 and matching local fire-department threads.
8. Pattern: Angle or gate.
9. Finish: Rough brass or bronze.

B. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. System Sensor; a Honeywell company.
 c. Viking Corporation.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

C. Valve Supervisory Switches:

1. Manufacturers: Provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Potter Electric Signal Company.
 c. System Sensor; a Honeywell company.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.8 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMETEK; U.S. Gauge Division.
2. Ashcroft Inc.

B. Standard: UL 393.
C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
D. Pressure Gage Range: Zero to 250 psig minimum
E. Water System Piping Gage: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION
A. Perform fire-hydrant flow test according to NFPA 14 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
B. Report test results promptly and in writing.

3.2 EXAMINATION
A. Examine roughing-in for hose connections and stations to verify actual locations of piping connections before installation.
B. Examine walls and partitions for suitable thickness, fire- and smoke-rated construction, framing for hose-station cabinets, and other conditions where hose connections and stations are to be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 PIPING INSTALLATION
A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
B. Piping Standard: Comply with requirements in NFPA 14 for installation of fire-suppression standpipe piping.
C. Install seismic restraints on piping. Comply with requirements in NFPA 13 for seismic-restraint device materials and installation.
D. Install listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
E. Install drain valves on standpipes. Extend drain piping to outside of building.
F. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or outside building.
G. Install alarm devices in piping systems.
H. Install hangers and supports for standpipe system piping according to NFPA 14. Comply with requirements in NFPA 13 for hanger materials.

I. Install pressure gages on riser or feed main and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

J. Drain dry-type standpipe system piping.

K. Fill wet-type standpipe system piping with water.

L. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 21 0517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

M. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 0517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

N. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 21 0518 "Escutcheons for Fire-Suppression Piping."

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes, and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

K. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 14 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

3.6 HOSE-CONNECTION INSTALLATION

A. Install wall-mounted-type hose connections in cabinets. Include pipe escutcheons, with finish matching valves, inside cabinet where water-supply piping penetrates cabinet. Install valves at angle required for connection of fire hose.

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 14.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
4. Energize circuits to electrical equipment and devices.
5. Start and run air compressors.
6. Coordinate with fire-alarm tests. Operate as required.
7. Coordinate with fire-pump tests. Operate as required.
8. Verify that equipment hose threads are same as local fire-department equipment.

C. Fire-suppression standpipe system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.10 PIPING SCHEDULE

A. Standard-pressure, wet-type fire-suppression standpipe piping, NPS 4 and smaller shall be one of the following:
 1. Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 40, black-steel pipe with cut or roll grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

B. Standard-pressure, wet-type fire-suppression standpipe piping, NPS 5 to NPS 8, shall be one of the following:
 1. Schedule 40, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Schedule 40, black-steel pipe with cut or roll grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

END OF SECTION 21 1200
SECTION 21 1313
WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Fire-protection valves.
 6. Control panels.
 7. Pressure gages.

1.3 DEFINITIONS
A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS
A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS
A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 a. Contractor shall arrange and pay all fees associated with a fire hydrant flow test to be used in the design of the fire sprinkler system. Provide copy of test to Architect.
C. Sprinkler system design shall be approved by authorities having jurisdiction.
1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.

2. Sprinkler Occupancy Hazard Classifications:
 a. Building Service Areas: Ordinary Hazard, Group 1.
 b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 c. General Storage Areas: Ordinary Hazard, Group 1.
 d. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 e. Offices, Rehearsal Spaces, Conference Rooms, and Public Areas: Light Hazard.
 f. Metal Shop, Wood Shop, and other shop areas: Ordinary Hazard Group 2.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
 e. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. area.

4. Maximum Protection Area per Sprinkler: Per UL listing.

5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm (6.3 L/s) for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm (15.75 L/s) for 60 to 90 minutes.
 c. Extra-Hazard Occupancies: 500 GPM for 90 to 120 minutes.

D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and SCE/SEI 7.

E. Metal Shop, Wood Shop, and Other Shop Areas: Ordinary Hazard Group 2

F. Paint Deck, Paint Booth, and Paint Storage & Mixing: Extra Hazard Group 2

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
2. Compressed air piping.
3. HVAC hydronic piping.
4. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

E. Qualification Data: For qualified Installer and professional engineer.

F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

G. Welding certificates.

H. Fire-hydrant flow test report.

I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

J. Field quality-control reports.

K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 1. NFPA 13, "Installation of Sprinkler Systems."
 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
1.9 **EXTRA MATERIALS**

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 **PIPING MATERIALS**

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 **STEEL PIPE AND FITTINGS**

A. Standard Weight, Galvanized- and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

B. Schedule 10, Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.

F. Malleable- or Ductile-Iron Unions: UL 860.

H. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

J. Grooved-Joint, Steel-Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Anvil International, Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.

2. Pressure Rating: 175 psig minimum.
4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:
 1. Valves shall be UL listed or FM approved.

B. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Anvil International, Inc.
 b. Victaulic Company.
 c. Or engineer approved equal
 2. Standard: UL 1091 except with ball instead of disc.
 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
 5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fivalco Inc.
 b. Global Safety Products, Inc.
 c. Milwaukee Valve Company.
 d. Or engineer approved equal
2. Standard: UL 1091.
5. End Connections: Threaded.

D. Iron Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Pratt, Henry Company.
 f. Shurjoint Piping Products.
 g. Or engineer approved equal

2. Standard: UL 1091.
4. Body Material: Cast or ductile iron.
5. Style: Lug or wafer.

E. Check Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Clow Valve Company; a division of McWane, Inc.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Crane Co.; Crane Valve Group; Jenkins Valves.
 e. Crane Co.; Crane Valve Group; Stockham Division.
 f. Kennedy Valve; a division of McWane, Inc.
 g. Metraflex, Inc.
 h. Milwaukee Valve Company.
 i. Mueller Co.; Water Products Division.
 j. NIBCO INC.
 k. Potter Roemer.
 l. Reliable Automatic Sprinkler Co., Inc.
 m. Tyco Fire & Building Products LP.
 n. United Brass Works, Inc.
 o. Venus Fire Protection Ltd.
 p. Victaulic Company.
 q. Viking Corporation.
 r. Watts Water Technologies, Inc.
 s. Or engineer approved equal

4. Type: Swing check.
5. Body Material: Cast iron.
6. End Connections: Flanged or grooved.
F. Iron OS&Y Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
b. American Valve, Inc.
c. Clow Valve Company; a division of McWane, Inc.
d. Crane Co.; Crane Valve Group; Crane Valves.
e. Crane Co.; Crane Valve Group; Jenkins Valves.
f. Crane Co.; Crane Valve Group; Stockham Division.
g. Hammond Valve.
h. Milwaukee Valve Company.
i. Mueller Co.; Water Products Division.
j. NIBCO INC.
k. Shurjoint Piping Products.
l. Tyco Fire & Building Products LP.
m. United Brass Works, Inc.
n. Watts Water Technologies, Inc.
o. Or engineer approved equal

4. Body Material: Cast or ductile iron.
5. End Connections: Flanged or grooved.

G. Indicating-Type Butterfly Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Anvil International, Inc.
b. Fivalco Inc.
c. Global Safety Products, Inc.
d. Kennedy Valve; a division of McWane, Inc.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Shurjoint Piping Products.
h. Tyco Fire & Building Products LP.
i. Victaulic Company.
j. Or engineer approved equal

2. Standard: UL 1091.
4. Valves NPS 2 and Smaller:

a. Valve Type: Ball or butterfly.
b. Body Material: Bronze.
c. End Connections: Threaded.

5. Valves NPS 2-1/2 and Larger:

a. Valve Type: Butterfly.
b. Body Material: Cast or ductile iron.
c. End Connections: Flanged, grooved, or wafer.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:
 2. Pressure Rating: 175 psig minimum.

B. Angle Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fire Protection Products, Inc.
 b. United Brass Works, Inc.
 c. Or engineer approved equal

C. Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Affiliated Distributors.
 b. Anvil International, Inc.
 c. Barnett.
 d. Conbraco Industries, Inc.; Apollo Valves.
 e. Fire-End & Croker Corporation.
 f. Fire Protection Products, Inc.
 g. Flowserve.
 h. FNW.
 i. Jomar International, Ltd.
 j. Kennedy Valve; a division of McWane, Inc.
 k. Kitz Corporation.
 l. Legend Valve.
 m. Metso Automation USA Inc.
 n. Milwaukee Valve Company.
 o. NIBCO INC.
 p. Potter Roemer.
 q. Red-White Valve Corporation.
 r. Southern Manufacturing Group.
 s. Stewart, M. A. and Sons Ltd.
 t. Tyco Fire & Building Products LP.
 u. Victaulic Company.
 v. Watts Water Technologies, Inc.
 w. Or engineer approved equal

D. Globe Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
a. Fire Protection Products, Inc.
b. United Brass Works, Inc.
c. Or engineer approved equal

E. Plug Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Southern Manufacturing Group.
 b. Or engineer approved equal

2.6 SPECIALTY VALVES

A. General Requirements:

2. Pressure Rating:
 a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
3. Body Material: Cast or ductile iron.
4. Size: Same as connected piping.
5. End Connections: Flanged or grooved.

B. Alarm Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 d. Tyco Fire & Building Products LP.
 e. Venus Fire Protection Ltd.
 f. Victaulic Company.
 g. Viking Corporation.
 h. Or engineer approved equal
3. Design: For horizontal or vertical installation.
4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

C. Automatic (Ball Drip) Drain Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. AFAC Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
c. Tyco Fire & Building Products LP.
d. Or engineer approved equal

4. Type: Automatic draining, ball check.
5. Size: NPS ¾.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. National Fittings, Inc.
 c. Shurjoint Piping Products.
 d. Tyco Fire & Building Products LP.
 e. Victaulic Company.
 f. Or engineer approved equal

5. Type: Mechanical-T and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Reliable Automatic Sprinkler Co., Inc.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Or engineer approved equal

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

C. Branch Line Testers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Fire-End & Croker Corporation.
 c. Potter Roemer.
 d. Or engineer approved equal

2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector’s Test Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing Inc.
 b. Triple R Specialty.
 c. Tyco Fire & Building Products LP.
 d. Victaulic Company.
 e. Viking Corporation.
 f. Or engineer approved equal
 4. Body Material: Cast- or ductile-iron housing with sight glass.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.
 c. Merit Manufacturing; a division of Anvil International, Inc.
 d. Or engineer approved equal
 5. Size: Same as connected piping.
 7. Inlet and Outlet: Threaded.

F. Flexible, Sprinkler Hose Fittings:
2.8 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFAC Inc.
3. Reliable Automatic Sprinkler Co., Inc.
4. Tyco Fire & Building Products LP.
5. Venus Fire Protection Ltd.
8. Or engineer approved equal

B. General Requirements:

3. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.

C. Automatic Sprinklers with Heat-Responsive Element:

1. Nonresidential Applications: UL 199.
2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:

1. Chrome plated.
2. Bronze.
3. Painted.

E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch vertical adjustment.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
F. Sprinkler Guards:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 d. Viking Corporation.
 e. Or engineer approved equal

2. Standard: UL 199.
3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Notifier; a Honeywell company.
 c. Potter Electric Signal Company.
 d. Or engineer approved equal

3. Type: Vibrating, metal alarm bell.
5. Finish: Red-enamel factory finish, suitable for outdoor use.

C. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ADT Security Services, Inc.
 b. McDonnell & Miller; ITT Industries.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Viking Corporation.
 f. Watts Industries (Canada) Inc.
 g. Or engineer approved equal

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

D. Pressure Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFAC Inc.
 b. Barksdale, Inc.
 c. Detroit Switch, Inc.
 d. Potter Electric Signal Company.
 e. System Sensor; a Honeywell company.
 f. Tyco Fire & Building Products LP.
 g. United Electric Controls Co.
 h. Viking Corporation.
 i. Or engineer approved equal

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell company.
 b. Kennedy Valve; a division of McWane, Inc.
 c. Potter Electric Signal Company.
 d. System Sensor; a Honeywell company.
 e. Or engineer approved equal

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.

2.10 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, the following:

1. AMETEK; U.S. Gauge Division.
2. Ashcroft, Inc.
4. WIKA Instrument Corporation.
5. Or engineer approved equal

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0 to 250 psig minimum.
E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

K. Install alarm devices in piping systems.

L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft
metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

N. Fill sprinkler system piping with water.
O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing.
P. Install sleeves for piping penetrations of walls, ceilings, and floors.
Q. Install sleeve seals for piping penetrations of concrete walls and slabs.
R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

I. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
J. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

K. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.6 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.10 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Standard-weight, black-steel pipe with cut- or roll- grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 4. Standard-weight, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4 shall be one of the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
 3. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 4. Standard-weight, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
6. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
7. Schedule 10, black-steel pipe with plain ends; welding fittings; and welded joints.

E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
6. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
7. Schedule 10, black-steel pipe with plain ends; welding fittings; and welded joints.

3.11 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Pendent, recessed, flush, and concealed sprinklers as indicated.
4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers as indicated.
5. Special Applications: quick-response sprinklers where indicated at all locations.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
4. Residential Sprinklers: Dull chrome.
5. Upright Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 21 1313
SECTION 22 0513
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose,
 horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to
 600 V and installed at equipment manufacturer's factory or shipped separately by equipment
 manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the
 following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above
 sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected
 loads at designated speeds, at installed altitude and environment, with indicated operating
 sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.
D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
E. Multispeed Motors: Separate winding for each speed.
F. Rotor: Random-wound, squirrel cage.
G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
H. Temperature Rise: Match insulation rating.
I. Insulation: Class F.
J. Code Letter Designation:
 1. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 22 0513
SECTION 22 0516
EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Expansion-compensator packless expansion joints.
 2. Flexible-hose packless expansion joints.
 3. Pipe loops and swing connections.
 4. Alignment guides and anchors.

1.3 PERFORMANCE REQUIREMENTS
A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.5 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Product Certificates: For each type of expansion joint, from manufacturer.
1.6 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For expansion joints to include in maintenance manuals.

1.7 QUALITY ASSURANCE
 A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 PACKLESS EXPANSION JOINTS
 A. Metal, Expansion-Compensator Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Metraflex or engineer approved equal.
 b. Or engineer approved equal
 2. Minimum Pressure Rating: 150 psig unless otherwise indicated.
 3. Configuration for Copper Tubing: Two-ply, phosphor-bronze bellows with copper pipe ends.
 a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint or threaded.
 b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Threaded.
 4. Configuration for Steel Piping: Two-ply, stainless-steel bellows; steel-pipe end connections; and carbon-steel shroud.
 a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 b. End Connections for Steel Pipe NPS 2-1/2 to NPS 4: Flanged or Weld
 B. Flexible-Hose Packless Expansion Joints:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Metraflex Company (The).
 b. Or engineer approved equal.
 2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.
 3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
 4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.
a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.

5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded end connections.
 a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 300 psig at 70 deg F and 225 psig at 450 deg F ratings.

2.2 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Metraflex Company (The).
 b. Or engineer approved equal.
 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

B. Anchor Materials:
 1. Steel Shapes and Plates: ASTM A 36/A 36M.
 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

A. Install expansion joints of sizes matching sizes of piping in which they are installed.

B. Install packed-type expansion joints with packing suitable for fluid service.

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Connect risers and branch connections to mains with at least four pipe fittings including tee in main.
C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.

D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

B. Install one guide on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.

C. Attach guides to pipe and secure guides to building structure.

D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.

E. Anchor Attachments:

2. Anchor Attachment to Galvanized-Steel Pipe: Attach with pipe hangers. Use MSS SP-69, Type 42, riser clamp welded to anchor.

3. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.

F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.

1. Anchor Attachment to Steel Structural Members: Attach by welding.

2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.

G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 22 0516
SECTION 22 0517
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
3. Or engineer approved equal

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.
 6. Or engineer approved equal

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Presealed Systems.
 2. Or engineer approved equal

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 “Joint Sealants.”

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 “Penetration Firestopping.”

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 6200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Using grout, seal the space around outside of stack-sleeve fittings.
3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves or Galvanized-steel wall sleeves.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves, Galvanized-steel wall sleeves or Galvanized-steel-pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system, Galvanized-steel wall sleeves with sleeve-seal system, Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system, Galvanized-steel wall sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system, Galvanized-steel wall sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system, Galvanized-steel wall sleeves with sleeve-seal system or Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves Stack-sleeve fittings or Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves or Stack-sleeve fittings.

5. Interior Partitions:

END OF SECTION 22 0517
SECTION 22 0518
ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 22 0518
SECTION 22 0523

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.
 3. Iron ball valves.
 4. Bronze swing check valves.
 5. Iron swing check valves.
 8. Lubricated plug valves.

B. Related Sections:
 1. Section 22 0553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 2. Section 22 1116 "Domestic Water Piping" for valves applicable only to this piping.
 3. Section 22 1319 "Sanitary Waste Piping Specialties" for valves applicable only to this piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene copolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

D. NRS: Nonrising stem.

E. OS&Y: Outside screw and yoke.

F. RS: Rising stem.

G. SWP: Steam working pressure.
1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE
A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.
C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Block check valves in either closed or open position.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES
A. Refer to valve schedule articles for applications of valves.
B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
C. Valve Sizes: Same as upstream piping unless otherwise indicated.
D. Valve Actuator Types:
 1. Handwheel: For valves other than quarter-turn types.
 2. Handlever: For quarter-turn valves NPS 6 and smaller.
E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:

1. Gate Valves: With rising stem.
2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:

1. Flanged: With flanges according to ASME B16.1 for iron valves.
2. Grooved: With grooves according to AWWA C606.
4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

A. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Red-White Valve Corporation.
 g. Or engineer approved equal

2. Description:

 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.3 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Crane Co.; Crane Valve Group; Crane Valves.
c. Hammond Valve.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Red-White Valve Corporation.
g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
h. Or engineer approved equal

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Bronze.
f. Ends: Threaded.
g. Seats: PTFE or TFE.
h. Stem: Bronze.
i. Ball: Chrome-plated brass.
j. Port: Full.

2.4 IRON BALL VALVES

A. Class 125, Iron Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Kitz Corporation.
 d. Sure Flow Equipment Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. Or engineer approved equal

2. Description:

 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Ends: Flanged.
 f. Seats: PTFE or TFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel.
 i. Port: Full.

2.5 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Description:

a. Standard: MSS SP-80, Type 3.

b. CWP Rating: 200 psig.

c. Ends: Threaded.

d. Disc: Bronze.

2.6 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.

b. Crane Co.; Crane Valve Group; Jenkins Valves.

c. Hammond Valve.

d. Milwaukee Valve Company.

e. NIBCO INC.

f. Red-White Valve Corporation.

g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

h. Or engineer approved equal

2. Description:

a. Standard: MSS SP-71, Type I.

b. CWP Rating: 200 psig.

c. Body Design: Clear or full waterway.

d. Body Material: ASTM A 126, gray iron with bolted bonnet.

2.7 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Crane Co.; Crane Valve Group; Crane Valves.

b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Hammond Valve.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Powell Valves.
g. Red-White Valve Corporation.
h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
i. Or engineer approved equal

2. Description:

a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron.

2.8 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Powell Valves.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Or engineer approved equal

2. Description:

a. Standard: MSS SP-70, Type 1.
b. CWP Rating: 200 psig.
c. Body Material: ASTM A 126, gray iron with bolted bonnet.
d. Ends: Flanged.
e. Trim: Bronze.
f. Disc: Solid wedge.
g. Packing and Gasket: Asbestos free.

2.9 LUBRICATED PLUG VALVES

A. Class 125, Regular-Gland, Lubricated Plug Valves with Threaded Ends:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
Two River Theater 22 0523 - 7 GENERAL-DUTY VALVES FOR PLUMBING PIPING

2. Description:
 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Pattern: Regular or short.
 e. Plug: Cast iron or bronze with sealant groove.
 f. Or engineer approved equal

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball, or gate valves.
2. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Ball Valves: Two piece, full port, brass or bronze with brass bronze trim.
3. Bronze Swing Check Valves: Class 125, disc.
4. Bronze Gate Valves: Class 125.

B. Pipe NPS 2-1/2 and Larger:

1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Iron Ball Valves: Class 150.
3. Iron Swing Check Valves: Class 125, metal seats.
4. Iron Gate Valves: Class 125, NRS.

END OF SECTION 22 0523
SECTION 22 0529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Thermal-hanger shield inserts.
4. Fastener systems.
5. Pipe stands.
6. Pipe positioning systems.
7. Equipment supports.

B. Related Sections:

1. Section 05 5000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.
1.5 **ACTION SUBMITTALS**

A. **Product Data:** For each type of product indicated.

B. **Shop Drawings:** Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Pipe stands.
4. Equipment supports.

1.6 **INFORMATIONAL SUBMITTALS**

A. Welding certificates.

1.7 **QUALITY ASSURANCE**

A. **Structural Steel Welding Qualifications:** Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. **Pipe Welding Qualifications:** Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 **METAL PIPE HANGERS AND SUPPORTS**

A. **Carbon-Steel Pipe Hangers and Supports:**

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. **Copper Pipe Hangers:**

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 **TRAPEZE PIPE HANGERS**

A. **Description:** MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.3 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Carpenter & Paterson, Inc.
3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.
10. Or engineer approved equal

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. High-Type, Single-Pipe Stand:

1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless steel, roller-type pipe support.
C. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

D. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.6 PIPE POSITIONING SYSTEMS
 A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS
 A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS
 A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
 B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION
 A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
 B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 07 7200 "Roof Accessories" for curbs.

F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use thermal-hanger shield inserts for insulated piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.

2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.

3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.

4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.

6. Adjustable, Swivel-Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.

7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.

10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.

11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.

12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.

13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.

15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.

16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.

2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.

2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.

6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.

8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 22 0529
SECTION 22 0553
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tags.
 5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 1. Size: 3 by 5-1/4 inches minimum.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 9.

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:
1. Low-Pressure, Compressed-Air Piping:
 a. Background Color: Blue.
2. Domestic Water Piping:
 a. Background Color: Green.
3. Sanitary Waste Piping:
 a. Background Color: Yellow.
4. Storm Drainage Piping:
 a. Background Color: Yellow.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
1. Valve-Tag Size and Shape:
 c. Low-Pressure Compressed Air: 1-1/2 inches, round.
2. Valve-Tag Color:
 a. Cold Water: Green.
 b. Hot Water: Green.
 c. Low-Pressure Compressed Air: Natural.
3. Letter Color:
 c. Low-Pressure Compressed Air: Blue.

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 22 0553
SECTION 22 0719
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Sanitary waste piping exposed to freezing conditions.
5. Roof drains and rainwater leaders.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

C.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
 d. Or engineer approved equal

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.
 f. Or engineer approved equal

H. Mineral-Fiber, Preformed Pipe Insulation:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.
f. Or engineer approved equal

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.; Super-Stik.
 b. Or engineer approved equal

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.; Thermokote V.
 b. Or engineer approved equal

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.
 b. Or engineer approved equal

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Aeroflex USA, Inc.; Aeroséal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 e. Or engineer approved equal
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 e. Or engineer approved equal

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 e. Or engineer approved equal

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polycy VP Adhesive.
 e. Or engineer approved equal

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Vimasco Corporation; 749.
 c. Or engineer approved equal

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 c. Vimasco Corporation; 713 and 714.
 d. Or engineer approved equal

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
b. Or engineer approved equal

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 e. Or engineer approved equal

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
a. ABI, Ideal Tape Division; 428 AWF ASJ.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
c. Compac Corporation; 104 and 105.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
e. Or engineer approved equal

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 d. Or engineer approved equal

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
 c. Or engineer approved equal

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.

B. Staples: Outward-clinchling insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
2.11 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Engineered Brass Company.
 b. Insul-Tect Products Co.; a subsidiary of MVG Molded Products.
 c. McGuire Manufacturing.
 d. Plumberex.
 e. Truebro; a brand of IPS Corporation.
 f. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
 g. Or engineer approved equal

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:

1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Stormwater and Overflow:
1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 c. For Piping Routed Through Rehearsal Spaces, Insulation Shall be 2 inches thick.

D. Roof Drain and Overflow Drain Bodies:

 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 c. For Drain Bodies Installed in Rehearsal Spaces, Insulation Shall be 2 inches thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC, Color-Coded by System: 20 mils thick.

E. Storm water piping routed through rehearsal spaces:
 1. Acoustical Jacketing: I pound per square foot loaded vinyl sheet.

END OF SECTION 22 0719
SECTION 22 1116
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
 2. Encasement for piping.

1.3 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

1.5 FIELD CONDITIONS
A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of water service.
 2. Do not interrupt water service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 61.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

G. Copper Pressure-Seal-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elkhart Products Corporation.
 b. NIBCO Inc.
 c. Viega.
 d. Or engineer approved equal

2.3 PIPING JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys.

B. Flux: ASTM B 813, water flushable.

2.4 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
C. Sleeve-Type Transition Coupling: AWWA C219.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Cascade Waterworks Manufacturing.
 b. Dresser, Inc.; Piping Specialties Products.
 c. Ford Meter Box Company, Inc. (The).
 d. JCM Industries.
 e. Romac Industries, Inc.
 f. Smith-Blair, Inc.; a Sensus company.
 g. Viking Johnson.
 h. Or engineer approved equal

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Capitol Manufacturing Company; member of the Phoenix Forge Group.
 b. Central Plastics Company.
 d. Jomar International.
 e. Matco-Norca.
 g. Watts; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Or engineer approved equal

3. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Elster Perfection Corporation.
 b. Grinnell Mechanical Products; Tyco Fire Products LP.
 c. Matco-Norca.
 d. Precision Plumbing Products, Inc.
 e. Victaulic Company.
 f. Or engineer approved equal

3. Electroplated steel nipple complying with ASTM F 1545.
4. Pressure Rating and Temperature: 300 psig at 225 deg F.
5. End Connections: Male threaded or grooved.

PART 3 - EXECUTION

3.1 EARTHWORK
A. Comply with requirements in Section 31 2000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
C. Install shutoff valve immediately upstream of each dielectric fitting.
D. Install domestic water piping level without pitch and plumb.
E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
H. Install piping to permit valve servicing.
I. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
J. Install piping free of sags and bends.
K. Install fittings for changes in direction and branch connections.
L. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
M. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
N. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."
O. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

D. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

E. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric nipples.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger, support products, and installation in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."

 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.

4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with 3/4-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
2. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.

c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Adjust calibrated balancing valves to flows indicated.
4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
6. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
7. Check plumbing specialties and verify proper settings, adjustments, and operation.
3.11 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water, building-service piping, NPS 2 and smaller, shall be the following:

 1. Soft copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed joints.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:

 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

3.13 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 22 1116
SECTION 22 1119
DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Vacuum breakers.
 2. Hose bibbs.
 3. Wall hydrants.
 4. Drain valves.
 5. Water-hammer arresters.
 6. Trap-seal primer valves.
 7. Flexible connectors.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For domestic water piping specialties.
 1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES
 A. Potable-water piping and components shall comply with NSF 61.
2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 b. Cash Acme; a division of Reliance Worldwide Corporation.
 c. Conbraco Industries, Inc.
 d. FEBCO; a division of Watts Water Technologies, Inc.
 e. Rain Bird Corporation.
 f. Toro Company (The); Irrigation Div.
 g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 h. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 i. Or engineer approved equal

3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.
6. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products.
 b. Cash Acme; a division of Reliance Worldwide Corporation.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 h. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 i. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
 j. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 k. Or engineer approved equal

5. Finish: Chrome or nickel plated.

2.4 HOSE BIBBS

A. Hose Bibbs:
4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
9. Finish for Service Areas: Chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
12. Operation for Service Areas: Operating key.
14. Include operating key with each operating-key hose bibb.
15. Include wall flange with each chrome- or nickel-plated hose bibb.

2.5 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Prier Products, Inc.
 e. Tyler Pipe; Wade Div.
 f. Watts Drainage Products.
 g. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 h. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
 i. Zurn Industries, LLC; Plumbing Products Group; Specification Drainage Products.
 j. Or engineer approved equal

2. Standard: ASME A112.21.3M for concealed or exposed-outlet, self-draining wall hydrants.
4. Operation: Loose key.
5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
8. Box: Deep, flush mounted with cover.
9. Box and Cover Finish: Polished nickel bronze or Chrome plated.
12. Operating Keys(s): Two with each wall hydrant.
2.6 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

2.7 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. Precision Plumbing Products, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products.
 i. Zurn Industries, LLC; Plumbing Products Group; Specification Drainage Products.
 j. Or engineer approved equal
 3. Type: Copper tube with piston.
 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.8 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. MIFAB, Inc.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 f. Or engineer approved equal
5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

2.9 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Flex Pression, Ltd.
4. Flex-Weld Incorporated.
5. Hyspan Precision Products, Inc.
7. Metraflex, Inc.
8. Proco Products, Inc.
9. TOZEN Corporation.
10. Unaflex. Universal Metal Hose; a Hyspan company.
11. Or engineer approved equal

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.

2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install water-hammer arresters in water piping according to PDI-WH 201.

B. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 26 0526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

END OF SECTION 22 1119
SECTION 22 1123
DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. In-line, sealless centrifugal pumps.
B. Related Sections include the following:
 1. Section 22 1123.13 "Packaged Booster Pumps" for booster systems.

1.3 DEFINITIONS
A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Retain shipping flange protective covers and protective coatings during storage.
B. Protect bearings and couplings against damage.
C. Comply with pump manufacturer's written rigging instructions for handling.

1.7 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Bell and Gossett.
 2. Or Engineer approved equal.
B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
C. Pump Construction:
 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 2. Casing: Bronze, with threaded or companion-flange connections.
 4. Motor: Single speed, unless otherwise indicated.
D. Capacities and Characteristics:
 1. Capacity: as indicated on the drawings.

2.2 MOTORS
A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 0513 “Common Motor Requirements for Plumbing Equipment.”
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.3 CONTROLS
A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 1. Type: Water-immersion temperature sensor, for installation in piping.
 2. Range: 50 to 125 deg F.
 3. Enclosure: NEMA 250, Type 4X.
4. Operation of Pump: On or off.
5. Transformer: Provide if required.
7. Settings: Start pump at 105 deg F and stop pump at 120 deg F.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION
A. Comply with HI 1.4.
B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.
C. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.
 1. Comply with requirements for hangers and supports specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
D. Install thermostats in hot-water return piping.

3.3 CONNECTIONS
A. Comply with requirements for piping specified in Section 22 1116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to pumps to allow service and maintenance.
C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 2. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 22 0523 "General-Duty Valves for Plumbing Piping" and comply with requirements for strainers specified in Section 22 1119 "Domestic Water Piping Specialties."
 3. Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps.
D. Comply with Division 26 Sections for electrical connections, and wiring methods.
E. Connect thermostats, to pumps that they control.

3.4 IDENTIFICATION
A. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE
A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Set thermostats, for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 7. Start motor.
 8. Open discharge valve slowly.
 9. Adjust temperature settings on thermostats.
 10. Adjust timer settings.

3.6 ADJUSTING
A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust initial temperature set points.
C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 22 1123
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Multiplex, variable-speed booster pumps.
B. Related Sections:
1. Section 22 1123 "Domestic Water Pumps" for domestic-water circulation pumps.

1.3 DEFINITIONS
A. VFC: Variable-frequency controller(s).

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material descriptions, and dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For booster pumps. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASME Compliance: Comply with ASME B31.9 for piping.
C. UL Compliance for Packaged Pumping Systems:
 1. UL 508, "Industrial Control Equipment."
2. UL 508A, “Industrial Control Panels.”

D. Booster pumps shall be listed and labeled as packaged pumping systems by testing agency acceptable to authorities having jurisdiction.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Retain protective coatings and flange's protective covers during storage.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 MULTIPLEX, VARIABLE-SPEED BOOSTER PUMPS

A. Description:

1. Furnish and install a Duplex Model DS-95-50-2VS variable speed, variable flow factory assembled water booster system as manufactured by Canariis Corporation, Riverview, Florida and as supplied by Cullen Associates, Neptune, NJ (732-988-9600) or Engineer Approved equal. The unit shall be rated for a system capacity of 95 GPM, with a system pressure of 60 PSIG, including a minimum suction pressure of 11 PSIG. Maximum suction pressure will be 50 PSIG. Contractor shall install vibration isolators.

2. The complete Packaged Pumping Systems, including pumps, motors, control equipment, variable frequency drives, tanks, valves, fittings and manifolds must be UL Listed under Category QCZJ (Packaged Pumping Systems). In addition to the UL Listing for the complete system the control panel assemblies’ must be separately listed under UL 508A (Industrial Control Panels). All welding shall be performed by certified welders in accordance with ASME section IX.

B. Factory Assembly:

1. The booster system shall be factory assembled on a steel skid including pumps, motors, valves, 3” (300 series stainless steel) suction and discharge manifolds, and all interconnecting piping, wiring and controls. Manifold connections will be (flanged) at one end. Branch piping and tank piping (if applicable) shall be the same material as the suction and discharge manifolds. Provide isolation valves on the suction and discharge of each pump. The valves shall be (full-port ball valves) or (lug style butterfly valves). Provide a thermal purge valve on the discharge of each pump. Provide two 4 1/2” ASME grade A, panel mounted gauges for indicating system suction and system discharge pressure. All skid mounted components shall be factory finished in a high quality enamel paint.

Booster system dimensions for all factory assembled components must not exceed 32" x 48" x 78" high. System shall be fabricated for field knockdown and re-assembly to facilitate installation through doorways.

Individual pumps, motors and pressure regulating or check valves may be serviced with the booster system in operation and all components shall be suitable for the maximum working pressure and temperature in the system.
C. Pumps:

1. System shall include two vertical mounted close-coupled end suction centrifugal pumps with ANSI flanged connections. Pump features to include foot supported casing, back pull out design, top centerline discharge and hydraulically balanced impeller. Pumps shall be cast iron bronze fitted construction with a replaceable shaft sleeve and mechanical seal suitable for a working pressure of 175 PSIG. Motor shall be NEMA close-coupled type with a JM shaft. Pump number 1 and pump number 2 shall be rated 95 GPM at 116-foot head.

D. Motors:

1. Motors shall be Premium High Efficiency, 480 volt, 3 phase, 60 Hz (totally enclosed fan cooled) and manufactured in accordance with NEMA standards. Motors shall be selected so that they do not exceed nameplate HP rating throughout the programmed sequence of pump operation. Pump number 1 and pump number 2 shall be 5 hp, 3500 RPM.

E. System Valves:

1. Each pump discharge shall have a Claval model 81-12 pilot operated diaphragm type non-slam angled check valve. Main valve and cover shall be ductile iron with a fused epoxy coating and stainless-steel stem and cover bolts. Construction shall be suitable for the maximum working pressure of the system.

F. Hydro-Pneumatic Tank:

1. Provide a hydro-pneumatic tank with a carbon steel shell and a replaceable F.D.A. approved heavy duty bladder to separate the air and water. No water shall come in contact with the metal walls of the tank. Features shall include an air fill valve and bottom system connection suitable for 100% drawdown. The tank must be constructed in accordance with Section VIII of the ASME code and be N.B. stamped and shall be rated (79 gallon – 125 PSIG). The tank shall be mounted in a remote location as shown on the drawings.

G. Variable Frequency Drives

1. Provide and mount on the system skid two variable frequency equivalent to ABB ACH550 drives of the PWM design suitable for variable torque applications using any standard NEMA Design B squirrel cage induction motor. Variable frequency drives shall sized for the maximum possible amp draw throughout the programmed sequence of pump operation.

2. Standard Features
 a. Pulse Width Modulated
 b. Starts into a rotating load
 c. Keypad Operator Device including the following:
 d. Backlit LCD Display
 e. Power On and Alarm/Fault Displays
 f. In Auto the drive follows signal from Logic Section of Control Panel
 g. Hand/off/auto switch and manual speed adjustment
 h. Auto Drive Shutdown for electrical fault
 i. Automatic restart after power fails shutdown
 j. Operational data displays include: Drive Speed (HZ), Motor Power, Energy (kWh), Current, Elapsed Time, RPM, and Motor Voltage
 k. Complete Service Diagnostics with fault history log.
I. The efficiency at full load and full speed will be 97% with a fundamental power factor of .98.

H. Pressure Sensor/Transmitter
1. Provide one pressure sensor/transmitter that provides a 4 to 20 mA DC output, compatible with the system controls, temperature and pressure requirements. Pressure sensor/transmitter shall have zero, span and damping devices. The transmitter shall be installed on the system discharge header and factory wired to the control panel.

I. Sequence of Operation
1. The lead pump shall run only as necessary to maintain system pressure and will be controlled automatically by means of a pressure sensor/transmitter and programmable logic controller (PLC) programmed to prevent short cycling. If the lead pump is unable to maintain system pressure the lag pump will be called on after a time delay and will operate in parallel with the lead pump in accordance with the PLC program. When one pump can handle the system demand the controls will shut down the lag pump. When a low or no flow condition is reached, the controls will accelerate the lead pump to charge the system and hydro-pneumatic tank then shut the lead pump down and alternate.

J. Control Panel
1. Logic Section
2. Provide, mount and wire on the skid a programmable logic controller in an enclosure to interface the signal from the pressure sensor to the VFD's and provide a stabilized response to speed up or slow down the pump or add the lag pump to meet system requirements. The controller shall provide setpoint adjustment, timer adjustment, PID functions and both system and controller self-diagnostics via a 2 line 20-character display with keypad. All user interface setpoints are easily accessible via the password protected display screen. Normal system operation is tuned to eliminate hunting. Controller shall have one RS 485 Communication port, real time calendar/clock and EEPROM memory transfer cartridge.

K. Power Section
1. Each system shall include a UL listed enclosed industrial control panel in a NEMA 1 enclosure, factory mounted and wired on the steel skid. The panel shall be furnished with individual pump disconnects with through the door handles, pump run lights, H-O-A selector switches and 115 volt fused control transformer.

L. Standard Control Panel Features
1. UL Listed Enclosed Industrial Control Panel
2. Individual Fused Disconnects with External Handle
3. Programmable Logic Controller (Plc)
4. Pump Running Lights
5. H/O/A Selector Switches
6. 115 Volt Fused Control Circuit Transformer
7. Pump Minimum Run Timers
8. Mounted and Wired On Skid
9. Pump Operating and Sequence Controls

M. Control panel options
1. Control power (on-off) switch and light.
2. Low suction pressure shutdown circuit with auto reset, delay timer and light.
3. Low system pressure circuit to start standby pump(s) with manual reset and light.
4. High system pressure shutdown circuit with manual reset and light.
5. Audible alarm with silence push button.
6. Auto alternate (2) equal pumps.
7. Auxiliary relay contacts.

N. Factory Test

1. The booster system shall be hydrostatically tested and shall undergo a complete electric and hydraulic test from 0 to 100% design flow at the factory. All control devices including transmitters and all safety features shall be factory calibrated and tested. The owner’s representative may witness the test.

O. Warranty

1. The booster system shall be warranted in writing against defects in materials or workmanship under normal use and service for a period of one year after date of original operation but not more than 18 months from date of shipment from the Company's factory when installed and used in accordance with good standard practice.

P. Start-Up Service

1. The service of a factory-trained representative shall be made available on the jobsite for start-up and instructing operating personnel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for booster pumps to verify actual locations of piping connections before booster-pump installation.

3.2 INSTALLATION

A. Equipment Mounting: Install booster pumps on concrete base using elastomeric pads.

2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Support connected domestic-water piping so weight of piping is not supported by booster pumps.
3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 1116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect domestic-water piping to booster pumps. Install suction and discharge pipe equal to or greater than size of system suction and discharge headers.

1. Install shutoff valves on piping connections to booster-pump suction and discharge headers. Install ball, butterfly, or gate valves same size as suction and discharge headers. Comply with requirements for general-duty valves specified in Section 22 0523 "General-Duty Valves for Plumbing Piping."

2. Install union, flanged, or grooved-joint connections on suction and discharge headers at connection to domestic-water piping. Comply with requirements for unions and flanges specified in Section 22 1116 "Domestic Water Piping."

3. Install valved bypass, same size as and between piping, at connections to booster-pump suction and discharge headers. Comply with requirements for domestic-water piping specified in Section 22 1116 "Domestic Water Piping."

4. Install flexible connectors, same size as piping, on piping connections to booster-pump suction and discharge headers. Comply with requirements for flexible connectors specified in Section 22 1116 "Domestic Water Piping."

5. Install piping adjacent to booster pumps to allow service and maintenance.

3.4 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Perform visual and mechanical inspection.

2. Leak Test: After installation, charge booster pump and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start booster pumps to confirm proper motor rotation and booster-pump operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Pumps and controls will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.
3.6 STARTUP SERVICE
A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING
A. Adjust booster pumps to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust pressure set points.
C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting booster pump to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain booster pumps.

END OF SECTION 22 1123.13
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.3 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.7 PROJECT CONDITIONS
 A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sanitary waste service.
2. Do not proceed with interruption of sanitary waste service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class(es).
B. Gaskets: ASTM C 564, rubber.
C. Caulking Materials: ASTM B29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. MIFAB, Inc.
 e. Mission Rubber Company; a division of MCP Industries, Inc.
 f. Stant.
 g. Tyler Pipe.
 h. Or engineer approved equal
 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
a. Manufacturers: Subject to compliance with requirements, provide products by the following:

2) Fernco Inc.
3) Mission Rubber Company; a division of MCP Industries, Inc.
4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
5) Or engineer approved equal

c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
d. Sleeve Materials:

2) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

4. Shielded, Nonpressure Transition Couplings:

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

2) Mission Rubber Company; a division of MCP Industries, Inc.
3) Or engineer approved equal

c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

2. Dielectric Unions:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Capitol Manufacturing Company.
2) Central Plastics Company.
3) Hart Industries International, Inc.
4) Jomar International Ltd.
5) Matco-Norca, Inc.
7) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
8) Wilkins; a Zurn company.
9) Or engineer approved equal

b. Description:
1) Standard: ASSE 1079.
2) Pressure Rating: 125 psig minimum at 180 deg F.
3) End Connections: Solder-joint copper alloy and threaded ferrous.

3. Dielectric Flanges:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) Matco-Norca, Inc.
 4) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 5) Wilkins; a Zurn company.
 6) Or engineer approved equal
 b. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 125 psig minimum at 180 deg F
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

4. Dielectric-Flange Insulating Kits:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Advance Products & Systems, Inc.
 2) Calpico, Inc.
 3) Central Plastics Company.
 4) Pipeline Seal and Insulator, Inc.
 5) Or engineer approved equal
 b. Description:
 1) Nonconducting materials for field assembly of companion flanges.
 2) Pressure Rating: 150 psig.
 3) Gasket: Neoprene or phenolic.
 4) Bolt Sleeves: Phenolic or polyethylene.
 5) Washers: Phenolic with steel backing washers.

5. Dielectric Nipples:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Elster Perfection.
 2) Grinnell Mechanical Products.
 3) Matco-Norca, Inc.
 4) Precision Plumbing Products, Inc.
 5) Victaulic Company.
 6) Or engineer approved equal
b. Description:

1) Standard: IAPMO PS 66
2) Electroplated steel nipple.
3) Pressure Rating: 300 psig at 225 deg F.
4) End Connections: Male threaded or grooved.
5) Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

O. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 1319 "Sanitary Waste Piping Specialties."
 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 1319 "Sanitary Waste Piping Specialties."

P. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.
D. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD’s.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 3. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 4. Vertical Piping: MSS Type 8 or Type 42, clamps.
 5. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 6. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
 7. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.
3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Comply with requirements for cleanouts and drains specified in Section 22 1319 "Sanitary Waste Piping Specialties."

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PIPING SCHEDULE

A. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

B. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

D. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

E. Underground, soil and waste piping NPS 5 and larger shall be the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

END OF SECTION 22 1316
SECTION 22 1319
SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Cleanouts.
 2. Floor drains.
 3. Roof flashing assemblies.
 4. Through-penetration firestop assemblies.
 5. Miscellaneous sanitary drainage piping specialties.
 6. Flashing materials.
B. Related Requirements:
 1. Section 22 1423 “Storm Drainage Piping Specialties” for storm drainage piping inside the building, drainage piping specialties and drains.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
 1. Grease interceptors.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03

B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Metal Cleanouts (CO):

1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 2) MIFAB, Inc.
 4) Tyler Pipe.
 5) Watts Drainage Products.
 6) Zurn Plumbing Products Group.
 7) Or engineer approved equal

2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
3. Size: Same as connected drainage piping
4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk or raised-head, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts (CODP):

1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 2) Oatey.
 3) Sioux Chief Manufacturing Co., Inc.
 5) Tyler Pipe.
 6) Watts Drainage Products.
 7) Zurn Plumbing Products Group.
 8) Or engineer approved equal

2. Standard: ASME A112.36.2M for threaded, adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Threaded, adjustable housing.
5. Body or Ferrule: Cast iron.
7. Outlet Connection: Inside calk.
8. Closure: Brass plug with tapered threads.
9. Adjustable Housing Material: Cast iron with threads.
11. Frame and Cover Shape: Square.
12. Top Loading Classification: Medium Duty.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
15. Size: Same as connected branch.
17. Closure: Stainless steel with seal.
18. Riser: Stainless-steel drainage pipe fitting to cleanout.

C. Cast-Iron Wall Cleanouts (COWP):

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 g. Or engineer approved equal

2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk or raised-head, plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains (FD):

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Commercial Enameling Co.
 b. Josam Company; Josam Div.
 c. MIFAB, Inc.
 d. Prier Products, Inc.
 f. Tyler Pipe; Wade Div.
 g. Watts Drainage Products.
 h. Zurn Plumbing Products Group; Specification Drainage Operation.
 i. Or engineer approved equal

2. Standard: ASME A112.6.3.
5. Seepage Flange: Required.
6. Anchor Flange: Required.
7. Clamping Device: Required.
8. Outlet: Bottom.
11. Sediment Bucket: Not required.
12. Top or Strainer Material: Nickel bronze.
14. Top Shape: Square.
15. Dimensions of Top or Strainer: 5” or 6”.
17. Funnel: Not required.
18. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.

2.3 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Acorn Engineering Company; Elmdor/Stoneman Div.
 b. Thaler Metal Industries Ltd.
 c. Or engineer approved equal

2. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch-thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

2.4 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. ProSet Systems Inc.
 b. Or engineer approved equal

2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
3. Size: Same as connected soil, waste, or vent stack.
4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.

6. Special Coating: Corrosion resistant on interior of fittings.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:

1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.

2. Size: Same as connected waste piping.

 a. NPS 2: 4-inch-minimum water seal.

 b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

B. Floor-Drain, Trap-Seal Primer Fittings:

1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.

2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

C. Sleeve Flashing Device:

1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.

2. Size: As required for close fit to riser or stack piping.

D. Stack Flashing Fittings:

1. Description: Counterflushing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.

2. Size: Same as connected stack vent or vent stack.

E. Vent Caps:

1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.

2. Size: Same as connected stack vent or vent stack.

F. Frost-Resistant Vent Terminals:

1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.

2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflushing.

2.6 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 1. General Applications: 12 oz./sq. ft.
 2. Vent Pipe Flashing: 8 oz./sq. ft.

C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

E. Fasteners: Metal compatible with material and substrate being fastened.

F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

G. Solder: ASTM B 32, lead-free alloy.

H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated:
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.

4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

F. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

G. Assemble open drain fittings and install with top of hub 2 inches above floor.

H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

J. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

K. Install vent caps on each vent pipe passing through roof.

L. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

M. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

3.2 CONNECTIONS

A. Comply with requirements in Section 22 1316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Grease Interceptors: Connect inlet and outlet to unit, and connect flow-control fitting and vent to unit inlet piping.

D. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."
3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counter flashing or commercially made flashing fittings, according to Section 07 6200 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 1319
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 1. Storm Drainage Piping: 10-foot head of water.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.6 PROJECT CONDITIONS
A. Interruption of Existing Storm-Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of storm-drainage service.
 2. Do not proceed with interruption of storm-drainage service without Construction Manager's written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service classes.
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. MIFAB, Inc.
 e. Mission Rubber Company; a division of MCP Industries, Inc.
 f. Stant.
 g. Tyler Pipe.
 h. Or engineer approved equal.
 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-piping-system fitting.
 3. Shielded, Nonpressure Transition Couplings:
a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2) Mission Rubber Company; a division of MCP Industries, Inc.
3) Or engineer approved equal

c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

4. Pressure Transition Couplings:

a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2) Dresser, Inc.
3) EBAA Iron, Inc.
4) Ford Meter Box Company, Inc. (The)
5) JCM Industries, Inc.
6) Romac Industries, Inc.
7) Smith-Blair, Inc.; a Sensus company.
8) Viking Johnson; c/o Mueller Co.
9) Or engineer approved equal.

c. Description: Metal, sleeve-type couplings same size as, with pressure rating at least equal to and ends compatible with, pipes to be joined.

d. Center-Sleeve Material: Carbon steel.

e. Gasket Material: Natural or synthetic rubber.

f. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:

1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

2. Dielectric Unions:

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

1) Capitol Manufacturing Company.
2) Central Plastics Company.
3) Hart Industries International, Inc.
4) Jomar International Ltd.
5) Matco-Norca, Inc.
7) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
8) Wilkins; a Zurn company.
9) Or engineer approved equal
b. Description:

1) Standard: ASSE 1079.
2) Pressure Rating: 150 psig at 180 deg F.
3) End Connections: Solder-joint copper alloy and threaded ferrous.

3. Dielectric Flanges:

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

1) Capitol Manufacturing Company.
2) Central Plastics Company.
3) Matco-Norca, Inc.
4) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
5) Wilkins; a Zurn company.
6) Or engineer approved equal

b. Description:

1) Standard: ASSE 1079.
2) Factory-fabricated, bolted, companion-flange assembly.
3) Pressure Rating: 150 psig.
4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

4. Dielectric-Flange Insulating Kits:

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

1) Advance Products & Systems, Inc.
2) Calpico, Inc.
3) Central Plastics Company.
4) Pipeline Seal and Insulator, Inc.
5) Or engineer approved equal

b. Description:

1) Nonconducting materials for field assembly of companion flanges.
2) Pressure Rating: 150 psig.
3) Gasket: Neoprene or phenolic.
4) Bolt Sleeves: Phenolic or polyethylene.

5. Dielectric Nipples:

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

1) Elster Perfection.
2) Grinnell Mechanical Products.
3) Matco-Norca, Inc.
4) Precision Plumbing Products, Inc.
5) Victaulic Company.
6) Or engineer approved equal

b. Description:

1) Electroplated steel nipple complying with ASTM F 1545.
2) Pressure Rating: 300 psig at 225 deg F.
3) End Connections: Male threaded or grooved.
4) Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 2000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
L. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

N. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 22 1423 "Storm Drainage Piping Specialties."
 2. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 1423 "Storm Drainage Piping Specialties."

O. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.
 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.
3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
4. Vertical Piping: MSS Type 8 or Type 42, clamps.
5. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
6. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
7. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
6. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.

C. Connect storm drainage piping to roof drains and storm drainage specialties.

1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
2. Comply with requirements for cleanouts and drains specified in Section 22 1423 "Storm Drainage Piping Specialties."
D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION
 A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 22 0553 “Identification for Plumbing Piping and Equipment.”

3.8 FIELD QUALITY CONTROL
 A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
 C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 3. Test Procedure: Test storm drainage piping, except outside leaders, on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 5. Prepare reports for tests and required corrective action.

3.9 CLEANING
 A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground storm drainage piping NPS 6 and smaller shall be the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; heavy-duty, hubless-piping couplings; and coupled joints.

C. Aboveground, storm drainage piping NPS 8 and larger shall be the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; heavy-duty, hubless-piping couplings; and coupled joints.

D. Underground storm drainage piping NPS 6 and smaller shall be the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.

E. Underground, storm drainage piping NPS 8 and larger shall be the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.

END OF SECTION 22 1413
SECTION 22 1423
STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Roof drains.
 2. Miscellaneous storm drainage piping specialties.
 3. Cleanouts.
 4. Flashing materials.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 METAL ROOF DRAINS

A. Cast-Iron, General-Purpose Roof Drains RD:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. MIFAB, Inc.
 d. Zurn Plumbing Products Group; Light Commercial Products Operation.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.
 f. Or engineer approved equal
 2. Standard: ASME A112.6.4, for general-purpose roof drains.
5. Combination Flashing Ring and Gravel Stop: Required.
7. Outlet: Bottom.
8. Extension Collars: Required.
10. Expansion Joint: Not required.
11. Sump Receiver Plate: Required.

2.2 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

A. Downspout Boots:

1. Description: Manufactured, ASTM A 48/A 48M, gray-iron casting, with strap or ears for attaching to building; NPS 4 outlet; and shop-applied bituminous coating.
2. Size: Inlet size to match downspout and NPS 4 outlet.

2.3 CLEANOUTS

A. Floor Cleanouts CODP:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Oatey.
 d. Watts Water Technologies, Inc.
 e. Zurn Plumbing Products Group; Light Commercial Products Operation.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.
 g. Or engineer approved equal

2. Standard: ASME A112.36.2M, for adjustable housing cleanouts.
3. Size: Same as connected branch.
4. Type: Adjustable housing.
5. Body or Ferrule Material: Cast iron.
8. Closure: Brass plug with tapered threads.
9. Adjustable Housing Material: Cast iron with threads.
11. Frame and Cover Shape: Square.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

B. Wall Cleanouts COWP:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. MIFAB, Inc.
d. Tyler Pipe.
e. Watts Water Technologies, Inc.
g. Or engineer approved equal

2. Standard: ASME A112.36.2M, for cleanouts. Include wall access.
3. Size: Same as connected drainage piping.
5. Closure: Countersunk, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.4 FLASHING MATERIALS

A. Copper Sheet: ASTM B 152/B 152M, 12 oz./sq. ft.

B. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

D. Fasteners: Metal compatible with material and substrate being fastened.

E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

F. Solder: ASTM B 32, lead-free alloy.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions.

1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
2. Install expansion joints, if indicated, in roof drain outlets.
3. Position roof drains for easy access and maintenance.

B. Install downspout boots at grade with top 5 feet above grade. Secure to building wall.

C. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.

D. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate cleanouts at base of each vertical soil and waste stack.

E. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

F. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

G. Install test tees in vertical conductors and near floor.

H. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.

I. Install sleeve flashing device with each conductor passing through floors with waterproof membrane.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 1413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece of metal unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:

1. Lead Sheets: Burn joints of 6.0-lb/sq. ft. lead sheets, 0.0938-inch thickness or thicker. Solder joints of 4.0-lb/sq. ft. lead sheets, 0.0625-inch thickness or thinner.
2. Copper Sheets: Solder joints of copper sheets.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching the pipe size, with a minimum length of 10 inches and with skirt or flange extending at least 8 inches around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Fabricate and install flashing and pans, sumps, and other drainage shapes.
3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 1423
SECTION 22 1429
SUMP PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Elevator Submersible sump pumps.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include construction details, material
 descriptions, dimensions of individual components and profiles. Include rated capacities,
 operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For pumps and controls, to include in operation and
 maintenance manuals.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70,
 by a qualified testing agency, and marked for intended location and application.
 B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.
 C. Comply with pump manufacturer's written rigging instructions for handling.
PART 2 - PRODUCTS

2.1 ELEVATOR SUBMERSIBLE SUMP PUMPS

A. Submersible, Fixed-Position, Single-Seal Sump Pumps:

1. Manufacturers: Subject to compliance with requirements, provide:

 a. A Weil Pump Company simplex submersible 2” NPT discharge waste water sump pump, Model 2443-OSSIM-30 shall be furnished as a complete unit, as supplied by Cullen Assoc., Inc. (732-988-9600).

 b. Or Engineer Approved Equal

2. Each pump shall be hermetically sealed dry run type with epoxy encapsulation which is non-aging, moisture, acid and alkali resistant permitting pumps to operate without overheating at a low or no water level.

3. Each pump shall be submersible type, cast iron construction, cast iron impeller semi-open type, capable of passing ¾” solids, heavy duty mechanical seal with faces of carbon/ceramic, stainless steel self-cleaning suction strainer, 20’ of neoprene jacketed power cable, 300 series stainless steel shaft.

4. Each pump to have a capacity of 50 GPM at a total dynamic head of 28 feet TDH and to operate at 3450 RPM. Pump to have curve characteristic so as not to overload the 1/2 HP motor at any point throughout its entire range.

5. Each motor to be ½ HP, single phase, 60 Hertz, 120 Volts, 3450 RPM, housed in airfilled watertight cast iron motor shell with the windings having Class “F” insulation, NEMA-6 and prelubricated double sealed bearings. Oil filled motors are not acceptable.

6. Provide an Automatic “Oil Smart” pump control panel in a NEMA-4X, hinged door, lockable enclosure for each pump.

 a. Each the pump controller shall be capable of automatically pumping the water out of the pit without the risk of pumping oil and/or fluids with hydrocarbons.

 b. The water level in each pit shall be maintained by a solid state capacitive sensor having dual stainless steel probes with a 6” pumping differential between the the “Pump On” probe and the “Pump Off” probe. The sensor shall differentiate the variations in the dielectric constant between water and oil. If oil is sensed, the pump controller will not allow the pump to turn “On” until water again is in contact with the probes.

 c. Each pit mounted sensor shall be compact to fit into small elevator sumps and shall have no moving parts or tethered type “On-Off” float switches that can hang up on the pit walls and keep the pump running. Oil sensing systems that rely on differential floats to turn the pump on and off shall not be acceptable.

 d. Each alarm switch shall be a separate device that is mounted in the pit, above the pump switch. It shall also differentiate between water and oil using a combination of capacitive and optic solid-state sensors. A high water / oil condition shall activate an audible and visual alarm while simultaneously sending a signal to the controller if water or oil is present in the pit. The control panel shall have the following features:

 1) One Hand – Off – Auto selector switch with green pump run light.
 2) One Pump motor start relay.
3) One Red flashing alarm beacon.
4) One Audible high-water alarm, silence push button, test push button and dry contact for remote alarm connection.
5) One Amber “oil” present indicating light and dry contact.
6) One White “water” present indicating light and dry contact.
7) One Provision for two independent power sources; one for pump power circuit and one for alarm circuit.
8) Manufacturer shall warranty the product for a period of two years.

7. Provide check and gate valves on the discharge of each pump. Complete the piping as shown and clean the basin of all debris before starting pumps into operation.

8. Provide a grating cover for each 2’ x 2’ x 2’ deep pit.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of storm drainage piping connections before sump pump installation.

3.2 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of sump pumps.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 1413 “Facility Storm Drainage Piping.” Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Pumps and controls will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.6 ADJUSTING

A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust control set points.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

END OF SECTION 22 1429
SECTION 22 1513
GENERAL-SERVICE COMPRESSED-AIR PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes piping and related specialties for general-service compressed-air systems operating at 200 psig or less.
B. Related Sections include the following:
 1. Section 22 1519 "General-Service Packaged Air Compressors and Receivers" for general-service air compressors and accessories.

1.3 DEFINITIONS
A. CR: Chlorosulfonated polyethylene synthetic rubber.
B. NBR: Acrylonitrile-butadiene rubber.
C. Low-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures of 150 psig or less.

1.4 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Dielectric fittings.
 2. Flexible pipe connectors.
 4. Pressure regulators. Include rated capacities and operating characteristics.
 5. Automatic drain valves.
 6. Filters. Include rated capacities and operating characteristics.
 7. Lubricators. Include rated capacities and operating characteristics.
 8. Quick couplings.
 9. Hose assemblies.

1.5 INFORMATIONAL SUBMITTALS
A. Brazing certificates.
B. Qualification Data: For Installers.

C. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For general-service compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

B. ASME Compliance:

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Copper Tube: ASTM B 88, Type K or L seamless, drawn-temper, water tube.
 1. Wrought-Copper Fittings: MSS SP-73, wrought copper with dimensions for brazed joints.
 2. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150 or 300.
 3. Copper Unions: ASME B16.22 or MSS SP-123.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Mueller Industries
 2) Or engineered equal.

B. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.2 JOINING MATERIALS

A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated.

2.3 VALVES

A. Metal Ball, Butterfly, Check, Gate, and Globe Valves: Comply with requirements in Section 22 0523 "General-Duty Valves for Plumbing Piping."
2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Central Plastics Company.
 d. Jomar International Ltd.
 e. Matco-Norca, Inc.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. Wilkins; a Zurn company.
 i. Or engineer approved equal

2. Description:
 b. Pressure Rating: 150 psig.
 c. End Connections: Brazed-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Central Plastics Company.
 c. Matco-Norca, Inc.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 e. Wilkins; a Zurn company.
 f. Or engineer approved equal

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 150 psig.
 d. End Connections: Brazed-joint copper alloy and threaded ferrous; threaded brazed-joint copper alloy and threaded ferrous.

2.5 FLEXIBLE PIPE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flex-Hose Co., Inc.
2. Flexicraft Industries.
3. Hyspan Precision Products, Inc.
5. Metraflex, Inc.
6. Proco Products, Inc.
7. Unaflex, Inc.
8. Universal Metal Hose; a Hyspan Company.
9. Or engineer approved equal

B. Bronze-Hose Flexible Pipe Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections, NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections, NPS 2-1/2 and Larger: Flanged copper alloy

C. Stainless-Steel-Hose Flexible Pipe Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections, NPS 2 and Smaller: Threaded steel pipe nipple.
 3. End Connections, NPS 2-1/2 and Larger: Flanged steel nipple.

2.6 SPECIALTIES

A. Safety Valves: ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," construction; National Board certified, labeled, and factory sealed; constructed of bronze body with poppet-type safety valve for compressed-air service.
 1. Pressure Settings: Higher than discharge pressure and same or lower than receiver pressure rating.

B. Air-Main Pressure Regulators: Bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 250-psig inlet pressure, unless otherwise indicated.
 1. Type: Pilot operated.

C. Air-Line Pressure Regulators: Diaphragm operated, bronze body, direct acting, spring-loaded manual pressure-setting adjustment, with pressure gauge (0 – 100 psi range), and rated for 200-psig minimum inlet pressure, unless otherwise indicated.

D. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket if wall mounting is indicated.

E. Coalescing Filters: Coalescing type with activated carbon capable of removing water and oil aerosols; with color-change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded. Include mounting bracket if wall mounting is indicated.

F. Mechanical Filters: Two-stage, mechanical-separation-type, air-line filters. Equip with deflector plates, resin-impregnated-ribbon-type filters with edge filtration, and drain cock. Include mounting bracket if wall mounting is indicated.
G. Air-Line Lubricators: With drip chamber and sight dome for observing oil drop entering air stream; with oil-feed adjustment screw and quick-release collar for easy bowl removal. Include mounting bracket if wall mounting is indicated.

1. Provide with automatic feed device for supplying oil to lubricator.

2.7 QUICK COUPLINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aeroquip Corporation; Eaton Corp.
2. Bowes Manufacturing Inc.
3. Foster Manufacturing, Inc.
5. Parker Hannifin Corp.; Fluid Connectors Group; Quick Coupling Div.
6. Rectus Corp.
8. Snap-Tite, Inc.; Quick Disconnect & Valve Division.
9. TOMCO Products Inc.
10. Tuthill Corporation; Hansen Coupling Div.
11. Or engineer approved equal

B. The contractor shall coordinate with owner, size and type of quick coupling prior to installation.

C. General Requirements for Quick Couplings: Assembly with locking-mechanism feature for quick connection and disconnection of compressed-air hose.

D. Automatic-Shutoff Quick Couplings: Straight-through brass body with O-ring or gasket seal and stainless-steel or nickel-plated-steel operating parts.

1. Socket End: With one-way valve and threaded inlet for connection to piping or threaded hose fitting.
2. Plug End: Straight-through type with barbed outlet for attaching hose.

E. Valveless Quick Couplings: Straight-through brass body with stainless-steel or nickel-plated-steel operating parts.

1. Socket End: With O-ring or gasket seal, without valve, and with barbed inlet for attaching hose.
2. Plug End: With barbed outlet for attaching hose.

2.8 HOSE ASSEMBLIES

A. Description: Compatible hose, clamps, couplings, and splicers suitable for compressed-air service, of nominal diameter indicated, and rated for 300-psig minimum working pressure, unless otherwise indicated.

2. Hose Clamps: Stainless-steel clamps or bands.
3. Hose Couplings: Two-piece, straight-through, threaded brass or stainless-steel O-ring or gasket-seal swivel coupling with barbed ends for connecting two sections of hose.
4. Hose Splicers: One-piece, straight-through brass or stainless-steel fitting with barbed ends for connecting two sections of hose.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Low-Pressure Compressed-Air Distribution Piping: Use the following piping materials for each size range:

1. NPS 2 (DN 50) and Smaller: Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed joints.
2. NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Type K or L (Type A or B), copper tube; wrought-copper fittings; and brazed joints.

B. Drain Piping: Use one of the following piping materials:

1. NPS 2 (DN 50) and Smaller: Type M copper tube; wrought-copper fittings; and brazed or soldered joints.

3.2 VALVE APPLICATIONS

A. General-Duty Valves: Comply with requirements in Section 22 0523 "General-Duty Valves for Plumbing Piping" for metal general-duty valves. Use metal valves, unless otherwise indicated.

1. Metal General-Duty Valves: Use valve types specified in "Valve Applications" Article in Section 22 0523 "General-Duty Valves for Plumbing Piping" according to the following:

 a. Low-Pressure Compressed Air: Valve types specified for low-pressure compressed air.
 b. Equipment Isolation NPS 2 and Smaller: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space.

E. Install piping adjacent to equipment and machines to allow service and maintenance.
F. Install air and drain piping with 1 percent slope downward in direction of flow.

G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated.

H. Equipment and Specialty Flanged Connections:
 1. Use steel companion flange with gasket for connection to steel pipe.
 2. Use cast-copper-alloy companion flange with gasket and brazed joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration.

I. Install eccentric reducers where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

J. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.

K. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 22 0519 "Meters and Gages for Plumbing Piping."

L. Install piping to permit valve servicing.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and branch connections.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 0517 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 0518 "Escutcheons for Plumbing Piping."

3.4 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Brazed Joints for Copper Tubing: Join according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

D. Flanged Joints: Use asbestos-free, nonmetallic gasket suitable for compressed air. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.

E. Dissimilar Metal Piping Material Joints: Use dielectric fittings.
3.5 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Section 22 0523 "General-Duty Valves for Plumbing Piping."

B. Install shutoff valves and unions or flanged joints at compressed-air piping to air compressors.

C. Install shutoff valve at inlet to each automatic drain valve, filter, lubricator, and pressure regulator.

D. Install check valves to maintain correct direction of compressed-air flow to and from compressed-air piping specialties and equipment.

3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. NPS 2 and Smaller: Use dielectric unions.

C. NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. NPS 5 and Larger: Use dielectric flange kits.

3.7 FLEXIBLE PIPE CONNECTOR INSTALLATION

A. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.

B. Install bronze-hose flexible pipe connectors in copper compressed-air tubing.

C. Install stainless-steel-hose flexible pipe connectors in steel compressed-air piping.

3.8 SPECIALTY INSTALLATION

A. Install safety valves on receivers in quantity and size to relieve at least the capacity of connected air compressors.

B. Install air-main pressure regulators in compressed-air piping at or near air compressors.

C. Install air-line pressure regulators in branch piping to equipment and tools.

D. Install automatic drain valves on aftercoolers, receivers, and dryers. Discharge condensate onto nearest floor drain.

E. Install coalescing filters in compressed-air piping at or near air compressors and upstream from mechanical filters. Mount on wall at locations indicated.

F. Install mechanical filters in compressed-air piping at or near air compressors and downstream from coalescing filters. Mount on wall at locations indicated.

G. Install air-line lubricators in branch piping to machine tools. Mount on wall at locations indicated.
H. Install quick couplings at piping terminals for hose connections.

I. Install hose assemblies at hose connections.

3.9 CONNECTIONS

A. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment and machine.

B. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment and machine.

3.10 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

B. Comply with requirements in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

C. Vertical Piping: MSS Type 8 or 42, clamps.

D. Individual, Straight, Horizontal Piping Runs:

 1. 100 Feet or Less: MSS Type 1, adjustable, steel clevis hangers.
 2. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.

E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.

F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1/4: 60 inches with 3/8-inch rod.
 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 4. NPS 1: 96 inches with 3/8-inch rod.
 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 7. NPS 2: 11 feet with 3/8-inch rod.
 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 9. NPS 3: 14 feet with 1/2-inch rod.
 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 11. NPS 4: 16 feet with 1/2-inch rod.
 12. NPS 5: 18 feet with 1/2-inch rod.
 14. NPS 8: 23 feet with 3/4-inch rod.
J. Install supports for vertical copper tubing every 10 feet.

3.11 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for general-service compressed-air piping, valves, and specialties. Comply with requirements in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.12 FIELD QUALITY CONTROL

A. Perform field tests and inspections.

B. Tests and Inspections:

1. Piping Leak Tests for Metal Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.

2. Repair leaks and retest until no leaks exist.

3. Inspect filters, lubricators and pressure regulators for proper operation.

C. Prepare test reports.

END OF SECTION 22 1513
SECTION 22 1519

GENERAL-SERVICE PACKAGED AIR COMPRESSORS AND RECEIVERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Oil-flooded, rotary-screw air compressors.
2. Inlet-air filters.
3. Air-cooled, compressed-air aftercoolers.
4. Refrigerant compressed-air dryers.

1.3 DEFINITIONS

A. Actual Air: Air delivered from air compressors. Flow rate is delivered compressed air measured in acfm.

B. Standard Air: Free air at 68 deg F and 1 atmosphere before compression or expansion and measured in scfm.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings:

1. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For compressed-air equipment mounting.

1. Detail fabrication and assembly of supports.
2. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For compressed-air equipment to include in emergency,
 operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective
 covering for storage and identified with labels describing contents.
 1. Air-Compressor, Inlet-Air-Filter Elements: Equal to 100 percent of amount installed, but no
 fewer than two units.
 2. Belts: One for each belt-driven compressor.

1.7 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by
 a qualified testing agency, and marked for intended location and application.
 B. ASME Compliance: Fabricate and label receivers to comply with ASME Boiler and Pressure
 Vessel Code.

2.2 PERFORMANCE REQUIREMENTS
 A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000
 "Quality Requirements," to design compressed-air equipment mounting.

2.3 GENERAL REQUIREMENTS FOR PACKAGED AIR COMPRESSORS AND RECEIVERS
 A. General Description: Factory-assembled, -wired, -piped, and -tested; electric-motor-driven; air-
 cooled; continuous-duty air compressors and receivers that deliver air of quality equal to intake
 air.
 B. Control Panels: Automatic control station with load control and protection functions. Comply with
 NEMA ICS 2 and UL 508.
 1. Enclosure: NEMA ICS 6, Type 12 control panel unless otherwise indicated.
 2. Motor Controllers: Full-voltage, combination magnetic type with undervoltage release
 feature and motor-circuit-protector-type disconnecting means and short-circuit protective
 device.
 3. Control Voltage: 120-V ac or less, using integral control power transformer.
5. Starting Devices: Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.
6. Automatic control switches to sequence lead-lag compressors for duplex air compressors.
7. Instrumentation: Include discharge-air pressure gage, air-filter maintenance indicator, hour meter, compressor discharge-air and coolant temperature gages, and control transformer.
8. Alarm Signal Device: For connection to alarm system to indicate when backup air compressor is operating.

C. Receivers: Steel tank constructed according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 1. Pressure Rating: At least as high as highest discharge pressure of connected compressors, and bearing appropriate code symbols.
 2. Interior Finish: Corrosion-resistant coating.
 3. Accessories: Include safety valve, pressure gage, drain, and pressure-reducing valve.

D. Mounting Frame: Fabricate mounting and attachment to pressure vessel with reinforcement strong enough to resist packaged equipment movement during a seismic event when base is anchored to building structure.

2.4 OIL-FLOODED, ROTARY-SCREW AIR COMPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Kaeser Compressors, Inc.
 2. Or engineer approved equal.

B. Compressor(s): Oil-flooded, rotary-screw type with lubricated helical screws and lubricated gear box.
 2. Cooling/Lubrication System: Unit-mounted, air-cooled exchanger package pre-piped to unit; with air pressure circulation system with coolant stop valve, full-flow coolant filter, and thermal bypass valve.
 3. Air Filter: Dry type, with maintenance indicator and cleanable, replaceable filter element.
 5. Capacity Control: Capacity modulation between zero and 100 percent air delivery, with operating pressures between 50 and 125 psig. Include necessary control to hold constant pressure. When air demand is zero, unload compressor by using pressure switch and blowdown valve.

C. Capacities and Characteristics:
 1. Air Compressor(s): Two; single stage.
 2. Standard-Air Capacity of Each Air Compressor: Refer to product specified.
 3. Actual-Air Capacity of Each Air Compressor: Refer to product specified.
 4. Discharge-Air Pressure: Refer to product specified.
 5. Intake-Air Temperature: Refer to product specified.
 6. Discharge-Air Temperature: Refer to product specified.
 7. Motor (Each Air Compressor):
a. Horsepower: Refer to product specified.
b. Speed: Refer to product specified rpm.

8. Electrical Characteristics: Refer to product specified

 a. Arrangement: Horizontal or Vertical.
 b. Capacity: Refer to product specified.
 c. Interior Finish: Epoxy coating.
 d. Pressure Rating: Refer to product specified.
 e. Pressure Regulator Setting: Field adjustable.
 f. Pressure Relief Valve Setting: Field adjustable.
 g. Drain: Automatic valve.

10. Enclosure: Steel with sound-attenuating material lining.

2.5 INLET-AIR FILTERS
 A. Description: Combination inlet-air filter-silencer, suitable for remote installation, for each air compressor.
 1. Construction: Weatherproof housing for replaceable, dry-type filter element, with silencer tubes or other method of sound reduction.
 2. Capacity: Match capacity of air compressor, with filter having collection efficiency of 99 percent retention of particles larger than 10 micrometers.
 B. Description: Combination inlet-air filter-silencer, suitable for remote installation, for multiple air compressors.
 1. Construction: Weatherproof housing for replaceable, dry-type filter element, with silencer tubes or other method of sound reduction.
 2. Capacity: Match total capacity of connected air compressors, with filter having collection efficiency of 99 percent retention of particles larger than 10 micrometers.

2.6 AIR-COOLED, COMPRESSED-AIR AFTERCOOLERS
 A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Air/Tak, Inc.
 2. FS-Curtis Air Compressors.
 4. Ingersoll-Rand Company; Compressed Air Solutions.
 5. McIntire Company; Arrow Dryers.
 6. Pneumatech.
 7. Saylor-Beall Manufacturing Company.
 8. SPX Hankison.
 10. ZEKS Compressed Air Solutions.
 11. Or engineer approved equal
 B. Description: Electric-motor-driven, fan-operation, finned-tube unit; rated at 250 psig and leak tested at 350-psig minimum air pressure; in capacities indicated. Size units to cool compressed
air in compressor-rated capacities to 10 deg F above summertime maximum ambient temperature. Include moisture separator and automatic drain.

C. Capacities and Characteristics:

1. Standard-Air Capacity of Each Aftercooler: Refer to drawings.
2. Pressure: Refer to drawings.
3. Entering, Compressed-Air Temperature: Refer to drawings.
4. Leaving, Compressed-Air Temperature: Refer to drawings.
5. Ambient-Air Temperature: Refer to drawings.
6. Maximum Compressed-Air-Pressure Drop: Refer to drawings.
7. Motor Horsepower: Refer to drawings.
8. Electrical Characteristics:
 a. Volts: Refer to drawings.
 b. Phase(s): Refer to drawings.
 c. Hertz: 60.
 d. Full-Load Amperes: Refer to drawings.
 e. Minimum Circuit Ampacity: Refer to drawings.
 f. Maximum Overcurrent Protection: Refer to drawings.

2.7 REFRIGERANT COMPRESSED-AIR DRYERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Secotec (Kaeser Compressors, Inc.)
2. Or engineer approved equal

B. Description: Cycling, air-cooled, electric-motor-driven unit with steel enclosure and capability to deliver 35 deg F, 100-psig air at dew point. Include automatic ejection of condensate from airstream, step-down transformers, disconnect switches, inlet and outlet pressure gages, thermometers, automatic controls, and filters.

C. Capacities and Characteristics: Refer to product specified.

2.8 COMPUTER INTERFACE CABINET

A. Description:

1. Wall mounting.
2. Welded steel with white enamel finish.
3. Gasketed door.
4. Grounding device.
5. Factory-installed, signal circuit boards.
7. Circuit breaker.
8. Wiring terminal board.
9. Internal wiring capable of interfacing 20 alarm signals.
PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Equipment Mounting:
 1. Install air compressors, aftercoolers, and air dryers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 3000 "Cast-in-Place Concrete."

B. Install compressed-air equipment anchored to substrate.

C. Arrange equipment so controls and devices are accessible for servicing.

D. Maintain manufacturer's recommended clearances for service and maintenance.

E. Install the following devices on compressed-air equipment:
 1. Thermometer, Pressure Gage, and Safety Valve: Install on each compressed-air receiver.
 2. Pressure Regulators: Install downstream from air compressors and dryers.
 3. Automatic Drain Valves: Install on aftercoolers, receivers, and dryers. Discharge condensate over nearest floor drain.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 1513 "General-Service Compressed-Air Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to machine, allow space for service and maintenance.

3.3 IDENTIFICATION

A. Identify general-service air compressors and components. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check for lubricating oil in lubricated-type equipment.
 3. Check belt drives for proper tension.
 4. Verify that air-compressor inlet filters and piping are clear.
 5. Check for equipment vibration-control supports and flexible pipe connectors, and verify that equipment is properly attached to substrate.
 6. Check safety valves for correct settings. Ensure that settings are higher than air-compressor discharge pressure, but not higher than rating of system components.
 7. Check for proper seismic restraints.
 8. Drain receiver tanks.
 9. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
10. Test and adjust controls and safeties.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain air compressors, aftercoolers, and air dryers.

END OF SECTION 22 1519
SECTION 22 3400
FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Commercial, gas-fired, high-efficiency, storage, domestic-water heaters.
 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS
A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
B. Source quality-control reports.
C. Field quality-control reports.
D. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.

C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

 2. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Two year(s).

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-Fired, STORAGE, domestic-WATER HEATERS

A. Commercial, Gas-Fired, High-Efficiency, Storage, Domestic-Water Heaters:

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 b. Or engineer approved equal
3. Description: Manufacturer's proprietary design to provide at least 95 percent combustion efficiency at optimum operating conditions.
 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Lining: Glass complying with NSF 61 barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.
5. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Permanent.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 e. Jacket: Steel with enameled finish.
 f. Burner or Heat Exchanger: Comply with UL 795 or approved testing agency requirements for gas-fired, high-efficiency, domestic-water heaters and natural-gas fuel.
 g. Temperature Control: Adjustable thermostat.
 h. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
 i. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.
6. Capacity and Characteristics:
 a. See Drawings.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Amtrol, Inc.
 b. Or engineer approved equal
2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

4. Capacity and Characteristics:
 a. See Drawings.

 B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

 C. Heat-Trap Fittings: ASHRAE 90.2.

 D. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 22 0523 "General Duty Valves for Plumbing Piping,"

1. Comply with requirements for balancing valves specified in Section 22 1119 "Domestic Water Piping Specialties."

 F. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 1/2-psig pressure rating as required to match gas supply.

 G. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

 H. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.

2.3 SOURCE QUALITY CONTROL

 A. Factory Tests: Test and inspect assembled domestic-water specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

 B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

 C. Domestic-water heaters will be considered defective if they do not pass tests and inspections.

 D. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

1. Maintain manufacturer's recommended clearances.
2. Arrange units so controls and devices that require servicing are accessible.
3. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 0523 "General Duty Valves for Plumbing Piping".

C. Install gas-fired, domestic-water heaters according to the International Fuel Gas Code.

1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
3. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 23 1123 "Facility Natural-Gas Piping."

D. Install commercial domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 22 0548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

E. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 22 1119 "Domestic Water Piping Specialties."

G. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 22 0519 "Meters and Gages for Plumbing Piping."

H. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

I. Fill domestic-water heaters with water.

J. Charge domestic-water compression tanks with air.
3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 22 1116 "Domestic Water Piping."

B. Comply with requirements for gas piping specified in Section 23 1123 "Facility Natural-Gas Piping."

C. Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 22 3400
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.

1.3 SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: Include diagrams for power, signal, and control wiring.
C. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than six of each type.

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS
A. Water Closets: Floor mounted, bottom outlet, top spud.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Kohler.
 b. Or Engineer approved Equal.

1. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve.
 f. Rim Contour: Elongated.
 g. Water Consumption: 1.1 gal. (4.8 L) to 1.6 gal. (6 L) per flush.
 h. Spud Size and Location: NPS 1-1/2 (DN 40); top.
 i. Color: Selected by Architect

2. Bowl-to-Drain Connecting Fitting: ASTM A 1045 or ASME A112.4.3.

2.2 FLUSHOMETER VALVES

A. Battery-Powered, Solenoid-Actuator, Piston Flushometer Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Sloan Valve Company.
 b. Or Engineer approved equal.

4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless steel.
9. Actuator: Solenoid complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
10. Trip Mechanism: Battery-powered electronic sensor complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
11. Consumption: 1.1 gal. to 1.6 gal. per flush.

2.3 TOILET SEATS

A. Toilet Seats:
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Church Seats.
 b. Or engineer approved equal
4. Type: Commercial (Heavy duty).
5. Shape: Elongated rim, open front.
8. Seat Cover: Not required.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.
B. Examine walls and floors for suitable conditions where water closets will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Water-Closet Installation:
1. Install level and plumb according to roughing-in drawings.
2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
B. Flushometer-Valve Installation:
1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
3. Install actuators in locations that are easy for people with disabilities to reach.
4. Install fresh batteries in battery powered flushometers.
C. Install toilet seats on water closets.
D. Wall Flange and Escutcheon Installation:
1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."
E. Joint Sealing:
1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to water-closet color.
3. Comply with sealant requirements specified in Section 07920 "Joint Sealants."

3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."
D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
B. Adjust water pressure at flushometer valves to produce proper flow.
C. Install fresh batteries in flushometers.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
B. Install protective covering for installed water closets and fittings.
C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 4213.13
SECTION 22 4213.16
COMMERCIAL URINALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Urinals.
 2. Flushometer valves.

1.3 SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes for urinals.
 2. Include rated capacities, operating characteristics, electrical characteristics, and
 furnished specialties and accessories.
 B. Operation and Maintenance Data: For flushometer valves to include in operation and
 maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that are packaged with protective covering for storage and identified
 with labels describing contents.
 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but
 no fewer than six of each type.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS
 A. Urinals: Wall hung, back outlet, washout, accessible.
 1. Manufacturers: Subject to compliance with requirements, provide products by the
 following:
a. Kohler.
b. Or engineer approved equal

2. Fixture:
 b. Material: Vitreous china.
 c. Type: Washout with extended shields.
 d. Strainer or Trapway: (No strainer) with integral trap.
 e. Water Consumption: 0.5 GPF.
 f. Spud Size and Location: NPS 3/4, top.
 g. Outlet Size and Location: NPS 2, back.
 h. Color: Selected by architect.

4. Waste Fitting:
 b. Size: NPS 2.

5. Support: ASME A112.6.1M, Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture. Include rectangular, steel uprights.

2.2 URINAL FLUSHOMETER VALVES

A. Battery-Powered, Solenoid-Actuator, Piston Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Sloan Valve Company.
 b. Or Engineer approved equal.

 4. Features: Include integral check stop and backflow-prevention device.
 5. Material: Brass body with corrosion-resistant components.
 7. Panel Finish: Chrome plated or stainless steel.
 9. Actuator: Solenoid complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
 10. Trip Mechanism: Battery-powered electronic sensor complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
 11. Consumption: 0.5 gal. per flush.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.

B. Examine walls and floors for suitable conditions where urinals will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:

1. Install urinals level and plumb according to roughing-in drawings.
2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

1. Install supports, affixed to building substrate, for wall-hung urinals.
2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
3. Use carriers without waste fitting for urinals with tubular waste piping.
4. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.

C. Flushometer-Valve Installation:

1. Install flushometer-valve water-supply fitting on each supply to each urinal.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.

D. Wall Flange and Escutcheon Installation:

1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:

1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to urinal color.
3. Comply with sealant requirements specified in Section 07 9200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.

B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION

A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed urinals and fittings.

C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 4213.16
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Lavatories.
 2. Faucets.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes for lavatories.
 2. Include rated capacities, operating characteristics, electrical characteristics, and
 furnished specialties and accessories.
 B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For lavatories and faucets to include in operation and
 maintenance manuals.
 1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data,"
 include the following:
 a. Servicing and adjustments of automatic faucets.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective
 covering for storage and identified with labels describing contents.
1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, COUNTER-MOUNTED LAVATORIES

A. Lavatory: Oval, vitreous china, undercounter mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Kohler Co.
 b. Or Engineer Approved Equal

2. Fixture:
 b. Type: For undercounter mounting.
 c. Nominal Size: Oval, Refer to Schedule on Drawings.
 d. Faucet-Hole Punching: Refer to Schedule on Drawings.
 e. Faucet-Hole Location: Refer to Schedule on Drawings.
 g. Mounting Material: Sealant and undercounter mounting kit.

3. Faucet: “Solid-Brass, Manually Operated Faucets”

2.2 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory: Vitreous china, wall mounted, with back.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Kohler Co.
 b. Or Engineer Approved Equal.

2. Fixture:
 b. Type: For wall hanging.
 c. Nominal Size: Oval, Refer to Schedule on Drawings.
 d. Faucet-Hole Punching: Refer to Schedule on Drawings.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Chair carrier.

3. Faucet “Solid-Brass, Automatically Operated Lavatory Faucets”
2.3 SOLID-BRASS, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, two-handle mixing, commercial, solid-brass valve.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Kohler Co.
 b. Or Engineer Approved Equal.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
4. Body Type: Refer to Schedule on Drawings.
7. Maximum Flow Rate: Refer to Schedule on Drawings.
8. Mounting Type: Refer to Schedule on Drawings.
9. Valve Handle(s): Refer to Schedule on Drawings.
10. Spout: Refer to Schedule on Drawings.
11. Spout Outlet: Refer to Schedule on Drawings.
12. Operation: Refer to Schedule on Drawings.
13. Drain: Refer to Schedule on Drawings.

2.4 SOLID-BRASS, AUTOMATICALLY OPERATED LAVATORY FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Automatic-type, battery-powered, electronic-sensor-operated, mixing, solid-brass valve.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Sloan Valve Company.
 b. Or Engineer Approved Equal.

3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
4. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
7. Maximum Flow Rate: 0.5 gpm.
8. Mounting Type: Deck, concealed.
10. Spout Outlet: Aerator.
11. Drain: Not part of faucet.
2.5 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 3/8 (DN 10).
 2. Chrome-plated, soft-copper flexible tube riser.

2.6 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch thick brass tube to wall and chrome-plated, brass or steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.

B. Examine counters and walls for suitable conditions where lavatories will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-mounted lavatories.

C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 9200 "Joint Sealants."

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 22 0719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 4216.13
SECTION 22 4216.16
COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Service basins.
 2. Utility sinks.
 3. Sink faucets.
 4. Supply fittings.
 5. Waste fittings.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. LEED Submittals:
 1. Product Data for Prerequisite WE 1, Credit WE 2, and Credit WE 3: Documentation indicating flow and water consumption requirements.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For sinks to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SERVICE SINKS

A. Service Basins: Terrazzo, floor mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fiat.
 b. Or engineer approved equal.

2. Fixture:
 b. Material: Terrazzo.
 c. Nominal Size: Refer to specified product.
 d. Tiling Flange: Refer to architectural plans.
 e. Rim Guard: On open sides.
 g. Drain: Grid with NPS 3 outlet.

3. Mounting: On floor and flush to wall.
4. Faucet: Refer to specified product.

2.2 UTILITY SINKS

A. Utility Sinks: Stainless steel, counter mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Elkay Manufacturing Co.
 b. Or engineer approved equal.

2. Fixture:
 b. Type: Ledge back.
 c. Number of Compartments: One.
 d. Overall Dimensions: Refer to specified product.
 e. Metal Thickness: Refer to specified product.
 f. Compartment:
 1) Dimensions: Refer to specified product.
 2) Drain: Grid with NPS 1-1/2 tailpiece and twist drain.
 3) Drain Location: Centered in compartment.
3. Faucet(s): See "Sink Faucets" Article.
 a. Number Required: One.
 b. Mounting: On ledge.

4. Supply Fittings:
 b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 1) Operation: Loose key.
 2) Risers: NPS 1/2, chrome-plated, soft-copper flexible tube.

5. Waste Fittings:
 b. Trap(s):
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

B. Trough Sinks – Stainless steel, wall mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Advance Tabco.
 b. Or engineer approved equal.

2. Fixture:
 b. Type: Basin with radius corners, back for faucet, and support brackets.
 c. Nominal Size: Refer to Specified Product.

2.3 SINK FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for faucet-spout materials that will be in contact with potable water.

B. Sink Faucets: Manual type, two-lever-handle mixing valve.

a. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1) Or engineer approved equal

2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:

1. NPS 1/2
2. Chrome-plated, soft-copper flexible tube.

2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.

C. Trap:

1. Size: Refer to specified product.
2. Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

2.6 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-hung sinks.

C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.

D. Set floor-mounted sinks in leveling bed of cement grout.

E. Install water-supply piping with stop on each supply to each sink faucet.
 1. Exception: Use ball, gate, or globe valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 22 0523 "General-Duty Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."

G. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 9200 "Joint Sealants."

H. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 22 0719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."
3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 4216.16
SECTION 22 4223

COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Individual shower receptors.
2. Shower faucets.
3. Shower basins.

B. Related Requirements:

1. Section 22 4500 "Emergency Plumbing Fixtures" for emergency showers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for showers.
2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For shower faucets to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
PART 2 - PRODUCTS

2.1 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Kohler Co.
 b. Or engineer approved equal

2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.

3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 c. Finish: Polished chrome plate.
 d. Maximum Flow Rate: 2.5 gpm unless otherwise indicated.
 e. Mounting: Exposed.
 f. Operation: Single-handle, twist or rotate control.
 g. Antiscald Device: Integral with mixing valve.
 h. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.

5. Shower Head:
 b. Type: Without ball joint, but with arm and flange.
 c. Shower Head Material: Metallic with chrome-plated finish.
 e. Integral Volume Control: Required.
 f. Shower-Arm, Flow-Control Fitting: 2.0 gpm.
 g. Temperature Indicator: Not required.

2.2 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.
B. Examine walls and floors for suitable conditions where showers will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Assemble shower components according to manufacturers' written instructions.
B. Install showers level and plumb according to roughing-in drawings.
C. Install water-supply piping with stop on each supply to each shower faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 22 0523.12 "Ball Valves for Plumbing Piping" and Section 22 0523.15 "Gate Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.
D. Install shower flow-control fittings with specified maximum flow rates in shower arms.
E. Set shower receptors in leveling bed of cement grout.
F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheons requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."
G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 9200 "Joint Sealants."

3.3 CONNECTIONS
A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."
C. Comply with traps and soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING
A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.
B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.

B. Clean showers, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 4223
SECTION 22 4500
EMERGENCY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Combination units.
 2. Water-tempering equipment.

1.3 DEFINITIONS
A. Accessible Fixture: Emergency plumbing fixture that can be approached, entered, and used by people with disabilities.
B. Plumbed Emergency Plumbing Fixture: Fixture with fixed, potable-water supply.
D. Tepid: Moderately warm.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include flow rates and capacities, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Product Certificates: Submit certificates of performance testing specified in "Source Quality Control" Article.
D. Field quality-control test reports.
E. Operation and Maintenance Data: For emergency plumbing fixtures to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment."

C. NSF Standard: Comply with NSF 61, "Drinking Water System Components - Health Effects," for fixture materials that will be in contact with potable water.

PART 2 - PRODUCTS

2.1 COMBINATION UNITS

A. Accessible, Plumbed Emergency Shower with Eyewash Combination Units.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Guardian.
 b. Or engineer approved equal.

2. Piping:
 a. Material: Chrome-plated brass or stainless steel.
 b. Unit Supply: NPS 1-1/4 minimum.
 c. Unit Drain: Outlet at back or side near bottom.

3. Shower:
 a. Capacity: Not less than 20 gpm for at least 15 minutes.
 b. Supply Piping: NPS 1 with flow regulator and stay-open control valve.
 c. Control-Valve Actuator: Pull rod.
 d. Shower Head: 8-inch-minimum diameter, chrome-plated brass or stainless steel.
 e. Mounting: Pedestal.

4. Eyewash Unit:
 a. Capacity: Not less than 0.4 gpm for at least 15 minutes.
 b. Supply Piping: NPS 1/2 with flow regulator and stay-open control valve.
 d. Spray-Head Assembly: Two receptor-mounted spray heads.
 e. Receptor: Chrome-plated brass or stainless-steel bowl.
 f. Mounting: Attached shower pedestal.

2.2 WATER-TEMPERING EQUIPMENT

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Or engineer approved equal

2. Description: Factory-fabricated equipment with thermostatic mixing valve.
 a. Thermostatic Mixing Valve: Designed to provide 70 deg F tepid, potable water at emergency plumbing fixtures, to maintain temperature at plus or minus 5 deg F throughout required 15-minute test period, and in case of unit failure to continue cold-water flow, with union connections, controls, metal piping, and corrosion-resistant enclosure.
 b. Supply Connections: For hot and cold water.

2.3 SOURCE QUALITY CONTROL
 A. Certify performance of emergency plumbing fixtures by independent testing organization acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before plumbed emergency plumbing fixture installation.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EMERGENCY PLUMBING FIXTURE INSTALLATION
 A. Assemble emergency plumbing fixture piping, fittings, control valves, and other components.
 B. Install fixtures level and plumb.
 C. Fasten fixtures to substrate.
 D. Install shutoff valves in water-supply piping to fixtures. Use ball, gate, or globe valve if specific type valve is not indicated. Install valves chained or locked in open position if permitted. Install valves in locations where they can easily be reached for operation. Comply with requirements for valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
 1. Exception: Omit shutoff valve on supply to group of plumbing fixtures that includes emergency equipment.
 2. Exception: Omit shutoff valve on supply to emergency equipment if prohibited by authorities having jurisdiction.
 E. Install dielectric fitting in supply piping to emergency equipment if piping and equipment connections are made of different metals. Comply with requirements for dielectric fittings specified in Division 22 Section "Domestic Water Piping."
 F. Install thermometers in supply and outlet piping connections to water-tempering equipment.
G. Install trap and waste piping on drain outlet of emergency equipment receptors that are indicated to be directly connected to drainage system. Comply with requirements for waste piping specified in Division 22 Section "Sanitary Waste and Vent Piping."

H. Install indirect waste piping on drain outlet of emergency equipment receptors that are indicated to be indirectly connected to drainage system. Comply with requirements for waste piping specified in Division 22 Section "Sanitary Waste and Vent Piping."

I. Install escutcheons on piping wall and ceiling penetrations in exposed, finished locations. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.3 CONNECTIONS

A. Connect hot- and cold-water-supply piping to hot- and cold-water, water-tempering equipment. Connect output from water-tempering equipment to emergency plumbing fixtures. Comply with requirements for hot- and cold-water piping specified in Division 22 Section "Domestic Water Piping."

B. Directly connect emergency plumbing fixture receptors with trapped drain outlet to sanitary waste and vent piping. Comply with requirements for waste piping specified in Division 22 Section "Sanitary Waste and Vent Piping."

C. Where installing piping adjacent to emergency plumbing fixtures, allow space for service and maintenance of fixtures.

3.4 IDENTIFICATION

A. Install equipment nameplates or equipment markers on emergency plumbing fixtures and equipment and equipment signs on water-tempering equipment. Comply with requirements for identification materials specified in Section 22 0553 "Identification for Plumbing Piping and Equipment.".

3.5 FIELD QUALITY CONTROL

A. Mechanical-Component Testing: After plumbing connections have been made, test for compliance with requirements. Verify ability to achieve indicated capacities.

B. Tests and Inspections:

1. Perform each visual and mechanical inspection.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Emergency plumbing fixtures and water-tempering equipment will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.
3.6 ADJUSTING

A. Adjust or replace fixture flow regulators for proper flow.

B. Adjust equipment temperature settings.

END OF SECTION 22 4500
SECTION 22 4716
PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes pressure water coolers and related components.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of pressure water cooler.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filter Cartridges: Equal to 10 percent of quantity installed for each type and size indicated, but no fewer than 6 of each.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS
 A. Pressure Water Coolers: Wall mounted, standard, wheelchair accessible.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Elkay Manufacturing Co.
 b. Or engineer approved equal
2. Cabinet: Single-level with two attached cabinet with bottle filling station, vinyl-covered steel with stainless-steel top.
3. Bubbler: One, with adjustable stream regulator, located on cabinet deck.
5. Bottle filling station.
9. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
10. Capacities and Characteristics:
 b. Ambient-Air Temperature: 90 deg F.
 c. Inlet-Water Temperature: 80 deg F.
 d. Cooled-Water Temperature: 50 deg F.
 e. Electrical Characteristics:
 1) Volts: 120-V ac.
 2) Phase: Single.
 3) Hertz: 60.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.

B. Examine walls and floors for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.

B. Set freestanding pressure water coolers on floor.

C. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.

D. Install mounting frames, affixed to building construction, and attach recessed, pressure water coolers to mounting frames.

E. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball, gate, or globe valve. Install valves in locations
where they can be easily reached for operation. Valves are specified in Section 22 0523 "General-Duty Valves for Plumbing Piping."

F. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

G. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 0518 "Escutcheons for Plumbing Piping."

H. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 9200 "Joint Seals."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 1116 "Domestic Water Piping."

C. Install ball, gate, or globe shutoff valve on water supply to each fixture. Comply with valve requirements specified in Section 22 0523 "General-Duty Valves for Plumbing Piping."

D. Comply with soil and waste piping requirements specified in Section 22 1316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 4716
SECTION 23 0513
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
B. Comply with NEMA MG 1 unless otherwise indicated.
C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 0513
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Proco Products, Inc.
 2. Or engineer approved equal.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
2.3 Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements

2.4 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.

2. Cut sleeves to length for mounting flush with both surfaces.

a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and
sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:

2. Exterior Concrete Walls below Grade:
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:

5. Interior Partitions:

END OF SECTION 23 0517
SECTION 23 0518
ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
B. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge or split-plate, stamped-steel type with exposed-rivet hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: stamped-steel type split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 23 0518
SECTION 23 0529

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Thermal-hanger shield inserts.
4. Fastener systems.
5. Pipe stands.
6. Equipment supports.

B. Related Sections:

1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 23 Section "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
3. Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for vibration isolation devices.
4. Division 23 Section(s) "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.
 4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

D. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Carpenter & Paterson, Inc.
3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.
10. Or engineer approved equal

B. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic base unit with plastic roller, for roof installation without membrane penetration.
D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.6 EQUIPMENT SUPPORTS
A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS
A. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.
B. Grout: ASTM C1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION
A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:
 1. Attach clamps and spacers to piping.
a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.

4. Pipes NPS 8 and Larger: Include reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections. Section "High-Performance Coatings."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 Deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
17. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
18. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
19. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 Deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 Deg F piping installations.
L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.

8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 0529
SECTION 23 0548
VIBRATION & SEISMIC CONTROLS FOR HVAC

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specifications Sections apply to this Section.

B. This section specifies required vibration control and seismic restraints for all equipment, where applicable, with the wind load requirements for all equipment in outdoor locations. Additionally, included are provisions for flood control as stated herein. When projects are located in a geographically active seismic, wind or flood location, Section 1.4, General Design and Performance Requirements, will elaborate on those requirements and include specifics pertaining to a facility’s “continued operation.” Para. 1.2, Section D is a partial list of components covered herein.

1.2 SUMMARY

A. This section includes the following:

1. All equipment, piping and ductwork as noted on the drawing’s schedule or in the specification shall be seismically braced if the building is so classified as listed herein. Vibration control shall apply as described in all cases herein.

2. All outdoor equipment, including roof-mounted components, shall comply with section 1609, Wind Load, IBC-2006. There shall be no decrease of the effects of wind load on a component due to other structures or components acting as blocks or screens.

3. All below, at grade or above grade locations located in a flood hazard area as defined and located herein.

4. Seismic bracing, wind, flood load and isolation materials shall be the certified products of the same manufacturing group and shall be certified by that group.

5. It is the intent of the seismic and wind load portion of this specification to keep all mechanical, building system components in place during a seismic or high wind event and additionally operational where the occupancy category of the building so requires as listed herein.

6. All such systems must be installed in strict accordance with seismic/wind codes, component manufacturer’s and building construction standards.

7. This specification is considered to be minimum requirements for seismic, wind, flood and vibration control considerations.

8. Any variation, which results in non-compliance with the specification requirements, shall be corrected by the contractor in an approved manner.

B. The work in this section includes, but is not limited to, the following:

1. Vibration isolation for piping, ductwork and equipment, all referred to as components.
2. Component isolation bases.
4. Seismic restraints for non-isolated components.
5. Wind restraints for isolated components.
6. Wind restraints for non-isolated components.
7. Flood restraints for isolated components.
8. Flood restraints for non-isolated components.
9. Certification of seismic, wind or flood restraint designs.
10. Installation supervision.
11. Design of attachment of housekeeping pads.
12. All components requiring IBC compliance and certification.
13. All inspection and test procedures for components requiring IBC compliance.

C. All mechanical equipment, pipe and ductwork, within, on or outdoors of the building and entry of services to the building, up to but not including, the utility connection, is part of this Specification.

D. Components referred to below are typical. (Components not listed are still included in this specification.) All systems that are part of the building in any way are referred to as components, including:

- AC Units
- Adapter Curb
- Air Handling Units
- Air Separators
- Boilers
- Cabinet Unit Heaters
- Compressor
- Computer Room Units
- Condensing Units
- Curbs
- Ductwork
- Equipment Supports
- Water Heaters
- Fans (all types)
- Fan Coil Units
- Heat Exchangers
- Pipe
- Pumps (all types)
- Risers
- Rooftop Units
- Supports
- Tanks (all types)
- Unit Heaters
- Unit Ventilators
- VAV Boxes
- Vibration Isolators

1.3 DEFINITIONS (building and components, all codes)

A. ESSENTIAL FACILITIES, (Occupancy Category IV, IBC-2006)

1. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

B. LIFE SAFETY AND HIGH HAZARD

1. All systems involved with fire protection, including sprinkler piping, jockey pumps, fire pumps,
control panels, service water supply piping, water tanks, fire dampers, smoke exhaust systems and fire alarm panels. (Life Safety)

2. All mechanical, electrical, plumbing or fire protection systems that support the operation of, or are connected to, emergency power equipment, including all lighting, generators, transfer switches and transformers. (Life Safety)

3. All medical and life support systems. (Life Safety)

4. Hospital heating systems and air conditioning systems for maintaining normal ambient temperature. (Life Safety)

5. Automated supply, exhaust, fresh air and relief air systems on emergency control sequence, including air handlers, duct, dampers, etc., or manually-operated systems used for smoke evacuation, purge or fresh air relief by the fire department. (Life Safety)

6. All gases or fluids that must be contained in a closed system which are flammable or combustible. Any gas that poses a health hazard if released into the environment and vented. Fuel Cells. (High Hazard)

7. Heating systems in any facility in Seismic Use Group III, IBC-2000 or Occupancy Category IV, IBC-2003-2006 where the ambient temperature can fall below 32 degrees Fahrenheit. (Life Safety)

C. GENERAL

Anchor: A device, such as an expansion bolt, for connecting equipment bracing members to the structure of a building.

Approved Agency: An established and recognized agency regularly engaged in conducting tests or furnishing analytical or inspection services, when such agency has been approved.

Attachment: See Positive Attachment below.

Basic Wind Speed: The basic wind speed, in mph, for determination of the wind loads shall be as per Section 1609 (IBC-2006), or local code, if more severe. Local jurisdictions shall determine wind speeds for indicated special wind regions located near gorges or mountainous terrain. Section 6.5.4 of ASCE 7-05 shall be used after determination of basic wind speed by the local jurisdiction. See Section 16 09.3 ASCE 7-05 for basic wind speed determination in non-hurricane prone regions.

Bracing: Metal channels, cables or hanger angles that prevent components from breaking away from the structure during an earthquake or high winds. See also Longitudinal Bracing and Transverse Bracing. Together, they resist environmental loads from any direction.

Certificate of Compliance: A certificate stating that materials and products meet specified standards or that work was done in compliance with approved construction documents, provided by an approved agency. (Certificate to be supplied by equipment component manufacturer.)

Component: A non-structural part or element of an architectural, electrical, mechanical, plumbing or fire protection system within or without of a building system.

Component Importance Factor: Factor applied to a component that defines the criticality of that component. This factor can be 1.0 or 1.5.

Component, flexible: Component, including its attachments, having a fundamental period greater
Component, rigid: Component, including its attachments, having a fundamental period less than or equal to 0.06 seconds.

Consequential Damage: The functional and physical interrelationship of components, their supports and their effect on each other shall be considered so that the failure of an essential or non-essential architectural, mechanical or electrical component shall not cause the failure of an essential architectural, mechanical or electrical component.

Equipment: Systems associated with ducts, pipes and conduits also called components.

Flood or Flooding: A general and temporary condition or partial and complete inundation of normally dry land from:

1. The overflow of inland or tidal waters.
2. The unusual and rapid accumulation of runoff of surface waters from any source.

Flood Hazard Area: The greater of the following of two areas:

1. The area within a flood plain subject to a 1 percent or greater chance of flooding in any year.
2. The area designated as a flood hazard area on a community's flood hazard map, or otherwise legally designated.

Special Flood Hazard Area Subject to High Velocity Wave Action: Area within the flood hazard area that is subject to high velocity wave action and shown on a Flood Insurance Rate Map (FIRM) or other flood hazard map as zone V, VO, VE or VI-30.

Flood Insurance Rate Map (FIRM): An official map of a community on which the Federal Emergency Management Agency (FEMA) has delineated both the special flood hazard areas and the risk premium zones applicable to the community.

Gas pipes: For the purposes of this Specification Guide, gas pipe is any pipe that carries fuel, gas, fuel oil, medical gas, or compressed air.

Hazardous Contents: A material that is highly toxic or potentially explosive or corrosive and in sufficient quantity to pose a significant life-safety threat to the general public if an uncontrolled release were to occur.

Hurricane Prone Regions: Areas prone to hurricanes include the U.S. Atlantic Ocean, Gulf Coasts, Hawaii, Puerto Rico, Guam, Virgin Islands, and American Samoa where the wind speed is greater than 90 mph.

Importance Factor, I: A factor that accounts for the degree of hazard to human life and damage to property.

Inspection Certificate: An identification applied on a product by an approved agency containing the name of the manufacturer, the function and performance characteristics, and the name and identification of an approved agency that indicates that the product or material has been inspected and evaluated by an approved agency (see Section 17 03.5 and “Label” and “Manufacturer’s Designation” and “Mark”).

Label: An identification applied on a product by the manufacturer that contains the name of the
manufacturer, the function and performance characteristics, and the name and identification of an approved agency that indicates that the representative sample of the product or material has been tested and evaluated by an approved agency (see Section 17 03.5 and “Inspection Certificate,” “Manufacturer’s Designation” and “Mark”).

Lateral forces: A force acting on a component in the horizontal plane. This force can be in any direction.

Longitudinal bracing: Bracing that prevents a component from moving in the direction of its run.

Longitudinal force: An applied force that happens to be in the same direction as the duct or pipe run.

Mark: An identification applied on a product by the manufacturer indicating the name of the manufacturer and the function of a product or material (see also “Inspection Certificate,” “Label” and “Manufacturer’s Designation”).

Manufacturer’s Designation: An identification applied on a product by the manufacturer indicating that a product or material complies with a specified standard or set of rules (see also “Inspection Certificate,” “Label” and “Mark”).

Occupancy Category: A classification used to determine structural load requirements including those imposed by wind, flood, snow, and seismic based on occupancy of the structure.

Positive Attachment: A mechanical device, designed to resist seismic forces, which connects a non-structural element, such as a duct, to a structural element, such as a beam. Bolts and welding are examples of positive attachments. Surface glue and friction anchorage do not constitute positive attachment. Examples of positive attachment are epoxy cast in anchors and drill in wedge shaped anchor bolts to concrete and welded or bolted connections directly to the building structure. Double-sided beam clamps, C type are not acceptable as either brace point attachments to the structure or for the support of the component at the bracing location.

Seismic: Related to an earthquake. Seismic loads on a structure are caused by wave movements in the earth during an earthquake.

Seismic Design Category: A classification assigned to a structure based on its Seismic Use Group or Occupancy Category and the severity of the design earthquake ground motion at the site.

Seismic Forces: The assumed forces prescribed herein, related to the response of the structure to earthquake motions, to be used in the design of the structure and its components.

Seismic Use Group, Occupancy Category, IBC-2006: A classification assigned to a building based on its use as defined in Section 16 04.516.2.

Site Class: A classification assigned to a site based on the types of soils present and their engineering properties as defined in Table 1613.5.2 (IBC-2006).

Special Inspection: Inspection as herein required of the materials, installation, fabrication, erection or placement of components and connections requiring special documents and referenced standards (see Section 1704, IBC-2006).

Special Inspection, Continuous: The full-time observation of work requiring special inspection by an approved special inspector who is present in the area where the work is being performed.

Special Inspection, Periodic: The part-time or intermittent observation of work requiring special
inspection by an approved special inspector who is present in the area where the work has been or is being performed and at the completion of the work.

Story Drift Ratio: The story drift (Lateral displacement) divided by the story height.

Transverse bracing: Bracing that prevents a component from moving from side to side.

Wind-Borne Debris Region: Portions of hurricane-prone regions that are within 1 mile of the coastal mean high water line where the basic wind speed is 110 mph or greater, or portions of hurricane-prone regions where the basic wind speed is 120 mph or greater; or Hawaii.

1.4 GENERAL DESIGN AND PERFORMANCE REQUIREMENTS

A. General Design Requirements.

1. SEISMIC CONSIDERATIONS: This project has seismic design requirements as follows:
 a. Occupancy Category I, II & III (Seismic Design Category C through F)
 Life Safety Components (Ip = 1.5)
 High Hazard Components (All Gas Fired Components; Indoor and Outdoor) (Ip = 1.5)
 Components affected by Consequential Damage (Ip = 1.0)

2. WIND CONSIDERATIONS: This project has wind design requirements as follows:
 a. Wind load in hurricane, tornado and or wind-borne debris regions (90 plus mph) having a building height less than 60 feet. (Rooftop structures; Section 6.5.15.1 of ASCE 7-05 design requirements apply)

3. FLOOD CONSIDERATIONS: This project has design requirements in accordance with FEMA and/or FIRM as follows:
 a. Flood Hazard Area

B. General Design Performance Requirements

1. Seismic and Wind Load Certification and Analysis:
 a. Attachment calculations by the Seismic Restraint Manufacturer’s licensed Engineer substantiating the mounting system, seismic or wind restraints, fasteners or ICC Certified Concrete Anchors shall be submitted for approval along with the shop drawings. Seismic loads shall have their calculations based on seismic loads as established in Specification Section 1.4, Paragraph B, article 7, Design Seismic Loads. Wind loads shall have their calculations based on Section 1.4, Paragraph B, article 8, Design Wind Loads. A registered professional engineer having a PE from the same state as the project, or state of restraint manufacturer shall stamp all analysis, or as required by local building codes.

 b. Unless otherwise specified, all equipment, piping and ductwork shall be restrained to resist seismic forces. Restraints shall maintain equipment, piping or ductwork in a captive position. Restraint devices shall be designed and selected to meet seismic requirements as defined in the latest issue of:

 1. International Building Code, IBC and ASCE applicable state and local codes.

 2. Importance Factor, Ip = 1.5 Components:
a. In addition to all of the above provisions, for components having an Ip greater than 1.0, all trades shall comply with Sections 16 and 17 of the International Building Code using, when available, vendors that comply with the provisions stated herein and submitting the special inspections listed within these specifications. Where compliance is not possible, each contractor shall submit a vendor report (form CVC-1 at end of this specification) clearly indicating that none of the specified, listed or other vendors known to the contractor meets the compliance, testing and certification portions of the IBC specification’s Sections 16 and 17. Special inspections of the component installation shall still be conducted (Section 1.4, Paragraph B, Article 4) even if no vendors meet the following requirements. All non-isolated and isolated equipment (components) shall be secured to the structure in accordance with that code.

3. All component manufacturers shall submit for approval the following as required below:

a. For all life safety system components noted in this specification: the Approved Agency’s Certificate of Compliance for the specific equipment on this project when the Seismic Design Category is C through F. Analytical or Shaker Test certification through the component’s load path to structure at its center of gravity shall include anchorage, structural and on-line capability. Use of seismic experience data shall be permitted if evidence confirms that the historical based component has the same construction and weight and accompanying center of gravity as submitted unit and basis of experience claim conforms to loads derived in testing with accompanying accelerations based on AC-156. Seismic qualification by seismic experience data based upon nationally recognized procedures acceptable to the authority having jurisdiction shall be deemed to satisfy the design and evaluation requirements provided that the substantiated seismic capacities equal or exceed the seismic demands determined in accordance with Sections 13.3.1 and 13.3.2 of ASCE 7-05.

b. In addition, all components needed for the continued operation of the facility in the above stated categories will have the manufacturer of that component submit the Approved Agency’s Certificate of Compliance for their equipment when the Seismic Design Category is C through F. Analytical or Shaker Test certification through the component’s load path to structure at its center of gravity shall include on line capability. This requirement also pertains to projects that combine an emergency preparedness center within a structure of another Use Group. Where components do not effect the facility’s functional operation but could affect the performance of other components should they dislodge, only anchorage of that component requires compliance. Components needed for continued operation of the building require Analytical or Shaker Test certification through the total component’s load path to structure calculated at its center of gravity. Certification shall prove anchorage, structural and on line capability. For use of seismic experience data, see (a) above.

c. All components containing hazardous or flammable materials will have the manufacturer of the component submit the Approved Agency's Certificate of Compliance for their equipment when used on any project having a minimum Seismic Design Category of C through F. Testing shall be conducted by Analytical or Shaker Test through the total component’s load path to structure at its center of gravity and shall prove anchorage, structural capability and hazardous material containment. Testing shall prove that no internal component will rupture to insure against loss of hazardous or flammable (explosive) material that could support combustion, ignite or contaminate.
d. All components requiring anchorage compliance only, not listed in the above categories, shall have the manufacturer of each component submit a PE stamped calculation package stating that their project specific equipment will accept anchorage by calculating its reactions through the component’s load path to structure at its center of gravity at the designated anchorage locations. This requirement is for all projects having a Seismic Design Category of C through F.

4. Special and Periodic Inspection: (Occupancy Category IV Projects)

The following systems shall require Special Inspection and Periodic Special Inspection for seismic installation and anchorage during the course of construction, as defined earlier in this section for all buildings in Seismic Design Categories C through F.

a. All smoke control systems. Periodic Special Inspection during erection of ductwork and prior to concealment, for leakage testing. Additionally, prior to occupancy for pressure differential testing. (see IBC-2000, Section 17 04.14)

b. All electrical components for standby or emergency power systems require Periodic Special Inspection.*

c. All electrical equipment in Seismic Design Categories E and F. (Periodic)*

d. All flammable, combustible and highly toxic piping and their associated mechanical systems. (Periodic)*

e. All ductwork containing hazardous materials. (Periodic)*

f. All equipment using combustible or toxic energy sources. (Special -1)

g. All electric motors, transformers, switchgear unit substations and motor control centers. (Special -1)

h. Reciprocating and rotating type machinery. (Special -1)

i. Pipe, 3” and larger. (Special -1)

j. Tanks, heat exchangers and pressure vessels. (Special -1)

k. Isolator units for seismic isolation system. (Periodic)*

l. Manufacturer’s written Quality Control Program for projects in Seismic Design Categories E or F.

5. Contractor Responsibilities and Approvals: (Occupancy Category IV Projects)

a. Each contractor responsible for the installation of the components asterisked above (*) shall be responsible for submitting a written contractor’s Statement of Responsibility (IBC Section 17 06.1) (as outlined below) to the design team for their approval.

b. In addition, all -1 items above require Special Inspection in accordance with IBC Section 17 07.8 (Form CQAP and SQA-1) at the end of this specification.

c. Contractor Shall:
 1. Identify the components that are part of the Quality Assurance Plan. (Asterisked above)*
2. Identify all Special Inspection and Testing for components installed as part of this contract.

3. List control procedures within the contractor’s organization for all special inspection and testing, including methods, frequency of reporting and their distribution of those reports.

4. List all personnel, including their qualifications, exercising control over the seismic aspects of the project.

 a. Projects in these categories require seismic bracing for all life safety and high hazard components, Paragraph 1.3B sub-paragraphe 1, 2, 5 and 6. In addition, any unbraced component that could adversely affect the performance of a component that must remain functional, Ip 1.5, or could cause the failure or release of hazardous materials (gas or liquid fuel), must be braced or anchored to avoid such failure. This includes any component that could fall or move laterally. (Consequential Damage, ASCE 7-05, Section 16.2.3.)

7. Design Seismic Loads:
 a. Projects in the United States have a minimum design load of 0.4g for statically mounted components and 0.5g for resiliently mounted components. Actual loads for both internal and external isolation and/or anchorage of components shall be as above or as calculated for the specific project location but in no event shall it be less than the above.

 b. Exclusions for seismic restraint of piping and duct shall be according to applicable codes as stated herein. The minimum horizontal restraint capability shall be 0.4g horizontal and 0.27g vertical (in addition to the gravity load). Life safety equipment defined above shall be designed to withstand a horizontal load of 0.9g and a vertical load of 0.6g.

 c. Analysis for anchorage must indicate calculated dead loads, static seismic loads and capacity of materials utilized for connections to equipment and structure. Analysis must detail anchoring methods, bolt diameter, embedment depth and/or welded length. All seismic restraint devices shall be designed to accept, without failure, the forces detailed in this section, acting through the equipment center of gravity.

 d. Vertical load shall be calculated at 1/3 the horizontal load as a minimum, or, as prescribed by the code as 0.2 times Sds.

 e. Internally isolated equipment in lieu of specified isolation and restraint systems must meet all of the requirements of this section, all articles.

 f. A Seismic Design Errors and Omissions Insurance Certificate MUST accompany the seismic restraint equipment manufacturer’s calculation. Product liability insurance certificates are not acceptable.

 g. Whether the equipment is internally or externally isolated and restrained, the entire unit assembly must be seismically attached to the structure. Curb or roof rail mounted equipment must not only have seismic or wind attachment of the equipment to the roof but also to the curb or rails. The attachment and certification thereof shall be by this section. Sheet metal screw attachment is acceptable provided that the following five
conditions are met and verified.

1. Calculations support sufficient quantity and size of sheet metal screws to handle all loads including shear.

2. Shear and tension allowables are obtained from an accredited third party source, such as ICC or NDS, not from the screw manufacturer.

3. Space or gap between the inside overhang of the rooftop unit and the curb at each of the screw locations is closed with structural material, tapered to contour to both the curb and the components’ inside edge structure.

4. Attachment points of the roof-mounted unit to curb and the curb to structure demonstrates structural load path.

5. The method of attachment does not violate the NRCA rating of the curb by violating the roof member’s waterproofing.

h. Failure is defined as the discontinuance of any attachment point or load path between component and structure. Permanent deformation of the component is acceptable as long as the component continues to operate without failure and, if permanent, it is within acceptable manufacturing or structural tolerances.

8. Design Wind Loads:

a. All outdoor mounted components shall be positively fastened to their supporting structure as discussed below. Fastening to metal deck is unacceptable.

1. If component is curb mounted, article 7, Design Seismic Loads, paragraph g shall be followed for all roof-mounted components in excess of 9 sq. ft. in cross-sectional area. Curbs shall be as described in Base type B-3 if isolated, Base type B-4 if non-isolated.

2. If component is support mounted, article 7, Design Seismic Loads, paragraph g shall be followed for all roof-mounted components requiring waterproofed rail supports. Equipment supports shall be Base type B-5 if isolated, Base type B-6 if non-isolated.

3. If equipment is dunnage mounted, positive attachment shall occur through welding or bolting of equipment to dunnage steel.

b. Loads and calculations shall be based on IBC-2006, figure 1609 and related sections in ASCE 7-05.

c. Where buildings are less than or equal to 60 feet in height to the top of the roof slab (not parapet walls), the force on roof-mounted components shall be based on Section 6.5.15.1, ASCE 7-05.

d. Equivalent basic wind speed shall be based on IBC-2006, Table 1609.3.1.

e. In no event shall adjacent buildings, structures or screens be considered to diminish the calculated wind load or its effect on an outdoor component.

9. Design Flood Loads:
a. When a building or structure is located in a flood hazard area, anchorage for all components subjected to those locations shall follow Section 1.4 B 3d for their proper fastening to structure.

b. Components used for anchorage purposes shall be hot dipped galvanized, cadmium-plated or powder-coated for the purpose of anti-corrosion.

1.5 SUBMITTALS

A. Refer to Part 1, General.

B. Product Data: The manufacturer of vibration isolation, seismic, wind and flood restraints shall provide submittals for products as follows:

 1. Descriptive Data:
 a. Catalog cuts or data sheets on vibration isolators and specific restraints detailing compliance with the specification.
 b. Detailed schedules of flexible and rigidly mounted equipment, showing vibration isolators and restraints by referencing numbered descriptive drawings.

 2. Shop Drawings:
 a. Submit fabrication details for equipment bases including dimensions, structural member sizes and support point locations.
 b. Provide all details of suspension and support for ceiling hung equipment.
 c. Where walls, floors, slabs or supplementary steel work are used for restraint locations, details of acceptable attachment methods for ducts and pipe must be included and approved before the condition is accepted for installation. Restraint manufacturer’s submittals must include spacing and maximum seismic/wind loads at the restraint points.
 d. Provide specific details of restraints and anchors, include number, size and locations for each piece of equipment. Restraint and anchor allowables shall be by structural testing, shake testing, analysis or third party certification.
 e. Calculations shall be submitted as required in Section 1.4, General Design and Performance Requirements.

1.6 QUALITY ASSURANCE

C. Manufacturer of vibration isolation, seismic and wind load control equipment or manufacturer’s approved representative shall have the following responsibilities:

 1. Determine vibration isolation and restraint sizes and locations.
 2. Provide vibration isolation and restraints as scheduled or specified.
 3. Provide calculations and materials, if required, for restraint of non-isolated equipment.
 4. Provide installation instructions in writing, drawings and trained field supervision, where
necessary, to insure proper installation and performance.

5. Certify correctness of installation upon completion, in writing.

6. All provisions of Section 1.4, General Design and Performance Requirements.

D. All manufacturers of vibration control, seismic, wind or flood restraining systems must provide a Seismic Design Error and Omissions Insurance Certificate for their firm or their design consultant to certify their ability to provide engineering and design as required by this section. This document shall be provided at the time of first submittal from the seismic restraint provider.

E. All manufacturers of any type of equipment including OEM are responsible for Section 1.4.

F. Equipment manufacturer’s substitution of internally or externally isolated and/or restrained equipment supplied by the equipment vendor, in lieu of the isolation and restraints specified in this section, is acceptable provided all conditions of this section are met. The equipment manufacturer shall provide a letter of guarantee from their engineering department, PE stamped and certified per the section on the Seismic Restraint Design (See Section 1.4B, article 3), stating that the seismic restraints are in full compliance with these specifications. Where used on an Essential or High Hazard Facility, manufacturer’s certification proving on line capability shall be required in addition to all requirements stated in Section 1.4B. Letters from field offices or representatives are unacceptable.

G. All costs for converting to the specified vibration isolation and/or restraints shall be borne by the component vendor in the event of non-compliance with the preceding. Substitution of internal isolation is unacceptable for:

 (1) Indoor or outdoor mounted equipment over or adjacent to:
 a. Patient or operating areas
 b. Theatre space
 c. Office locations
 d. Assembly areas

1.7 RELATED WORK

2. Housekeeping pad structural design, including its attachment to building structure, shall be by the structural engineer of record or as shown on the contract drawings. Attachment of all components and restraints to the pad and size of the pad shall be designed and certified according to this section by the seismic/isolation supplier. Material and labor required for attachment and construction shall be by the concrete section contractor, or by the contractor where specified. Housekeeping pads shall be sized to accommodate a minimum 6" of clearance all around the equipment; or 12 times the outermost anchor bolt diameter, whichever is greater. Where exterior isolators are used, this distance shall be as measured from the outermost holes in the isolator base plate to the edge of the housekeeping pad.

3. The project’s structural engineer shall design all roof and interior steel to support and make connections to all components, including roof-mounted equipment specified in other sections. Design shall comply with IBC requirements including load path to structure.

4. Roof steel supporting roof-mounted equipment shall be designed for all seismic and wind forces including, but not limited to, tension, compression and moment loads.

5. Chimneys, stacks and boiler breeching passing through floors are to be attached at each floor level with a riser guide.
6. Where ceilings are not braced, lay-in lighting fixtures, weighing more than 20 lbs, shall have at least 2 independent corner diagonal wire ties to structure.

7. Lay-in ceilings in compliance with seismic code requirements may use earthquake clips or other approved means of positive attachment to brace fixtures such as panel lights and diffusers less than 40 lbs to T-bar structures. Local codes dictate fixture support requirements.

1.8 CODE AND STANDARDS REQUIREMENTS

H. Typical Applicable Codes and Standards

1. All City, State and Local Codes (Code)
 (1) SMACNA Guidelines for Seismic Restraint of Mechanical Systems, Second Edition (Standard reference, to be used for design purposes only, not code)
 (2) International Conference of Building Officials (ICBO) (Standard)
 (3) International Building Code (Code)
 (4) ASHRAE (Standard reference, to be used for design purposes only, not code).
 (5) VISCMA (Vibration Isolation and Seismic Controls Manufacturers Association) (Standard reference, to be used for design purposes only, not code).

I. In cases where requirements vary, the guideline for the most stringent shall be utilized.

J. Use IBC-2006 as reference code standard unless otherwise designated.

SECTION 2 – PRODUCTS

2.1 MANUFACTURERS

A. Vibration Mountings and Controls (VMC Group) or engineer approved equal.

B. Available Manufacturers:
 1. All vibration isolators and seismic restraints described in this Section shall be the product of a single manufacturer.
 2. The basis of design in this specification is The VMC Group, including Vibration Mountings & Controls, Amber/Booth or Korfund Dynamics.
 3. Products from other specified manufacturers are acceptable provided their systems strictly comply with these specifications and have the approval of the specifying engineer. Manufacturer shall be a regular member of VISCMA (Vibration Isolation and Seismic Controls Manufacturers Association). See Form VL-1 listing other manufacturers to be considered for use on this project.

2.2 VIBRATION ISOLATION TYPES

A. Type A: Spring Isolator – Free Standing

1. Spring isolators shall be free standing and laterally stable without any housing and complete with a molded elastomeric cup or \(\frac{1}{4} \)“ elastomeric acoustical friction pad between the bottom of isolator and the support.
2. All mountings shall have leveling bolts that must be rigidly bolted to the equipment.

3. Spring diameters shall be no less than 0.8” of the compressed height of the spring at rated load.

4. Springs shall have a minimum additional travel to solid equal to 50% of the operating deflection.

B. Type B: Seismically and Wind Restrained Spring Isolator
 MS, MSS, AEQM, ASCM, AMSR

 1. Restrained spring mountings shall have a Type A spring isolator within a rigid housing that includes vertical limit stops to prevent spring extension if weight is removed. The housing shall serve as blocking during erection. A maximum clearance of ¼” shall be maintained around restraining bolts and internal elastomeric deceleration bushings. Limit stops shall be out of contact during normal operation. If housings are to be bolted or welded in position there must be an internal isolation pad or elastomeric cup. Housing shall be designed to resist all seismic forces.

C. Type C: Combination Spring/Elastomer Hanger Isolator (30° Type)
 HRSA

 1. Hangers shall consist of rigid steel frames containing minimum 1 ¼” thick elastomeric elements at the top and a steel spring with general characteristics as in Type A. The elastomeric element shall have resilient bushings projecting through the steel box.

 2. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30° arc from side to side before contacting the rod bushing and short-circuiting the spring.

 3. Submittals shall include a hanger drawing showing the 30° capability.

 4. Hanger locations requiring pre-compression for holding piping at fixed elevation shall be type pre-compressed or pre-positioning for all manufacturers.

D. Type D: Elastomer Double Deflection Hanger Isolator
 HR

 1. Molded (minimum 1 ¼” thick) elastomeric element with projecting bushing lining the rod clearance hole. Static deflection at rated load shall be a minimum of 0.35.”

 2. Steel retainer box encasing elastomeric mounting capable of supporting equipment up to two times the rated capacity of the element.

E. Type E: Combination Spring/Elastomer Hanger Isolator
 HRS

 1. Spring and elastomeric elements in a steel retainer box with the features as described for Type C and D isolators.

 2. Hanger locations requiring pre-compression for holding piping at fixed elevation shall be type pre-compressed or pre-positioning for all manufacturers.

 3. 30° angularity feature is not required.
F. Type F: Seismically Restrained Elastomer Floor Isolator
 RSM, MB, RUD
 1. Bridge-bearing elastomeric mountings shall have a minimum static deflection of 0.2” and all-
 directional seismic capability. The mount shall consist of a ductile iron or aluminum casting
 containing molded elastomeric elements. The elements shall prevent the central threaded
 sleeve and attachment bolt from contacting the casting during normal operation. The shock-
 absorbing elastomeric materials shall be compounded to bridge-bearing or Durulene™
 specifications.

G. Type G: Pad Type Elastomer Isolator (Standard)
 Maxiflex
 1. One layer of ¾” thick elastomeric pad consisting of 2” square modules for size required.
 2. Load distribution plates shall be used as required.
 3. Bolting required for seismic compliance. Elastomeric and duck washers and bushings shall
 be provided to prevent short-circuiting.

H. Type H: Pad Type Elastomer Isolator (High Density)
 Fabri-Flex, NDB, NRC
 1. Laminated canvas duck and neoprene, maximum loading 1000 psi, minimum ½” thick.
 2. Load distribution plate shall be used as required.
 3. Bolting required for seismic compliance. Elastomeric and duck washers and bushings shall
 be provided to prevent short-circuiting.

I. Type I: Thrust Restraints
 RSHTR, TRK
 1. A spring element similar to Type A isolator shall be combined with steel angles, backup
 plates, threaded rod, washers and nuts to produce a pair of devices capable of limiting
 movement of air handling equipment to ¼” due to thrust forces. Contractor shall supply
 hardware.
 2. Thrust restraints shall be installed on all cabinet fan heads, axial or centrifugal fans whose
 thrust exceeds 10% of unit weight.

J. Type J: Pipe Anchors
 MDPA, AG
 1. All-directional acoustical pipe anchor, consisting of two sizes of steel tubing or piping
 separated by a minimum ½” thick 60 durometer elastomer.
 2. Vertical restraint shall be provided by similar material arranged to prevent vertical travel in
 either direction.
 3. Applied loads on the isolation material shall not exceed 500 psi and the design shall be
 balanced for equal resistance in any direction.

K. Type K: Pipe Guides
 PG/AG/SWP/SWX
1. Pipe guides shall consist of a telescopic arrangement of two sizes of steel tubing or piping separated by a minimum \(\frac{1}{2} \)" thickness of 60 durometer elastomer.

2. The height of the guides shall be preset with a shear pin to allow vertical motion due to pipe expansion or contraction. Shear pin shall be removable and replaceable to allow for selection of pipe movement.

3. Guides shall be capable of \(\pm 1\frac{5}{8}" \) motion, or to meet location requirements.

L. Type L: Isolated Pipe Hanger System
 CIH, CIR, TIH, PIH

 1. Pre-compressed spring and elastomer isolation hanger combined with pipe support into one assembly. Replaces standard clevis, single or double rod roller, or double rod fixed support.

 2. Spring element (same as Type A) with steel lower spring retainer and an upper elastomer retainer cup with an integral bushing to insulate support rod from the isolation hanger.

 3. The elastomeric element under the lower steel spring retainer shall have an integral bushing to insulate the support rod from the steel spring retainer.

 4. Hangers shall be designed and constructed to support loads over three times the rated load without failure.

 5. Systems shall be pre-compressed to allow for rod insertion and standard leveling.

2.3 SEISMIC RESTRAINT TYPES

A. Type I: Spring Isolator, Restrained
 MS, MSS, AEQM, ASCM, AMRS

 1. Refer to vibration isolation Type B.

B. Type II: Seismically Restrained Elastomer Floor Isolator
 MB, RUD

 1. Refer to vibration isolation Type F.

C. Type III: All-Directional Seismic Snubber
 SR, ER

 1. All-directional seismic snubbers shall consist of interlocking steel members restrained by an elastomeric bushing. Bushing shall be replaceable and a minimum of \(\frac{1}{4}" \) thick. Applied loading shall not exceed 1000 psi. A minimum air gap of \(1/8" \) shall be incorporated in the snubber design in all directions before contact is made between the rigid and resilient surfaces. Snubber end caps shall be removable to allow inspection of internal clearances. Elastomeric bushings shall be rotated to insure no short circuits exist before systems are activated.

D. Type IV: Floor or Roof Anchorage
 Cast-In Plates

 1. Rigid attachment to structure utilizing wedge type anchor bolts, anchored plates, machine screw, bolting or welding. Power shots are unacceptable.
E. Type V: Seismic Cable Restraints
SB, LRC

1. Seismic Cable Restraints shall consist of galvanized steel aircraft cables sized to resist seismic loads with a minimum safety factor of two and arranged to provide all-directional restraint. Cable end connections shall be steel assemblies that swivel to final installation angle and utilize two clamping bolts to provide proper cable engagement. Cables must not be allowed to bend across sharp edges.

F. Type VI: Rigid Arm Brace
SAB

1. Seismic solid braces shall consist of steel angles or channels to resist seismic loads with a minimum safety factor of two and arranged to provide all-directional restraint. Seismic solid brace end connectors shall be steel assemblies that swivel to the final installation angle and utilize two anchor bolts to provide proper attachment spaced to ICBO standards for attachment to concrete.

G. Type VII: Internal Clevis Cross Brace
ICB

1. Internal clevis cross braces at seismic locations shall be pre-cut pipe or other approved device sized for internal dimensions.

H. Type VIII: Seismic Waterproof Foundation Wall Sleeve
SWFWS

1. Seismic waterproof foundation wall sleeves shall consist of two elastomeric sleeves that shall be mounted both inside and out of the vertical foundation wall. The conical design shall have a suitably waterproof means of fastening to both concrete and to its concentric utility pipe. Allowable vertical drift shall be ± 2" from the installed neutral point along the vertical "y" axis. All fittings shall be stainless steel or galvanized.

2.4 EQUIPMENT BASES

A. General

1. All curbs and roof rails are to be bolted or welded to the building steel or anchored to the concrete deck (minimum thickness shall be 4") for resisting wind and seismic forces in accordance with the project location. (Fastening to metal deck is unacceptable.)

B. Base Types

1. Type B-1: Integral Structural Steel Base
WFB, SFB, WSB

 (a) Rectangular bases are preferred for all equipment.

 (b) Centrifugal refrigeration machines and pump bases may be T or L shaped where space is a problem. Pump bases for split case and end suction pumps shall include supports for suction and discharge elbows.

 (c) All perimeter members shall be structural steel beams with a minimum depth equal to 1/12 of the longest dimension between isolators.

 (d) Base depth need not exceed 12" provided that the deflection and misalignment is
kept within acceptable limits as determined by the manufacturer.

(e) Height saving brackets shall be employed in all mounting locations to provide a minimum base clearance of 2."

2. Type B-2: Concrete Inertia Base
 MPF, WPF, CPF

(a) Vibration isolation manufacturer shall furnish rectangular welded or bolted modular steel concrete pouring forms for floating and inertia foundations.

(b) Bases for split case and end suction pumps shall be large enough to provide for suction and discharge elbows.

(c) Bases shall be a minimum of 1/12 of the longest dimension between isolators but not less than 6."

(d) The base depth need not exceed 12” unless specifically recommended by the base manufacturer for mass or rigidity.

(e) Forms shall include a minimum concrete reinforcing consisting of 3/8” bars welded in place a maximum of 16" on centers running both ways in a layer 1 to 1½” above the bottom.

(f) Forms shall be furnished with steel templates to hold the component anchor bolts sleeves and anchors while concrete is being poured.

(g) Height saving brackets shall be employed in all mounting locations to maintain a 2” minimum operational clearance below the base.

3. Type B-3: Seismic Isolation Curb
 P6200, P6300

 Option: Sound Package 1 & 2 VMC/AB-RPFMA/SRPFMA

(a) Curb-mounted rooftop equipment shown on isolation schedule shall be mounted on structural seismic spring isolation curbs. The upper frame must provide continuous support for the equipment and must be captive so as to resiliently resist wind and seismic forces. The lower frame must accept point support for both seismic attachment and leveling. The upper frame must be designed with positive fastening provisions (welding or bolting), to anchor the rooftop unit to the curb, which will not violate the National Roofing Contractors Association (NRCA) ratings of the membrane waterproofing. Sheet metal screws are only acceptable if all provisions in Section 1.4, Article B, paragraph 7, Design Seismic Loads, are met. Contact points between the rooftop unit, the curb and the building’s structure shall show load path through those locations only.

(b) All-directional elastomeric snubber bushings shall be minimum of ¼” thick. Steel springs shall be laterally stable and rest on ¼” thick elastomeric acoustical pads or cups.

(c) Hardware must be plated and the springs shall be powder-coated or cadmium-plated.

(d) The curb’s waterproofing shall be designed to meet all NRCA requirements.

(e) All spring locations shall have full spring view access ports with removable
waterproof covers and all isolators shall be adjustable, removable and interchangeable.

(f) Isolated curbs shall be supplied with a continuous air seal between the upper floating member and the stationary wood nailer.

Option #1 Where sound barrier package is required, curb shall have full size lay in attenuation panels having a minimum STC rating of 60 when combined with the roof deck’s rating. Attenuation system shall add a full sound attenuation structural floor to the curb capable of spanning the curb’s width and designed for live loads of 20 psf. Panels shall not weigh more than 6 psf. The 4” nominal galvanized panel shall be joined to allow for airtight construction and additionally shall have a support system where the panels are used below an outside condenser section. Panels shall be waterproof for both outdoor and indoor application. The space below the curb panels and the roof deck shall have 4” of insulation contractor furnished and installed.

Curb wall construction shall utilize the roofer’s standard insulation where curbs use the TAS open thermal acoustical screening system. Solid wall curbs shall use 2” of the factory duct liner installed by the curb manufacturer. The entire curb shall have a continuous neoprene elastomeric air seal. Type RPFMA shall use an open return system with the roof return opening set as far as possible from the unit’s return opening.

Option # 2 When curb type SRPFMA (Supply Return Plenum Construction) is required, in addition to Option #1 the walls of the supply section will use 2” sound attenuating panels as well as a continuous inner elastomeric air seal and isolated plenum divider. Both supply and return ducts shall seal directly to curb base floor attenuation panels.

4. Type B-4: Seismic Non-Isolated Curbs
 P6000

 Option: Sound Package VMC-RPFMA/SRPFMA System

 (a) Seismic curbs shall have all provisions as Type B-3 curbs with the exception of spring isolation.

 (b) System shall be designed for positive anchorage or welding of equipment to supports and welding of supports to the building steel, capable of carrying the design seismic loads.

5. Type B-5: Isolated Equipment Supports
 R7200/R7300

 (a) Continuous structural equipment support rails that combine equipment support and isolation mounting into one unitized roof flashed assembly with all features as described for Type B-3.

 (b) System shall be designed for positive anchorage or welding of equipment to supports and welding of supports to the building steel, capable of carrying the design seismic loads.

6. Type B-6: Non-Isolated Equipment Supports
 R7000

 (a) This shall have the same provisions as Type B-5 without the spring isolation.
7. **Type B-7: Computer Room Unit Base**

 SFS

 (a) Computer Room air conditioning units shall be welded or bolted to welded structural steel stands having a minimum 0.5 “G” certified lateral acceleration capabilities, but no less than the design seismic loads.

 (b) Elastomeric isolated stands shall have 1” of adjustment to accommodate floor irregularities and 0.25” of nominal static deflection.

 (c) Spring isolated stands shall have 1” of adjustment to accommodate floor irregularities and 2” of nominal static deflection.

 (d) Bolting or welding is required to meet seismic criteria.

 (e) Stands to have positive fastening provisions for bolting of computer room unit to seismic floor stand and fastening of seismic isolated floor stand to structure, capable of carrying the design seismic loads.

8. **Type B-8 AHU / AC unit Structural Base Frames**

 (a) Where roof mounted Air Conditioning or Air Handling Units are placed on steel platforms and are incapable of being point loaded or supported, structural frames shall be furnished which will either match the centerline dimensions of the unit’s base frame rail or its curb dimensions. The structural frame shall have provisions to be welded or bolted to the unit’s base frame and shall be supported on type “B” wind /seismic restrained isolation system.

 (b) Isolator deflection shall be either 1.5” or 2.5” depending on the tonnage of the roof mounted component as shown in Isolation Table “A”. Structural Base Frame shall be type RTSBF as manufactured by The VMC Group.

9. **Type B-9: Structural Adapter Curbs**

 (a) Structural Adapter Curbs will be designed to match the replacement unit’s curb dimensions to the existing unit’s curb dimensions, matching both supply and return air delivery systems of both components or creating a plenum to accommodate airflow of both components.

 (b) The new adapter curb will be structurally designed to rest on the existing curb only and carry the new unit’s load directly to building steel or concrete thru stanchions that are welded or bolted to both within the confines of the existing curb. Additionally, the new roof mounted unit will be welded or bolted to the structural adapter and shall demonstrate load path of all loads from all components into the building structure.

 (c) Where the installed unit component’s height to the unit’s electrical disconnect box is in excess of 78”, a service platform or other suitable staging shall be utilized.

 (d) Structural Adapter Curbs shall be Type PSAC-6000 as manufactured by The VMC Group.

10. **Type B-10 Structural Isolated Adapter Curbs:**

 (a) Where isolation is required to be incorporated into the adapter curb, isolation and restraining system shall be similar to the requirements highlighted under Base Type B-3. Isolator deflection shall be either 2” or 3” deflection as required by Isolation Table “A”.

Two River Theater
Additions and Alterations
23 0548 - 20
VIBRATION & SEISMIC CONTROLS FOR HVAC
Structural Isolated Adapter Curbs shall be Type PSAC-6200 or PSAC-6300 as manufactured by The VMC Group.

2.5 FLEXIBLE CONNECTORS

A. Type FC-2: Flexible Stainless Steel Hose
 SS-FP, SS-FW, SS-PM, SS-WE
 1. Flexible stainless steel hose shall have stainless steel braid and carbon steel fittings. Sizes 3” and larger shall be flanged. Smaller sizes shall have male nipples.

B. Type BC-2 connector shall be braided bronze for Freon connections.
 1. Minimum lengths shall be as tabulated:

<table>
<thead>
<tr>
<th>Flanged</th>
<th>Male Nipples</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 14</td>
<td>½ x 9</td>
</tr>
<tr>
<td>4 x 15</td>
<td>¾ x 10</td>
</tr>
<tr>
<td>5 x 19</td>
<td>1 x 11</td>
</tr>
<tr>
<td>6 x 20</td>
<td>1 ¼ x 12</td>
</tr>
<tr>
<td>8 x 22</td>
<td>1 ½ x 13</td>
</tr>
<tr>
<td>4 x 15</td>
<td>2 x 14</td>
</tr>
<tr>
<td>5 x 19</td>
<td>2 ½ x 18</td>
</tr>
<tr>
<td>6 x 20</td>
<td>2 x 14</td>
</tr>
<tr>
<td>8 x 22</td>
<td>2 ½ x 18</td>
</tr>
</tbody>
</table>

2. Hoses shall be installed on the equipment side of the shut-off valves horizontally and parallel to the equipment shafts wherever possible.

PART 3- EXECUTION

3.1 EXAMINATION

A. All areas that will receive components requiring vibration control, seismic or wind load bracing shall be thoroughly examined for deficiencies that will affect their installation or performance. Such deficiencies shall be corrected prior to the installation of any such system.

B. Examine all “rough ins” including anchors and reinforcing prior to placement.

3.2 APPLICATIONS

A. All vibration isolators and seismic, wind restraint systems must be installed in strict accordance with the manufacturer’s written instructions and all certified submittal data.

B. Installation of vibration isolators and seismic, wind restraints must not cause any change of position of equipment, piping or ductwork resulting in stresses or misalignment.

C. No rigid connections between equipment and the building structure shall be made that degrades the noise and vibration control system specified herein.

D. The contractor shall not install any isolated components in a manner that makes rigid connections with the building unless isolation is not specified. “Building” includes, but is not limited to, slabs, beams, columns, studs and walls.

E. Coordinate work with other trades to avoid rigid contact with the building.

F. Overstressing of the building structure must not occur due to overhead support of equipment. Contractor must submit loads to the structural engineer of record for approval. General bracing may occur from flanges of structural beams, upper truss cords in bar joist construction and cast in...
place inserts or wedge type drill-in concrete anchors.

G. Seismic cable restraints shall be installed slightly slack to avoid short circuiting the isolated suspended equipment or piping.

H. Seismic cable assemblies are installed taut on non-isolated systems. Seismic rigid braces may be used in place of cables on rigidly attached systems.

I. At locations where seismic cable restraints or seismic single arm braces are located, the support rods must be braced when necessary to accept compressive loads. See Table “E.”

J. At all locations where seismic cable braces and seismic cable restraints are attached to the pipe clevis, the clevis bolt must be reinforced with pipe clevis cross bolt braces or double inside nuts if required by seismic acceleration levels.

K. Vibration isolation manufacturer shall furnish integral structural steel bases as required. Independent steel rails are not permitted.

L. Air handling equipment and centrifugal fans shall be protected against excessive displacement which results from high air thrust in relation to the equipment weight. Horizontal thrust restraints shall be those described in the specification when horizontal motion exceeds 3/8.”

M. Special and Periodic Inspections for items listed in Section 1.4, Article B shall be conducted and submitted on a timely basis.

3.3 EQUIPMENT INSTALLATION

A. Equipment shall be isolated and/or restrained as per Tables A-E at the end of this section.

B. Place floor mounted equipment on 4” actual height concrete housekeeping pads properly sized and doweled or expansion shielded to the structural deck to meet acceleration criteria (see Section 1.4). Anchor isolators and/or bases to housekeeping pads. Concrete work is specified under that section of the contract documents.

C. Additional Requirements:

1. The minimum operating clearance under all isolated components bases shall be 2.”

2. All bases shall be placed in position and supported temporarily by blocks or shims, as appropriate, prior to the installation of the equipment, isolators and restraints.

3. All components shall be installed on blocks to the operating height of the isolators. After the entire installation is complete and under full load including water, the isolators shall be adjusted so that the load is transferred from the blocks to the isolators. Remove all debris from beneath the equipment and verify that there are no short circuits of the isolation. The equipment shall be free to move in all directions, within the limits of the restraints.

4. Ceilings containing diffusers or lighting fixtures must meet seismic requirements by using earthquake clips of other approved means of positive attachment to secure diffuser and fixtures to T-bar structure.

5. All floor or wall-mounted equipment and tanks shall be restrained with Type V restraints.

3.4 PIPING AND DUCTWORK ISOLATION

A. Vibration Isolation of Piping:
1. HVAC Water Piping: All spring type isolation hangers shall be pre-compressed or pre-positioned if isolators are installed prior to fluid charge. If installed afterwards, field pre-compressed isolators can be used. All HVAC piping in the machine room shall be isolated as well as pressurized runs in other locations of the building 6” and larger. Type E hangers shall isolate horizontal pressurized runs in all other locations of the building. Floor supported piping shall rest on Type B isolators. Heat exchangers and expansion tanks are considered part of the piping run. The first 3 isolators from the isolated equipment shall have at least the same static deflection as specified for the mountings under the connected equipment. If piping is connected to equipment located in basements and hangs from ceilings under occupied spaces, the first 3 hangers shall have 0.75” nominal deflection or greater for pipe sizes up to and including 3,” 1 3/8” nominal deflection or greater for pipe sizes greater than 3.” Where column spacing exceeds 35’, isolation hanger deflection shall be 2½” for pipes exceeding 3” diameter. Type L hangers may be substituted for the above where isolation hangers are required.

2. Steam and Condensate Piping: All ceiling suspended piping in the mechanical equipment room shall be isolated with Type D hangers. All floor supported piping shall be supported with Type F isolators. At locations where supports are either acting as anchors or guides, Type D and F isolators shall be deleted and anchor or guide shall be resiliently attached to the structure utilizing isolation washers and bushings to prevent metal to metal contact. Isolation washers and bushings shall be molded from Type “H” material.

3. Plumbing Water Lines: Plumbing water lines in the machine room shall only be isolated if connected to isolated equipment. (See Table B.) Isolator type shall be as listed in Article 1, above.

4. Riser Location: All risers shall be supported on Type J or K anchors or guide restraints positively attached to both the riser and structure. Spiders welded to the pipe can substitute for Type K guides using J Type anchors.

5. Control Air Piping: Where control air piping is connected to isolated components, all piping shall be isolated and equipment shall be flexibly connected in horizontal and vertical plane with Type FC-2 flexible connectors.

6. Gas lines shall not be isolated.

7. Fire protection lines shall not be isolated.

B. Seismic Restraint of Piping:

1. All high hazard and life safety pipe regardless of size such as fuel oil piping, fire protection mains, gas piping, medical gas piping and compressed air piping and piping with an Ip=1.5 shall be seismically restrained or braced. Type V seismic cable restraints or resilient single arm braces shall be used if piping is isolated. Type V seismic cable restraints or Type VI single arm braces may be used on non-isolated piping. There are no exclusions for size or distance in this category.

2. Seismically restrain piping, with an Ip = 1.0, located in boiler rooms, mechanical equipment rooms and refrigeration equipment rooms that is 1¼” I.D. and larger. Type V seismic cable restraints or resilient single arm braces shall be used if piping is isolated. Type V seismic cable restraints or Type VI single arm braces may be used on non-isolated piping.
3. Seismically restrain all other piping 2½“ diameter and larger. Type V seismic cable restraints or resilient single arm braces shall be used if piping is isolated. Type VI seismic cable restraints or single arm braces may be used on non-isolated piping.

4. See Table D for maximum seismic bracing distances.

5. Multiple runs of pipe on the same support shall have distance determined by calculation.

6. Rod braces shall be used for all rod lengths as listed in Table E.

7. Clevis hangers shall have braces placed inside of hanger at seismic brace locations.

8. Where thermal expansion is a consideration, guides and anchors may be used as transverse and longitudinal restraints provided they have a capacity equal to or greater than the restraint loads in addition to the loads induced by expansion or contraction.

9. For fuel oil and all gas piping, transverse restraints must be at 20’ maximum and longitudinal restraints at 40’ maximum spacing.

10. Transverse restraint for one pipe section may also act as longitudinal restraint for a pipe section of the same or smaller size connected perpendicular to it if the restraint is installed within 24” of the centerline of the smaller pipe or combined stresses are within allowable limits at longer distances.

11. Hold down clamps must be used to attach pipe to all trapeze members before applying restraints. Use Type V or VI restraint, if trapeze is smaller than 48” long.

12. Branch lines may not be used to restrain main lines or cross-mains.

13. All fire protection branch lines shall be end tied.

14. Where pipe passes through a fire-rated, seismic gypsum wall, the wall can act as a lateral/transverse brace for pipe sizes up to and including 6,” provided fire stopping material is tight to the pipe.

15. Where pipe passes through a seismic block or concrete wall, the wall can act as a lateral/transverse brace.

16. Where horizontal pipe crosses a building’s drift expansion joint, allowance shall be part of the design to accommodate differential motion.

17. Vertical pipe rises between floors shall have their differential movement part of the seismic design for building drift.

18. For horizontal passage of all underground utilities through building’s foundation wall, all pipes shall pass freely through an oversized opening and waterproofed accordingly to accommodate maximum allowable building drift. (Seismic Restraint Type VIII).

C. Vibration Isolation of Ductwork:

1. All discharge runs for a distance of 50’ from the connected equipment shall be isolated from the building structure by means of Type A or Type E isolators. Actual spring deflection shall be a minimum of 0.75.”

2. All duct runs having air velocity of 1500 feet per minute (fpm) or more shall be isolated from the building structure by Type E combination spring elastomer hangers or Type A floor spring
supports. Spring deflection shall be a minimum of 0.75.”

D. Seismic Restraint of Ductwork:

1. Restrain rectangular ductwork with cross sectional area of 6 square feet or larger. Type V seismic cable restraints or Type VI single arm braces shall be used on this duct. Duct that serves a life safety function or carries toxic materials in an “Essential or High Hazard Facility” must be braced with no exceptions regardless of size or distance requirements.

2. Restrain round ducts with diameters of 28” or larger. Type V seismic cable restraints or Type VI single arm braces.

3. Restrain flat oval ducts the same as rectangular ducts of the same nominal size.

4. See Table D for maximum seismic bracing distances.

5. Duct must be reinforced at the restraint locations. Reinforcement shall consist of an additional angle on top of the ductwork that is attached to the support hanger rods. Ductwork is to be attached to both upper angle and lower trapeze. Additional reinforcing is not required if duct sections are mechanically fastened together with frame bolts and positively fastened to the duct support suspension system.

6. A group of ducts may be combined in a larger frame so that the combined weights and dimensions of the ducts are less than or equal to the maximum weight and dimensions of the duct for which bracing details are selected.

7. Walls, including gypsum board non-bearing partitions, which have ducts running through them, may replace a typical transverse brace. Provide channel framing around ducts and solid blocking between the duct and frame.

8. If ducts are supported by angles, channels or struts, ducts shall be fastened to it at seismic brace locations in lieu of duct reinforcement.

EXEMPTIONS

(a) EQUIPMENT:
 1. Curb-mounted mushroom, exhaust and vent fans with curb area less than nine square feet are excluded.
 2. Floor or curb-mounted equipment weighing less than 400 lbs and not resiliently mounted, where the Importance Factor, Ip = 1.0 and there is no possibility of consequential damage.
 3. Equipment weighing less than 20 lbs and distribution systems weighing less than 5 lbs/lineal foot, with an Ip = 1.0 and where flexible connections exist between the component and associated ductwork, piping or conduit.
 4. Chain supported lighting fixtures as described in Section 13.6.1 (ASCE 7-05).

(b) DUCT (Applies to Ip = 1.0 only)
 1. Rectangular, square, and oval air handling ducts less than six square feet in cross sectional area.
 2. Round air handling duct less than 28 inches in diameter.
 3. Duct runs supported at locations by two rods less than 12 inches in length from the structural support to the structural connection to the ductwork.

(c) PIPING
 1. All high deformability pipe 3” or less in diameter suspended by individual
2. High deformability pipe or conduit in Seismic Design Category C, 2” or less in diameter suspended by individual hanger rods where $Ip = 1.5$.

3. High deformability pipe in Seismic Design Category D, E or F, 1” or less in diameter suspended by individual hanger rods where $Ip = 1.5$.

4. All clevis supported pipe runs installed less than 12” from the top of the pipe to the underside of the support point and trapeze supported pipe suspended by hanger rods having a distance less than 12” in length from the underside of the pipe support to the support point of the structure.

5. Piping systems, including their supports, designed and constructed in accordance with ASME B31.

6. Piping systems, including their supports, designed and constructed in accordance with NFPA, provided they meet the force and displacement requirements of Section 13.3.1 and 13.3.2 (ASCE 7-05).

EXCEPTIONS DO NOT APPLY FOR:

(a) **LIFE SAFETY or HIGH HAZARD COMPONENTS**

1. Including gas, fire protection, medical gas, fuel oil and compressed air needed for the continued operation of the facility or whose failure could impair the facility’s continued operation, Occupancy Category IV, IBC-2006 as listed in Section 1.3 B regardless of governing code for HVAC, Plumbing, Electrical piping or equipment. *(A partial list is illustrated.)* High Hazard is additionally classified as any system handling flammable, combustible or toxic material. Typical systems not excluded are additionally listed below.

(b) **ELECTRICAL**

1. Includes critical, standby or emergency power components including conduit (1” nominal diameter and larger) cable tray or bus duct, lighting, panels, communication lines involving 911, etc.

(c) **PIPEING**

1. Fuel oil, gasoline, natural gas, medical gas, steam, compressed air or any piping containing hazardous, flammable, combustible, toxic or corrosive materials. Fire protection standpipe, risers and mains. Fire Sprinkler Branch Lines must be end tied.

(d) **DUCT**

1. Smoke evacuation duct or fresh air make up connected to emergency system, emergency generator exhaust, boiler breeching or as used by the fire department on manual override.

(e) **EQUIPMENT**

1. Previously excluded non-life safety duct mounted systems such as fans, variable air volume boxes, heat exchangers and humidifiers having a weight greater than 75 lbs require independent seismic bracing.

3.5 FIELD QUALITY CONTROL, INSPECTION

A. All Independent Special and Periodic Inspections must be performed and submitted on components as outlined in Section 1.4 B, Article 4. *(See also Contractor Responsibility, Section 1.4B, Article 5.)* Note: Special Inspection services are to be supplied by the owner.

B. Upon completion of installation of all vibration isolation devices, the manufacturer’s chosen representative shall inspect the completed project and certify in writing to the Contractor that all systems are installed properly, or list any that require correction. The contractor shall submit a
report to the Architect, including the representative’s report, certifying correctness of the installation or detailing corrective work to be done.

4.0 Selection Guide For Vibration Isolation and Seismic Restraint

<table>
<thead>
<tr>
<th>TABLE “A” HVAC EQUIPMENT</th>
<th>ON GRADE, BASEMENT OR SLAB ON GRADE</th>
<th>ABOVE GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT (See Notes)</td>
<td>Size/Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mtg</td>
<td>Isol</td>
</tr>
<tr>
<td>Air Handling Units</td>
<td>Floor</td>
<td>B</td>
</tr>
<tr>
<td>Indoor</td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Air Compressor, Tanks</td>
<td>To 10 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>or Floor Mounted</td>
<td>>10 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>Dry Coolers</td>
<td>Roof</td>
<td>---</td>
</tr>
<tr>
<td>Outdoor Condensing Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Condensers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial Fans (Inline Type)</td>
<td>Floor</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Base Mounted Pumps</td>
<td>To 15 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>>15 HP</td>
<td>Floor</td>
<td>B</td>
</tr>
<tr>
<td>Boilers</td>
<td>Floor</td>
<td>G</td>
</tr>
<tr>
<td>Cabinet Fans &</td>
<td>To 1 HP</td>
<td>Floor</td>
</tr>
<tr>
<td>Packaged AHU</td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Indoor</td>
<td>>1 HP</td>
<td>Floor</td>
</tr>
<tr>
<td></td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Centrifugal Fans</td>
<td>Class 1</td>
<td>Floor</td>
</tr>
<tr>
<td>Arr. 1 & 3</td>
<td>Class 2 & 3</td>
<td>Floor</td>
</tr>
<tr>
<td>Centrif. Fans (Vent</td>
<td>Class 1</td>
<td>Floor</td>
</tr>
<tr>
<td>Sets) Arr. 9 & 10</td>
<td>Class 2 & 3</td>
<td>Ceiling</td>
</tr>
<tr>
<td>Computer Room Units</td>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td>Condensate Pumps</td>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Curb Mtd. Equip. (Non-Isol.)</td>
<td>Roof</td>
</tr>
<tr>
<td>Fan Coil Units</td>
<td>Floor</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Ceiling</td>
<td>---</td>
</tr>
<tr>
<td>Rooftop AHU/AC (curb</td>
<td>< 10 Ton</td>
<td>Roof</td>
</tr>
<tr>
<td>mounted)</td>
<td>> 10 Ton</td>
<td>Roof</td>
</tr>
<tr>
<td>Rooftop AHU/AC (dunnage</td>
<td>< 10 Ton</td>
<td>Roof</td>
</tr>
<tr>
<td>mounted)</td>
<td>> 10 Ton</td>
<td>Roof</td>
</tr>
</tbody>
</table>

*See Minimum Deflection Guide for Equipment with Low RPM
Minimum Deflection Guide for Equipment with Low RPM

<table>
<thead>
<tr>
<th>Lowest RPM of Rotating Equipment</th>
<th>Minimum Actual Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than 400</td>
<td>3.5"</td>
</tr>
<tr>
<td>401 thru 600</td>
<td>2.5"</td>
</tr>
<tr>
<td>601 thru 900</td>
<td>1.5"</td>
</tr>
<tr>
<td>Greater than 900</td>
<td>0.75"</td>
</tr>
</tbody>
</table>

General Notes for All Tables:

A. Abbreviations:
 1. Mtg = Mounting
 2. ol = Vibration Isolator Type per Section 2.2, Vibration Isolation Types
 3. Defl = Minimum Deflection of Vibration Isolator
 4. Base = Base Type per Section 2.4, Equipment Bases
 5. Restr = Seismic Restraint Type per Section 2.3 Seismic Restraint Types

B. All deflections indicated are in inches.

C. For equipment with variable speed driven components having driven operating speed below 600 rpm, select isolation deflection from minimum deflection guide.

D. For roof applications, use base Type B-5.

E. Specification Option #1 called out on equipment schedule in curb Type B-3 shall use sound barrier RPFMA when there is no concrete under rooftop units and this option is selected. Curbs can be used for return plenums. (See Option #1 under curb type B-3.)

F. Specification Option #2, called out on equipment schedule in curb Type B-3 shall be used where curbs require supply and return sound attenuation package type SPFMA shall be used. (See Option #2 under curb type B-3.)

G. Units may not be capable of point support. Refer to separate air handling unit specification section. If that section does not provide base and external isolation is required, provide Type B-1 base by this section for entire unit.

H. Static deflection shall be determined based on the deflection guide for Table “A.”

I. Deflections indicated are minimums at actual load and shall be selected for manufacturer’s nominal 5”, 4”, 3”, 2” and 1” deflection spring series; RPM is defined as the lowest operating speed of the equipment.

J. Single stroke compressors may require inertia bases with thicknesses greater than 14” maximum as described for base B-2. Inertia base mass shall be sufficient to maintain double amplitude for 1/8.”

K. Floor mounted fans, substitute base Type B-2 for class 2 or 3 or any fan having static pressure over 5.”

L. Indoor utility sets with wheel diameters less than 24” need not have deflections greater than .75.”

M. Curb-mounted fans with curb area less than 9 square feet are excluded.
N. For equipment with multiple motors, Horsepower classification applies to largest single motor.

Engineer’s Note: When either note #s 3 or 4 apply to the project, type RPFMA option #1, or type SPFMA option#2 sound attenuation systems, the use of options #1 or #2 shall appear as a note clearly called out on the equipment schedule for either of these options to apply.

4.1 Spacing Chart For Suspended Components

<table>
<thead>
<tr>
<th>Equipment</th>
<th>On Center Transverse</th>
<th>On Center Longitudinal</th>
<th>Change Of Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct</td>
<td>30 Feet</td>
<td>60 Feet</td>
<td>4 Feet</td>
</tr>
<tr>
<td>Pipe Threaded, Welded, Soldered Or Grooved; Conduit and Conduit Racks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To 16”</td>
<td>40 Feet</td>
<td>80 Feet</td>
<td>4 Feet</td>
</tr>
<tr>
<td>18” – 28”</td>
<td>30 Feet</td>
<td>60 Feet</td>
<td>4 Feet</td>
</tr>
<tr>
<td>30” – 40”</td>
<td>20 Feet</td>
<td>60 Feet</td>
<td>4 Feet</td>
</tr>
<tr>
<td>42” & Larger</td>
<td>10 Feet</td>
<td>30 Feet</td>
<td>4 Feet</td>
</tr>
</tbody>
</table>

4.2 Vertical Hanger Rod Bracing Schedule

<table>
<thead>
<tr>
<th>Rod Dia.</th>
<th>Clamp Size</th>
<th>Maximum Un-braced Rod Length</th>
<th>Steel Angle Size</th>
<th>Clamp Spacing</th>
<th>Min # of Clamps per Stiffener</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>SRBC-1-1/4</td>
<td>19"</td>
<td>1 x 1 x ¼"</td>
<td>16"</td>
<td>2</td>
</tr>
<tr>
<td>1/2"</td>
<td>SRBC-1-1/4</td>
<td>25"</td>
<td>1 x 1 x ¼"</td>
<td>20"</td>
<td>2</td>
</tr>
<tr>
<td>5/8"</td>
<td>SRBC-1-1/4</td>
<td>31"</td>
<td>1 x 1 x ¼"</td>
<td>24"</td>
<td>2</td>
</tr>
<tr>
<td>3/4"</td>
<td>SRBC-1-1/2</td>
<td>37"</td>
<td>1 ½ x 1 ½ x ¼"</td>
<td>28"</td>
<td>2</td>
</tr>
<tr>
<td>7/8"</td>
<td>SRBC-1-1/2</td>
<td>43"</td>
<td>1 ½ x 1 ½ x ¼"</td>
<td>33"</td>
<td>2</td>
</tr>
<tr>
<td>1"</td>
<td>SRBC-1-1/2</td>
<td>50"</td>
<td>1 ½ x 1 ½ x ¼"</td>
<td>40"</td>
<td>2</td>
</tr>
<tr>
<td>1 1/8"</td>
<td>SRBC-1-1/2</td>
<td>62"</td>
<td>1 ½ x 1 ½ x ¼"</td>
<td>50"</td>
<td>2</td>
</tr>
</tbody>
</table>
Section 23 0548
Vibration Isolation and Seismic Restraints

Contractor Name: __________________________
Date: ____________________________________
Project: _________________________________
Specification Section: ____________________

Contractor IBC Quality Assurance Seismic Program.

This form is to be filled out as the identifying document for the Contractor’s Quality Assurance Program (see Contractor Responsibility section 1.4B article 4) before the first submission in any vendor group by the installing contractor. All items listed herein shall be part of that program.

1. Acknowledge special requirements contained in the quality assurance plan
2. Acknowledge that control will be exercised to obtain conformance with the construction documents
3. Procedures for exercising control within the contractor’s organization including frequency and distributions of inspections and testing reports
4. Identification and qualification of the persons exercising control of this program within their organization

Contractor to submit this program acknowledging receipt and program implementation. Each of the 4 listed programs are to be submitted including all applicable details as listed above.

_______________________ Signature

_______________________ Print Name
Section 23 0548
Vibration Isolation and Seismic Restraints

Contractor Name: ____________________________________
Date: ___
Project: ___
Specification Section: __________________________________

Notes to the installing contractor

The purpose of this form is for you, the contractor to fill in all vendors that are IBC compliant as part of your initial submission for any group of equipment, i.e., fans, ac units, pumps, etc. It is acceptable to submit vendors that will be compliant as long as a factory letter is issued stating full compliance will occur at time of shipment. Only IBC compliant vendors can participate on this project. In the event that no vendor in any group is IBC compliant, this information must be submitted to the project’s MEP for approval.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>IBC Compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_______________________ Signature

_______________________ Print Name
FORM SQA-1
FOR USE GROUP III PROJECTS, IBC-2000,

Section 23 0548
Vibration Isolation and Seismic Restraints
Seismic Quality Assurance Plan for The Installation of Life Safety
And High Hazard Systems (Inspections)

Contractor Name: __________________________
Date: ________________________________
Project: ________________________________
Specification Section: _________________________

The following are required for the Seismic Quality Assurance Installation Plan for Life Safety and High Hazard systems to be prepared and submitted by each installing contractor (see Contractor’s Responsibilities paragraph 1.4B, article 5). This plan must reflect all of the provisions and reports outlined in the paragraph below. As part of this contractor’s final requisition, this form must accompany, along with all satisfactorily completed tests and reports, the final payment’s request including all applicable certification reports.

- Special field inspection and testing is required by IBC Sections 1704, 1707 and 1708 during the installation of Life Safety and High Hazard System components including equipment, piping and all electrical connections. Components must be inspected by a Building Official or approved independent special inspector periodically during the course of installation. Contractor shall submit such inspection reports as part of his project wrap up for each group of equipment, components so requiring this program. All components, which are Life Safety, designate or Handle Hazardous substances fall into this category. Typical Life Safety and High Hazard components as well as non-life safety components listed in that section are outlined in 1.3 B of the SGMEC® Specifications.

Signature

Print Name

END OF SECTION 23 0548
SECTION 23 0549
VIBRATION ISOLATION FOR NOISE CONTROL

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specifications Sections apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Recommendations for vibration isolation based upon equipment type and operating conditions.
2. Seismic restraints as required for this project are to be separate of vibration isolation devices, and must not degrade vibration isolation for noise control.
3. If there is a conflict between vibration isolation for seismic restraints and noise control, the stricter requirement shall be used. Seismic code requirements must be maintained.
4. See Table below for “Vibration Isolation Schedule.”

B. Related Sections:

1. Division 23 Section “Vibration & Seismic Controls for HVAC.”

SECTION 2 – PRODUCTS

2.1 MANUFACTURERS

A. Mason Industries or Vibration Mountings and Controls (VMC Group) or engineer approved equal.

SECTION 3 - EXECUTION

3.1 TABLE 3.1 - VIBRATION ISOLATION SCHEDULE FOR NOISE CONTROL

<p>| Table 3.1 – Vibration Isolation Schedule for Noise Control |</p>
<table>
<thead>
<tr>
<th>Equipment Types</th>
<th>Base Type</th>
<th>Isolator Type</th>
<th>Static Defl (in.)</th>
<th>Mason Ind. Type (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans (including AHU, ERU & FCU)</td>
<td>Per Mfr (4)</td>
<td>Spring</td>
<td>4.0</td>
<td>SLF</td>
</tr>
<tr>
<td>Floor/Roof Supported below - 300 rpm (or VFD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 - 450 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>451 - 600 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601 - 750 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751 - 850 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>851 - greater</td>
<td></td>
<td>Sprg/Neop</td>
<td>(above+0.25)</td>
<td>30N</td>
</tr>
<tr>
<td>Suspended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensate Pumps</td>
<td>Per Mfr</td>
<td>Neoprene</td>
<td>0.10</td>
<td>Super W</td>
</tr>
<tr>
<td>Drycoolers, Air-Cooled Condenser, Air-Cooled Chillers, Air-Cooled Equipment</td>
<td>Per Mfr</td>
<td>Restr. Spring (1)</td>
<td>2.0</td>
<td>SLR</td>
</tr>
<tr>
<td>Mechanical and Domestic Pumps (5)</td>
<td>Conc. Iner. Steel</td>
<td>Spring</td>
<td>2.0</td>
<td>KLS</td>
</tr>
<tr>
<td>5HP - greater</td>
<td>Per Mfr</td>
<td>Neoprene</td>
<td>0.50</td>
<td>MND</td>
</tr>
<tr>
<td>less than 5HP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated equipment (assoc. w/pumps & piping)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Water Generators, Boilers</td>
<td>Per Mfr</td>
<td>Restr. Spring</td>
<td>1.0</td>
<td>SLR</td>
</tr>
<tr>
<td>Mechanical and Domestic Piping (2)</td>
<td>as req’d</td>
<td>Spring</td>
<td>1.0</td>
<td>SLR</td>
</tr>
<tr>
<td>Floor Supported</td>
<td></td>
<td>Sprg/Neop</td>
<td>1.25</td>
<td>30N</td>
</tr>
<tr>
<td>Suspended</td>
<td></td>
<td>Neoprene</td>
<td>0.35</td>
<td>HD or ND</td>
</tr>
<tr>
<td>Steam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curb Mounted Roof Equip.</td>
<td>Spring isolation curb</td>
<td>per fans above</td>
<td>RSC</td>
<td></td>
</tr>
</tbody>
</table>

(1) Double layer noise isolation pads to be provided within spring assembly.

(2) All water and steam piping within MER, but not less than 50 feet of equipment or pressure reducing stations, and all piping 4 inches and larger within and/or suspended from occupied floor.

(3) All isolation devices are to be Mason Industries or approved equal.

(4) Vibration isolation scheme to consider fan operating force and provide thrust restraint and/or concrete inertia base in order to limit movement of fan to ¼ inch at any operating point. Thrust restraints to have the same deflection as vibration isolation devices.
(5) In-line pumps to be mounted per manufacturer’s recommendations.

END OF SECTION 23 0549
SECTION 23 0553
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Samples: For color, letter style, and graphic representation required for each identification material and device.
C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
D. Valve numbering scheme.
E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules).

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Red.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Label Content: Include caution and warning information, plus emergency notification instructions.
2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.

 2. Lettering Size: At least 1-1/2 inches high.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

 1. Tag Material: Brass, 0.032-inch, Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

 2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer’s option. Install stenciled pipe labels with painted, color-coded bands or rectangles, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
2. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
3. At access doors, manholes, and similar access points that permit view of concealed piping.
4. Near major equipment items and other points of origination and termination.
5. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

1. Heating Water Piping (HWS & HWR):
 b. Letter Color: Red.

2. Refrigerant Piping:
 a. Background Color: Blue.

3. Gas Piping
 b. Letter Color: Yellow.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering
hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Hot Water: 1-1/2 inches, square.
 c. Gas: 1-1/2 inches square.

2. Valve-Tag Color:
 a. Refrigerant: Green.
 b. Hot Water: Natural.
 c. Gas: Yellow.

3. Letter Color:
 a. Refrigerant: Black.
 b. Hot Water: Black.
 c. Gas: White.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 23 0553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 c. Induction-unit systems.

2. Balancing Hydronic Piping Systems:
 a. Variable-flow hydronic systems.
 b. Primary-secondary hydronic systems.

3. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Condensing units.
 c. Boilers.
 d. Heat-transfer coils.

4. Sound tests.

5. Control system verification.

1.3 DEFINITIONS

B. BMS: Building Management System

D. TAB: Testing, adjusting, and balancing.

F. TAB Specialist: An entity engaged to perform TAB Work.
1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.5 ACTION SUBMITTALS

A. LEED Submittals:

1. Air-Balance Report for Prerequisite IEQ 1: Documentation indicating that work complies with ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
2. TAB Report for Prerequisite EA 2: Documentation indicating that work complies with ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing"

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 60 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Certified TAB reports.

F. Sample report forms.

G. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.7 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC, NEBB or TABB.
1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC, NEBB or TABB.
2. TAB Technician: Employee of the TAB contractor and who is certified by AABC, NEBB or TABB as a TAB technician.

B. TAB Conference: Meet with Architect or Owner on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.

 1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:

 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. TAB Report Forms: Use standard TAB contractor's forms approved by Architect or Commissioning Authority.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.8 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.9 COORDINATION

A. Notice: Provide seven days’ advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.
PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

A. Subject to compliance with requirements, available TAB contractors that may be engaged include, but are not limited to, the following:

1. USC Environmental Inc. - James Stainer, President, Phone: (908) 722-3330
2. Or engineer approved equal.

3.2 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums used for return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

C. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers’ startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.
 2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
e. Strainers are pulled and cleaned.
f. Control valves are functioning per the sequence of operation.
g. Shutoff and balance valves have been verified to be 100 percent open.
h. Pumps are started and proper rotation is verified.
i. Pump gage connections are installed directly at pump inlet and outlet flanges or in
discharge and suction pipe prior to valves or strainers.
j. Variable-frequency controllers' startup is complete and safeties are verified.
k. Suitable access to balancing devices and equipment is provided.

D. Mechanical Contractor shall provide all equipment, material, parts, supplies, and labor to
balance all HVAC equipment to owner's satisfaction.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures
contained in AABC's "National Standards for Total System Balance" or NEBB's "Procedural
Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the
minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness
as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with
requirements in Division 23 Section "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation,
coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position
indicators, fan-speed-control levers, and similar controls and devices, with paint or other
suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and
recommended testing procedures. Crosscheck the summation of required outlet volumes with
required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-
air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
G. Verify that motor starters are equipped with properly sized thermal protection.
H. Check dampers for proper position to achieve desired airflow path.
I. Check for airflow blockages.
J. Check condensate drains for proper connections and functioning.
K. Check for proper sealing of air-handling-unit components.
L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.

2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.

5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

6. Obtain approval from Architect or Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Division 23 Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without planning.
 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Plan using branch volume dampers rather than extractors and the dampers at air terminals.
 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.7 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 3. Measure total system airflow. Adjust to within indicated airflow.
 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.

6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
8. Record final fan-performance data.

C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Balance variable-air-volume systems the same as described for constant-volume air systems.
2. Set terminal units and supply fan at full-airflow condition.
3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
4. Readjust fan airflow for final maximum readings.
5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
3. Set terminal units at full-airflow condition.
4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
5. Adjust terminal units for minimum airflow.
6. Measure static pressure at the sensor.
7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.8 PROCEDURES FOR INDUCTION-UNIT SYSTEMS

A. Balance primary-air risers by measuring static pressure at the nozzles of the top and bottom units of each riser to determine which risers must be throttled. Adjust risers to indicated airflow within specified tolerances.

B. Adjust each induction unit.

C. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

D. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.
E. Balance airflow to each induction unit by measuring the nozzle pressure and comparing it to the manufacturer's published data for nozzle pressure versus cfm. Adjust the unit's inlet damper to achieve the required nozzle pressure for design cfm.

F. Verify final system conditions.
 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 2. Re-measure and confirm that total airflow is within design.
 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 4. Mark all final settings.
 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 6. Measure and record all operating data.
 7. Record final fan-performance data.

3.9 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems’ “as-built” piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check liquid level in expansion tank.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 6. Set system controls so automatic valves are wide open to heat exchangers.
 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.10 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer’s pump curve at zero flow and verify that the pump has the intended impeller size.
 a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Owner and comply with requirements in Division 23 Section "Hydronic Pumps."
2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 a. Monitor motor performance during procedures and do not operate motors in overload conditions.

3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.

4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated presettings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.

J. Check settings and operation of each safety valve. Record settings.

3.11 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:
 1. Verify that the differential-pressure sensor is located as indicated.
 2. Determine whether there is diversity in the system.
C. For systems with no diversity:

1. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.

4. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.
6. Prior to verifying final system conditions, determine the system differential-pressure set point.
7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
8. Mark final settings and verify that all memory stops have been set.
9. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps’ operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.
10. Verify that memory stops have been set.

D. For systems with diversity:

 1. Determine diversity factor.
 2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
 3. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.
 5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
b. Adjust each terminal to design flow.
c. Re-measure each terminal after it is adjusted.
d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
e. Perform temperature tests after flows have been balanced.

6. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure, and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

7. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.

9. Prior to verifying final system conditions, determine system differential-pressure set point.

10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

11. Mark final settings and verify that memory stops have been set.

12. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

13. Verify that memory stops have been set.

3.12 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first.

B. Balance the secondary circuits after the primary circuits are complete.

C. Adjust pumps to deliver total design gpm.

1. Measure total water flow.
 a. Position valves for full flow through coils.
 b. Measure flow by main flow meter, if installed.
 c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.

2. Measure pump TDH as follows:
 a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
c. Convert pressure to head and correct for differences in gage heights.
d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

D. Adjust flow-measuring devices installed in mains and branches to design water flows.
 1. Measure flow in main and branch pipes.
 2. Adjust main and branch balance valves for design flow.
 3. Re-measure each main and branch after all have been adjusted.

E. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 1. Measure flow at terminals.
 2. Adjust each terminal to design flow.
 3. Re-measure each terminal after it is adjusted.
 4. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 5. Perform temperature tests after flows have been balanced.

F. For systems with pressure-independent valves at terminals:
 1. Measure differential pressure and verify that it is within manufacturer's specified range.
 2. Perform temperature tests after flows have been verified.

G. For systems without pressure-independent valves or flow-measuring devices at terminals:
 1. Measure and balance coils by either coil pressure drop or temperature method.
 2. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

H. Verify final system conditions as follows:
 1. Re-measure and confirm that total water flow is within design.
 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 3. Mark final settings.

I. Verify that memory stops have been set.

3.13 PROCEDURES FOR HEAT EXCHANGERS

A. Measure water flow through all circuits.

B. Adjust water flow to within specified tolerances.

C. Measure inlet and outlet water temperatures.
D. Check settings and operation of safety and relief valves. Record settings.

3.14 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.15 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record compressor data.

3.16 PROCEDURES FOR BOILERS

A. Hydronic Boilers:

1. Measure and record entering- and leaving-water temperatures.
2. Measure and record water flow.
3. Record relief valve pressure setting.

3.17 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:

1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.
7. Air pressure drop.

B. Measure, adjust, and record the following data for each electric heating coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load and at each incremental stage.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.
4. Air pressure drop.
5. Refrigerant suction pressure and temperature.

3.18 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at [5] [10] [15] "Insert number" locations as designated by the Architect.

B. Instrumentation:

1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:

1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands [63 Hz to 8000 Hz (NC)] [31.5 Hz to 4000 Hz (RC)] with the equipment off.
6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands [63 Hz to 8000 Hz (NC)] [31.5 Hz to 4000 Hz (RC)] with the equipment operating.
7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:

1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
d. Sound pressure level in each octave band with equipment on and off.

2. Plot sound pressure levels on [NC] [RC] worksheet with equipment on and off.

3.19 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.20 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Heating-Water Flow Rate: Plus or minus 10 percent.
4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.21 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.22 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers’ test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer’s serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
h. Tube size in NPS.
i. Tube and fin materials.
j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Water flow rate in gpm.
 i. Water pressure differential in feet of head or psig.
 j. Entering-water temperature in deg F.
 k. Leaving-water temperature in deg F.
 l. Refrigerant expansion valve and refrigerant types.
 m. Refrigerant suction pressure in psig.
 n. Refrigerant suction temperature in deg F.

G. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches, and bore.
 n. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
n. Motor amperage for each phase.
o. Heating value of fuel in Btu/h.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated air flow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual air flow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

J. Air-Terminal-Device Reports:

1. Unit Data:
a. System and air-handling unit identification.
b. Location and zone.
c. Apparatus used for test.
d. Area served.
e. Make.
f. Number from system diagram.
g. Type and model number.
h. Size.
i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary air flow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final air flow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.

K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in deg F.
 f. Leaving-air temperature in deg F.

L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
 j. Impeller diameter in inches.
 k. Motor make and frame size.
l. Motor horsepower and rpm.
m. Voltage at each connection.
n. Amperage for each phase.
o. Full-load amperage and service factor.
p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.

M. Instrument Calibration Reports:
 1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.23 INSPECTIONS

A. Initial Inspection:
 1. After testing and balancing are complete, operate each system and randomly check
 measurements to verify that the system is operating according to the final test and
 balance readings documented in the final report.
 2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Measure water flow of at least 5 percent of terminals.
 c. Measure room temperature at each thermostat/temperature sensor. Compare the
 reading to the set point.
 d. Verify that balancing devices are marked with final balance position.
 e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:
 1. After initial inspection is complete and documentation by random checks verifies that
 testing and balancing are complete and accurately documented in the final report,
 request that a final inspection be made by Owner, Construction Manager, or
 Commissioning Authority.
 2. The TAB contractor’s test and balance engineer shall conduct the inspection in the
 presence of Owner or Construction Manager.
3. Owner or Construction Manager shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

3.24 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 0593
SECTION 23 0713

DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:
 1. Indoor, supply and outdoor air.
 2. Indoor, return in air.
 3. Outdoor, exposed supply and return.

B. Related Sections:
 1. Division 23 Section "HVAC Equipment Insulation."
 2. Division 23 Section "HVAC Piping Insulation."
 3. Division 23 Section "Metal Ducts" for duct liners.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.

D. Qualification Data: For qualified Installer.

E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
F. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Armacell LLC; AP Armaflex or engineer approved equal.

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; Microlite or engineer approved equal.

H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; 800 Series Spin-Glas or engineer approved equal.

I. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; MicroFlex or engineer approved equal.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Armacell LLC; Armaflex 520 Adhesive or engineer approved equal.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90 or engineer approved equal.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel or engineer approved equal.
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10 or engineer approved equal.
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Manufacturers: Subject to compliance with requirements, provide products by the following:
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76 or engineer approved equal.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76 or engineer approved equal.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; Zeston or engineer approved equal.

2. Adhesive: As recommended by jacket material manufacturer.
3. Color: Color as selected by Architect.

D. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products:
 a. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ or engineer approved equal.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ or engineer approved equal.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Venture Tape; 1506 CW NS or engineer approved equal.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
a. Venture Tape; 3520 CW or engineer approved equal.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.9 SECUREMENTS

A. Bands:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

a. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs or engineer approved equal.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch-diameter shank, length to suit depth of insulation indicated.

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1) AGM Industries, Inc.; CWP-1 or engineer approved equal.

2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1) AGM Industries, Inc.; CHP-1 or engineer approved equal.

3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers or engineer approved equal.
b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.

c. Spindle: Stainless steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.

d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

a. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1) AGM Industries, Inc.; RC-150 or engineer approved equal.

b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.

 1. Manufacturers:

 a. C & F Wire or engineer approved equal.

2.10 CORNER ANGLES

A. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 316.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping "firestopping and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."
3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not over compress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
8. Volume damper control/adjustment devices shall be accessible for balancing without damaging or removing duct insulation. Install all damper control/adjustment devices on stand-offs to allow complete coverage of duct insulation.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not over compress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

7. Volume damper control/adjustment devices shall be accessible for balancing without damaging or removing duct insulation. Install all damper control/adjustment devices on stand-offs to allow complete coverage of duct insulation.
3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.9 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Tests and Inspections:
1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each duct system defined in the "Duct Insulation Schedule, General" Article.

B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, supply and outdoor air.
2. Indoor, return and exhaust.
3. Outdoor, supply and return.
4. Indoor, duct silencers.
5. Outdoor, duct silencers.

B. Items Not Insulated:

1. Fibrous-glass ducts.
2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. All insulation shall meet or exceed ASHRAE 90.1-2013 or current adopted energy code, whichever is stricter.

B. Supply-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density (minimum 6.0 R-value).

C. Return-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density (minimum 6.0 R-value).

D. Outdoor-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density (minimum 6.0 R-value).
E. Exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density (minimum 6.0 R-value).

F. Supply and return duct silencers shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches thick and 1.5-lb/cu. ft. nominal density (minimum 6.0 R-value).

3.13 ABOVEGROUND, OUTDOOR (OR ATTIC DUCT) AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Supply-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

C. Return-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

D. Outdoor-air duct insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

E. Supply and return duct silencers shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts, duct silencers, and Plenums, Exposed:
 1. PVC, Color- As selected by Architect: 20 mils thick.
3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts, Duct Silencers, and Plenums, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:

1. Aluminum, Smooth: 0.040 inch thick.
2. VentureClad 1577CW (All Finishes). Contractor shall install as per strict manufacturer's installation instructions, recommendations, and requirements.

D. Ducts, Duct Silencers, and Plenums, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:

1. Aluminum, Smooth with 1-1/4-Inch-Deep Corrugations: 0.040 inch thick.
2. VentureClad 1577CW (All Finishes). Contractor shall install as per strict manufacturer's installation instructions, recommendations, and requirements.

END OF SECTION 23 0713
SECTION 23 0714

FIRE BARRIER DUCT & PLENUM WRAP

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes Fire-rated insulation for the following applications:
 1. Chemical exhaust ducts.
 2. Hazardous exhaust ducts.
 3. Clothes dryer vents.
 5. Plenum rated insulation to cover non-plenum rated plastic pipe and plastic jacketed electric cables.

B. Related Sections:
 1. Division 23 Section "HVAC Equipment Insulation."
 2. Division 23 Section "HVAC Piping Insulation."
 3. Division 23 Section "Metal Ducts" for duct liners.

1.3 REFERENCES

A. Ventilation Air Duct Enclosure System Test Standards:
 1. ISO 6944-1985; 'Fire Resistive Tests - Ventilation Ducts'.
 2. ISO 834; 'Fire Resistive Tests - Elements of Building Construction'.
 3. ASTM E 814 (UL1479); 'Standard Test Method for Fire Tests of Through-Penetration Fire Stops'.
 4. ASTM E 84; 'Standard Test Method for Surface Burning Characteristics of Building Materials'.
 5. ASTM C 1338; 'Standard Test Method for Determining Fungi Resistance of Insulation Materials and Facings'.
 6. NFPA 90A; 'Standard for the Installation of Air-Conditioning and Ventilating Systems'.

B. Plenum Rated Enclosure System Test Standards:
 1. ASTM E 84; 'Standard Test Method for Surface Burning Characteristics of Building Materials'.
 2. UL 1887; 'Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics'.
 3. NFPA 252 (UL 910); 'Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces'
C. Independent Listing Agency References:
 1. Underwriters Laboratories (UL).
 3. Intertek Testing Service (ITS) - Label Mark is OPL.

D. Building Code References:
 1. International Mechanical Code (IMC).
 2. International Association of Plumbing and Mechanical Officials - Uniform Mechanical Code (IAPMO UMC).

E. Health Studies on Bio-solubility of Ceramic and Mineral Fibers:
 1. Long Fiber Fraction Half Life Solubility Study - Performed in accordance with Guideline 97/69/EC dated 5 December 1997 Appendix Q.

1.4 SUBMITTALS

A. Product Data: Manufacturer’s data sheets on each product to be used, including:
 1. For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
 3. Submit UL and/or Intertek Testing Service (ITS) Listings.
 5. Preparation instructions and recommendations.
 6. Storage and handling requirements and recommendations.
 7. Installation methods.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.
 6. Submit UL and/or Intertek Testing Service (ITS) Listings.
 8. Preparation instructions and recommendations.
 9. Storage and handling requirements and recommendations.
 10. Installation methods

D. Qualification Data: For qualified Installer.
E. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

F. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. HVAC Ducts Requiring Fire-Rated Enclosures: Fire-rated assemblies using FireMaster or Pyroscat by Thermal Ceramics are an acceptable equivalent to gypsum board shaft wall and masonry fire assemblies specified in Division 9. At the Contractor's option, submit FireMaster or Pyroscat products for fire-rated enclosures for HVAC ductwork, including manufacturer's UL Listings and acceptance by local authority or code having jurisdiction.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

B. Store products in manufacturer's unopened packaging until ready for installation.

C. Deliver materials in original sealed packages, clearly labeled with manufacturing information, including product identification and manufacturing lot numbers.

D. Store material out of weather and away from incidental damage.

1.7 PROJECT CONDITIONS

A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's absolute limits.

1.8 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
B. Coordinate clearance requirements with duct installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

D. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's absolute limits.

1.9 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 Manufacturers: Subject to compliance with requirements, provide products by the following:

A. Thermal Ceramics (Morgan Thermal Ceramics)
B. Or engineer approved equal.

2.2 APPLICATIONS/SCOPE

A. 1 and 2 Hour Applied Fire Protection when tested in accordance with UL 1978; Compliant per Intertek Listing TC/BI 120-01.

B. 1 and 2 Hour F- and T-Rated Through Penetration Firestop when tested in accordance with ASTM E 814 (UL 1479): UL Through Penetration listings; C-AJ-7012; C-AJ-7014; C-AJ-7035; C-AJ-7047; C-AJ-7095; C-AJ-7098; F-C-7036; F-C-7037; F-C-7055; W-L-7041; W-L-7099; W-L-7121; W-L-7145; W-L-7158; W-J-7086. See UL Online Fire Resistance Directory at www.ul.com for current listings.

C. 1 and 2 Hour Applied Fire Protection for Ventilation Air Duct when tested in accordance with ISO 6944-1985 - Reference UL Listings HNLJ V2 (for 3-hour); HNLJ V19 (for 2-hour); HNLJ V29 (for 1-hour on dryer vent).

2.3 INSULATION MATERIALS

A. Thermal Material: 2192 F degree rated core blanket, manufactured from patented bio-soluble Superwool chemistry (Calcium Magnesium Silicate).

1. Product: FireMaster FastWrap XL or Pyroscat Duct Wrap XL as manufactured by Thermal Ceramics.
2. Fully encapsulated thermal material in fiberglass reinforced aluminum/polypropylene scrim (FSP).
 a. Encapsulation FSP marked with UL Classification Mark.
 b. Encapsulation FSP marked with ICC-ES report number ESR 2213 or ESR 2832.
 c. Collars supplied in 6 inch (150 mm) wide by 25 feet (7620 mm) long rolls.

B. Product Characteristics:
1. Thickness: 1-1/2 inch (38 mm).
3. R-Value: 7.35 per layer of FireMaster FastWrap XL or Pyroscat Duct Wrap XL when tested in accordance with ASTM C 518 at 75 F.
4. Flame Spread: 25 when tested in accordance with ASTM E 84.
5. Smoke Development: <50 when tested in accordance with ASTM E 84

2.4 ACCESSORY MATERIALS:
A. Glass Filament Tape: Minimum 3/4 inch (19 mm) wide - used to temporarily secure blanket until permanent attachment using steel banding and/or steel insulation pins.
B. Aluminum Foil Tape: Minimum 3 inches (76 mm) used to seal cut edges.
C. Carbon Steel or Stainless Strapping Material Minimum: 1/2 inch wide and 0.015 inch thick.
D. Steel Insulation Pins: Minimum 12 gage, length sufficient to penetrate through duct wrap insulation.
E. Insulation Clips: Galvanized steel, minimum 1-1/2 inches round or square.
F. Through Penetration Firestop Sealants:
 1. Packing Material: Remove encapsulation material from FireMaster FastWrap XL or Pyroscat Duct Wrap XL, use core blanket (white) as penetration packing material.
 2. Firestop sealants per applicable building code report and/or laboratory design listings.
G. HVAC Duct Access Doors:
 1. Thermal Ceramics FastDoor XL Access doors; Supplied in standard door sizes of 6 by 10 inches, 8 by 12 inches, 12 by 12 inches, 12 by16 inches, and 20 by 20 inches.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
B. Do not begin installation until substrates have been properly prepared.
C. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

D. Coordinate installation of the Thermal Ceramics FastDoor XL access door between sheet metal and insulation trades.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Remove dirt and dust from surfaces of openings and items penetrating rated floors and rated walls.

B. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS
A. Install FireMaster FastWrap XL or Pyroscat Duct Wrap XL in direct contact with the ductwork in accordance with manufacturer's instructions, applicable laboratory listings and building code reports, and referenced standards. For additional complex duct design installation recommendations, see the Thermal Ceramics' complete installation guide.

B. Install 1 layer of FireMaster FastWrap XL or Pyroscat Duct Wrap XL for 1 and 2-hour air ventilation duct enclosures per ISO 6944-1985.

1. General Installation Instructions for Single Layer Installations: FireMaster or Pyroscat blankets are cut to a length that will fit around the duct and overlap itself no less than 3 inches. Adjacent blankets overlap each other a minimum of 3 inches, or they can be fitted together with a tight butt joint and covered with a 6 inches wide collar centered over the butt joint. Cut edges of the blanket are taped with aluminum foil tape. During installation the blankets are temporarily held in place with filament tape until the wrap is mechanically attached with steel bands or steel insulation pins.

C. Install 1 layer of Thermal Ceramics PlenumWrap+ on plastic pipe or plastic jacketed electrical cables per Intertek listing reports and testing to NFPA 262 and UL1887.

1. Cut plenum blanket to a length that will fit around the pipe or cable and overlap itself no less than 1 inch. Adjacent blankets overlap each other a minimum of 1 inch. Plenum blanket is secured using either 1/2-inch steel banding or 16-gauge carbon or stainless steel tie wire on maximum 11-1/2-inch spacing.

D. Mechanical Fastening of Enclosure Material to Ductwork:

1. Banding - Carbon steel or stainless steel banding is used to hold the outer layer of the blanket enclosure in place. Banding is minimum 1/2-inch-wide, and is placed around the entire perimeter of the duct on maximum 10-1/2 inches centers and 1-1/2 inches from each blanket or collar edge.

2. Pinning - To prevent blanket sag on duct spans wider than 24 inches, minimum 12-gauge steel insulation pins are welded to the duct along bottom horizontal and outside vertical runs in columns spaced 12 inches apart, 6 to 12 inch from each edge, and on 10-1/2 inches' centers. Pins are locked in place with 1-1/2-inch diameter or 1-1/2 inch square
galvanized steel speed clips or cup head pins. Pins are turned down or the excess cut off to eliminate sharp edges.

E. Through-Penetration Firestop System:

1. When the duct penetrates a concrete or dry wall fire rated floor, ceiling, or wall an approved firestop system shall be employed. FireMaster or Pyroscat insulation shall be installed directly to the duct through the penetration, or terminated on both sides of the penetration depending on the annular space allowance between the duct and the duct opening. When the FireMaster or Pyroscat enclosure system is terminated on both sides of the through penetration, the duct wrap material is mechanically attached to the duct at the termination points using either steel banding or steel pins.

2. To fire stop the through penetration void area, fill the annular space between the wrapped duct or bare duct and the periphery of the opening with scrap FireMaster or Pyroscat insulation firmly packed into the opening. Compress scrap blanket to percentage stated in the firestop listing for a minimum depth as specified in the firestop listing. Recess packing material below surface on both sides of walls or top side only for floors to the depth stated in the firestop listing. Seal over the packing material using an approved firestop sealant to a depth as stated in the firestop listing, flush with top side of a floor assembly and both sides of a wall assembly.

3.4 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.5 REPAIR PROCEDURES

A. Repair damaged FireMaster FastWrap XL or Pyroscat Duct Wrap XL in accordance with manufacturer's instructions.

B. Remove damaged section by cutting the bands and removing the anchor clips holding it in place. Apply a new section of the same dimension ensuring the same overlap and installation method that existed previously. Cut edges and tears in the foil must be taped with aluminum tape to prevent the insulation from wicking moisture or grease.

3.6 PROTECTION

A. Protect installed products until completion of project.

B. Touch-up, repair or replace damaged products before Substantial Completion.

3.7 FIELD QUALITY CONTROL

A. Tests and Inspections:
1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation.

B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

END OF SECTION 23 0714
SECTION 23 0719
HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Hydronic piping, indoors including condensate drain piping.
2. Refrigerant suction and hot-gas piping, indoors and outdoors.

B. Related Sections

1. Section 23 0713 "Duct Insulation".

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

C. Qualification Data: For qualified Installer.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

E. Field quality-control reports.
1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation in tubular form and fittings: Closed-cell materials, with a self-seal system reinforced with lap seal tape. Comply with ASTM C 534, Type I – Grade 1 for tubular materials.
 1. Manufacturers:
 a. Armacell; AP/Armaflex Black LapSeal
 b. Or engineer approved equal.

G. Flexible Elastomeric Sheet and Roll Insulation: Closed-cell materials. Comply with ASTM C 534, Type II – Grade 1 for tubular materials.
 1. Manufacturers:
 a. Armacell; AP/Armaflex FS
 b. Or engineer approved equal.

H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; Microlite.
 b. Or engineer approved equal.

I. Mineral-Fiber, Preformed Pipe Insulation:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; Micro-Lok
 b. Or engineer approved equal.
 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

J. Mineral-Fiber and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; MicroFlex
 b. Or engineer approved equal.

2.2 INSULATING CEMENTS

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ramco Insulation, Inc.; Super-Stik
 b. Or engineer approved equal.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.

 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Armacell LLC; Armacell 520 Adhesive.
 b. Or engineer approved equal.

 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
D. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

E. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive
 b. Or engineer approved equal.
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90 or engineer approved equal.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mildry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mildry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F.
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Manufacturers: Subject to compliance with requirements, provide products by the following:
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F

2.6 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76
 b. Or engineer approved equal.

B. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76
 b. Or engineer approved equal.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.7 FACTORY-APPLIED JACkETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. **ASJ:** White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. **ASJ-SSL:** ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACkETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. **FSK Jacket:** Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
C. **Self-Adhesive Insulation Jacketing Tape:** All weather, multi-layered laminate coated with an aggressive cold weather acrylic adhesive, superior resistance to weathering, mold, UV and extreme environmental condition.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. VentureClad; 1577CW
 b. Or engineer approved equal.

D. **PVC Jacket:** High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; Zeston
 b. Or engineer approved equal.

2. **Adhesive:** As recommended by jacket material manufacturer.
3. **Color:** White.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 b. Or engineer approved equal.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Venture Tape; 1506 CW NS.
b. Or engineer approved equal.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

2.10 SECUREMENTS

A. Bands:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs
 b. Or engineer approved equal.
 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 1/2 inch 3/4 inch wide with wing seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. C & F Wire
 b. Or engineer approved equal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
1. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
2. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
3. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
4. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Install Elastomeric Insulation on all piping and accessories in accordance manufacturer's recommendation to maintain the vapor barrier.

C. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

E. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer’s recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

A. Pipe Insulation with ASJ Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer’s recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of threaded strainers.
flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

C. All piping insulation shall comply with ASHRAE 90.1-2013.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Condensate Drain Water below 60 Deg F
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Refrigerant Suction, Liquid, and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric Insulation, Armaflex Black LapSeal: 1 inch thick.

3.13 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction, Liquid, and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric Insulation, Armaflex Black LapSeal: 1 inches thick.
 b. Provide manufacturer’s outdoor finish for weather and UV protection (water-based latex enamel – minimum 2 coats). Allow for proper drying time between coats.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Piping, Concealed:
 1. None.

D. Condensate Drain Piping, Exposed:
 1. PVC: 20 mils thick.
 2. Aluminum, Corrugated: 0.016 inch thick.
 3. Self-Adhesive Insulation Jacketing Tape; VentureClad 1577CW.

E. Refrigerant Suction, Liquid, and Hot-Gas Piping, Exposed:
 1. PVC: 20 mils thick.
 2. Aluminum, Corrugated: 0.016 inch thick.
 3. Self-Adhesive Insulation Jacketing Tape; VentureClad 1577CW.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Applies to the following piping:
 1. Refrigerant Suction, Liquid, and Hot-Gas Piping

D. Piping, Exposed:
 1. Self-Adhesive Insulation Jacketing Tape; VentureClad 1577CW.
 2. PVC: 30 mils thick
 3. Aluminum, Corrugated: 0.020 inch thick.

END OF SECTION 23 0719
SECTION 23 0900
INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Contract Documents: The work of the section shall comply with the Contract Documents, including the General Conditions, the Supplementary Conditions and Division 1 - General Requirements.

B. Mechanical Drawings and associated Division sections for mechanical equipment that requires controls.

1.2 SUMMARY

A. Furnish a BACnet™ compliant direct digital control Building Management System (BMS) in accordance with this specification section.

B. The BMS system shall use distributed direct digital control (DDC) for energy management, HVAC equipment monitoring and control, and sub-systems, including control components for terminal heating and cooling units not supplied with factory-wired controls. The control system shall include all sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories to control mechanical systems.

C. Provide BACnet™ Building Controllers (B-BC) and BACnet™ Advanced Application Controllers (B-AAC) on the automation level network, and BACnet™ Application Specific Controllers (B-ASC) on the field level network. DDC controllers shall communicate peer-to-peer, with capability of standalone operation and custom programming.

D. BACnet™ standard open protocol shall be used for communication on all BMS network levels based upon ANSI/ASHRAE 135-2004 BACnet™ standard. Provide BMS server and operator interfaces based upon Web-enabled technology. The BMS front end and the DDC controllers shall be certified by the BACnet™ Testing Laboratories (BTL) as BACnet™ compliant devices at the time of bid.

E. Prior to submission of bid, review all other section of work and provide detailed shop drawings indicating locations for all control components for review and approval by the General Contractor, Architect and Engineer.

F. Prepare individual hardware layouts, interconnection drawings and control loop configuration data from project design data.

G. Implement the detailed design for all system input/output points, distributed control and system databases based on control descriptions, logic drawings, configuration data and bid documents.

H. Design all equipment cabinets, panels, and the data communication network cables including all associated hardware.

I. Provide all cabinets and panels including all associated devices for installation under this section.

J. Provide electrical products which have been tested, listed and labeled by Underwriters.
Laboratories, and comply with NEMA standards and the National Electric Code.

K. Integrate all equipment-supplied controllers into the BMS. Provide technical support, network hardware, wiring and labor for connection to third party BACnet™ controllers. Gateways for proprietary-to-BACnet™ protocol shall be furnished by the equipment manufacturers. See equipment schedules for details.

L. Provide complete product specifications for all items supplied under this section.

M. Provide all necessary hardware and software to meet the specified functional requirements.

N. Coordinate installation schedule with the mechanical contractor and general contractor.

O. Include the following as part of this scope of work:
 1. Submittals for approval that meet the requirements detailed here-in-after.
 2. Installation of all panels and devices unless otherwise stated.
 3. All 120vac power and low voltage control wiring for a complete DDC installation. All wiring shall be in accordance with the electrical specification. Provide power for panels and control devices from a source indicated on electrical plans and/or designated by the electrical contractor. If power is not designated on the electrical plans then this contractor shall carry the cost of providing power from the closest 120vac breaker panel. The electrical contractor is responsible for the breaker, entrance into the panel, and final termination.
 4. Engineering labor to program software; supervisory specialists and technician labor at the job-site to assist in all phases of system installation, testing and balancing, start-up, and commissioning, for each system and OWS interface. Submit commissioning reports for approval.
 5. Demonstration and training as specified below
 6. As-built documentation and training software on approved media, which accurately represents the final, installed, system.

1.2 DEFINITIONS

A. BACnet™ Object List
 1. The following points as defined for each piece of equipment are designated as follows:
 a. Binary Out (BO) - Defined as any two-state output (start/stop) (enable/disable), etc.
 b. Binary In (BI) - Defined as any two-state input (alarm, status), etc.
 c. Analog In (AI) - Defined as any variable input (temperature) (position), etc.
 d. Analog Out (AO) - Defined as any electrical variable output. 0–20mA, 4–20mA and 0–10VDC are the only acceptable analog outputs. The driver for analog outputs must come from both hardware and software resident in the controllers. Transducers shall not be acceptable under any circumstance.

B. The definition of the acronyms used in this section are as follows:
 1. ALN: Automation Level Network
 2. DDC: Direct Digital Control.
 3. DTL: Dual Temperature Loop
 4. B-AAC: BACnet™ Advanced Application Controller
 5. B-ASC: BACnet™ Application Specific Controller
1.3 QUALITY ASSURANCE

A. DDC Manufacturer Qualifications: A controls system firm with at least 20 years of experience in manufacturing microprocessor based, distributed direct digital automatic temperature systems with a documental record of successful in-service performance.

B. Installer Qualifications: Installer shall be a branch of the BMS/DDC manufacturer for both installation and maintenance of controls as required for this Project, who has verifiable experience in the installation and application of DDC systems.

C. Engineering, drafting, programming, and graphics generation shall be performed by the local branch engineers and technicians directly employed by the BMS/DDC contractor.

D. Supervision, checkout and commissioning of the system shall be by the local branch engineers and technicians directly employed by the BMS/DDC Contractor. They shall perform commissioning and complete testing of the BMS system.

E. Provide electrical installation based upon methods and materials as specified in Electrical Contractor of this specification, based upon local authorities.

F. All equipment shall be approved by local authorities where required.

G. Provide written approvals and certifications after installation has been completed.

H. Final determination of compliance with these specifications shall rest solely with the Engineer and Owner, who shall require proof of prior satisfactory performance.

I. For BMS and any equipment submitted for approval, the BMS contractor shall state what if any, specific points of system operation differ from these specifications.

J. All systems associated with this project, by either common networks or common systems served, shall be checked out for proper operation and interface with new devices.

K. Comply with the following performance requirements:

1. Graphic Display: display graphic with minimum 20 dynamic points with current data within 10 seconds.

2. Graphic Refresh: update graphic with minimum 20 dynamic points with current data within 8 seconds.
3. Object Command: reaction time of less than two seconds between operator command of a binary object and device reaction.
4. Object Scan: transmit change of state and change of analog values to control units or workstation within six seconds.
5. Alarm Response Time: annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
6. Program Execution Frequency: run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
7. Performance: programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.

L. Reporting Accuracy and Stability of Control. Report values and maintain measured variables within tolerances as follows:
 - Space Temperature: +/- 1 deg F.
 - Ducted Air Temperature: +/- 1 deg
 - F. Outside Air Temperature: +/- 2 deg F.
 - Temperature Differential: +/- 0.25 deg F.
 - Relative Humidity: +/- 1%.

1.4 SUBMITTALS

A. Provide one paper copy of the submittal and electronic copies in .pdf and .dwg format with all controls system information for approval before construction starts. Provide separately, submittals for fast-track items that need quick approval and release to meet the project schedule. Provide submissions for the following items:

1. Valve and damper schedules and product cut sheets.
2. Factory mounting and wiring diagrams and cut sheets for factory mounted controls.
3. Floor plans showing locations of control panels, thermostats and any devices mounted in occupied space.
4. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
6. Details of control panels, including sizes, controls, instruments, and labeling.
7. Written description of the Sequence of Operations.
8. Network diagram showing wiring types, locations of floor penetrations and number of control panels. Label control panels with network addresses.
9. Starter and VFD wiring details of all automatically controlled motors. Show low limit controls and end-switches hardwired to starters and VFDs, where applicable.

B. Product Data: Include manufacturer’s technical literature for each control device indicated, labeled with settings or adjustable range of control. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each product indicated. Submit a write-up of the application software that shall be used on the OWS including revision level, functionality and software applications required to meet the specifications.

C. Wiring Diagrams: Detail the wiring of the control devices and the panels. Show point-to-point wiring from field devices to the control panel. Show point-to-point wiring of hardwired interlocks; a ladder diagram or schematic of wiring internal to the panels, including numbered terminals. Clearly designate wiring that is done at a factory, at a panel shop or in the field.

D. Submit blank field checkout and commissioning test reports, customized for each panel or...
1.5 **ELECTRONIC DOCUMENTATION**

A. The web server shall be updated at the conclusion of the project with access to all electronic documentation through a simple right click, on graphically depicted components or through dropdown menu selection.

B. Install all software applications and files on the server for viewing all construction documentation through a browser based interface.

C. Provide a CAD viewer to view all project AutoCAD documents that are made available by the Architect and Owner.

D. Provide all controls cut sheets in PDF format. Make them available to any user accessing the system over the Internet.

E. Provide a text version of the sequence of operation for installation onto Owner’s server. The sequences shall pop up in a printable format such as HTML or .pdf.

1.6 **COORDINATION**

A. Coordinate location of wall-mounted devices, panels and other exposed control components with plans and room details before installation. Also include floor plans showing these devices in the submittals.

B. Coordinate equipment with Electrical Division Section (Fire Alarm System, Security System and Emergency Generator) to achieve compatibility with equipment that interfaces with each system.

C. Coordinate supply of conditioned electrical circuits for control units and OWS.

D. Coordinate equipment with Mechanical Division Section on starters and drives to achieve compatibility with motor starter control coils and VFD control wiring.

E. Coordinate scheduling with the mechanical contractor and general contractor. Submit a schedule for approval based upon the installation schedule of the mechanical equipment.

1.7 **TRAINING**

A. Upon completion of system commissioning and at such time as acceptable performance of the BMS hardware and software has been established, BMS contractor shall provide forty (40) hours of on-site training on the operation of all BMS equipment, to the Owner’s operating personnel; sixteen (16) of these hours shall be site specific training. Instruction shall be weekdays, during normal work hours of 8:00 am to 4:30 pm. Training shall be complete before the warranty period expires.

B. BMS contractor representative shall be a factory employed, certified instructor who is thoroughly familiar with all aspects of the subject matter they are to teach. Representative shall be familiar with the BMS software, hardware and accessories, and describe its intended use with respect to adjustment, operation and maintenance of the system installed, and the
1.8 WARRANTY

A. The system, including all hardware and software components, shall be warranted for one (1) year following the date of beneficial use and Owner’s acceptance. Any manufacturing defects arising during this warranty period shall be corrected without cost to the Owner.

PART 2 - PRODUCTS

2.1 ACCEPTABLE SYSTEMS

A. Provide a BMS as manufactured by Delta Controls, Inc.. BMS/DDC system shall be furnished and installed by the local branch, Delta Connects, Inc. @ 12 Stults Road, Dayton, NJ 08810. Contact: A Yulo 732-439-7577 or 609-860-6600; salesnj@deltaconnects.com.

B. The proposed BMS system shall be integrated to the existing BMS at the site.

C. Any other authorized manufacturer must meet all aspects and requirements of this specification. All bidders must submit a compliance matrix listing all paragraphs, along with a “comply” or “do not comply” statement for each.

2.2 SERVER HARDWARE

A. Operator Interface: Furnish (1) PC-based Graphical User Interface (GUI) as shown on the System drawings. Operator Work Station shall reside on the same BACnet™/IP protocol network as the System controllers.

B. Hardware:
 1. Furnish a desktop PC as the Operator Workstation. The CPU shall be Intel’s latest CPU and operate at a minimum of 2 GHz. A minimum of 4 GB RAM, CD/DVD RW and a 80GB hard disk drive with a minimum access time of 12 milliseconds shall be provided. A two-button mouse also shall be provided. Furnish all required serial, parallel, and network communication ports, and all cables for proper system operation.
 2. The PC shall have an LCD 23" flat screen display with 1920 x 1080 resolution.
 3. Furnish a color inkjet printer with 2400 x 1200 dpi resolution and associated cables.
 4. 500 VA UPS with lighting, surge, modem, and network protection.
 5. The main GUI at the existing building shall serve as a HVAC controls web server for client machines.
 6. The owner shall provide and maintain a high speed Internet connection, and a Fire Alarm System BMS monitoring point for remote monitoring by authorized personnel.

2.3 WEB SERVER and GUI INTERFACE

A. BMS contractor shall provide system software based on server/thin-client architecture, designed around the open standards of web technology. BMS OWS shall communicate using ASHRAE’s BACnet™/IP protocol, as well as all other IP protocols. Protocols not using TCP/IP are specifically excluded.

B. The intent of the thin-client architecture is to provide the operator(s) complete access to the BMS network via a browser or web browser. No special software, (Active-x components or
fat Java clients) shall be required to be installed on the PC’s / PDA’s used to access the BMS via a web browser. No special server hardware shall be required.

C. The BMS OWS software must support at least the following server platforms (Windows XP, Windows System7 and Linux). The BMS OWS software shall be developed and tested by the manufacturer of the system standalone controllers and network controllers/routers. Third party manufactured and developed BMS software is not acceptable.

D. The BMS OWS shall meet the BACnet™ device profile of an Operator Workstation and shall support the following BACnet™ BIBBs:

1. Data Sharing
 2. Data Sharing-Read Property-A (DS-RP-A)
 3. Data Sharing-Read Property-B (DS-RP-B)
 4. Data Sharing-Read Property Multiple-A (DS-RPM-A)
 5. Data Sharing-Read Property Multiple-B (DS-RPM-B)
 6. Data Sharing-Write Property-A (DS-WP-A)
 7. Data Sharing-Write Property-B (DS-WP-B)
 8. Data Sharing-Write Property Multiple-A (DS-WPM-A)
 9. Data Sharing-Write Property Multiple-B (DS-WPM-B)
10. Data Sharing-COV-A (DS-COV-A)
11. Data Sharing-COV-B (DS-COV-B)
12. Data Sharing-COV-Unsolicited-A (DS-COVU-A)
13. Data Sharing-COV-Unsolicited-B (DS-COVU-B)
14. Scheduling
 a. Scheduling-A (SCHED-A)
 b. Scheduling-Internal-B (SCHED-I-B)
 c. Scheduling-External-B (SCHED-E-B)
15. Trending
 a. Trending-Viewing and Modifying Trends-A (T-VMT-A)
 b. Trending-Viewing and Modifying Trends-Internal-B (T-VMT-I-B)
16. Network Management
 a. Network Management-Connection Establishment-A (NM-CE-A)
 b. Network Management-Connection Establishment-B (NM-CE-B)
17. Alarming
 a. Alarm and Event-Notification-A (AE-N-A)
 b. Alarm and Event-Notification Internal-B (AE-N-I-B)
 c. Alarm and Event-Notification External-A (AE-N-E-A)
 d. Alarm and Event-ACK-A (AE-ACK-A)
 e. Alarm and Event-ACK-B (AE-ACK-B)
 f. Alarm and Event-Alarm Summary-A (AE-ASUM-A)
 g. Alarm and Event-Alarm Summary-B (AE-ASUM-B)
18. Device Management
 a. Device Management-Dynamic Device Binding-A (DM-DDB-A)
 b. Device Management-Dynamic Device Binding-B (DM-DDB-B)
 c. Device Management-Dynamic Object Binding-A (DM-DOB-A)
 d. Device Management-Device Communication Control-A (DM-DCC-A)
 e. Device Management-Device Communication Control-B (DM-DCC-B)
 f. Device Management-Private Transfer-A (DM-PT-A)
 g. Device Management-Private Transfer-B (DM-PT-B)
 h. Device Management-Text Message-B (DM-TM-B)
 i. Device Management-Time Synchronization-A (DM-TS-A)
j. Device Management-Time Synchronization-B (DM-TS-B)
k. Device Management-UTC Time Synchronization-A (DM-UTC-A)
l. Device Management-Reinitialize Device-A (DM-RD-A)
m. Device Management-List Manipulation-B (DM-LM-B)
n. Device Management-Object Creation and Deletion-A (DM-OCD-A)
o. Device Management-Object Creation and Deletion-B (DM-OCD-B)

E. The web browser GUI shall provide a completely interactive user interface and must offer the following features as a minimum:
1. Trending
2. Scheduling
3. Downloading Memory to field devices
4. Real time ‘live’ Graphic Programs
5. Tree Navigation
6. HVAC System
7. Geographical
8. Network
9. Parameter changes of all object properties
10. Setpoint Adjustments
11. Alarms and Events
12. Operators Usage
13. Hyperlinks

2.4 WEB BROWSER INTERFACE

A. Operating system software shall be fully licensed to the owner for the number of PC’s or laptops furnished.

B. The OWS shall be accessible simultaneously by an unlimited number of users. Unlimited is only to be defined by the client’s technology department or the capabilities of their infrastructure or operating system but not by any licensing agreement required by the control supplier or manufacturer. Systems that have user restrictions, simultaneous or otherwise are not acceptable as it is impractical to forecast the future needs of the client.

C. The Thin Client web browser GUI shall provide a comprehensive user interface. Using a collection of web pages, it shall be constructed to “feel” like a single application, and provide a complete and intuitive mouse/menu driven operator interface. It shall be provide the various means of navigation as described herein.

D. On launching the web browser and selecting the appropriate domain name or IP address, the operator shall be presented with a login page that shall require a login name and password. Navigation in the system shall be dependent on the operator’s role privileges, and geographic area of responsibility

E. The System Navigation Pane shall be comprised of a tree that represents the relationships among all controlled or monitored equipment. HVAC, Lighting, and Security shall be represented on the tree but each as the highest level in the hierarchy.

F. The navigation trees define a geographic and equipment hierarchy of the BMS system. Navigation through the GUI shall be accomplished by clicking on appropriate level of a navigation tree (consisting of expandable and collapsible tree control like Microsoft’s Explorer program), and/or by selecting dynamic links to other system graphics from...
displayed system graphics. Both the navigation tree and graphic shall be displayed simultaneously, enabling the operator to select a specific system or equipment, and view the graphic corresponding to the highlighted position in the navigation tree.

G. The navigation trees define a geographic and equipment hierarchy of the BMS system. Navigation through the GUI shall be accomplished by clicking on appropriate level of a navigation tree (consisting of expandable and collapsible tree control like Microsoft’s Explorer program), and/or by selecting dynamic links to other system graphics from displayed system graphics. Both the navigation tree and graphic shall be displayed simultaneously, enabling the operator to select a specific system or equipment, and view the graphic corresponding to the highlighted position in the navigation tree.

H. A system graphic shall allow the operator to move up or down the system hierarchy by clicking on the graphic. An operator, for example, shall be able to click on the incoming chilled water piping to move to the associated chilled water system. To assist in navigation all physical links to and from one piece of equipment to its superior or its subordinate shall be represented by virtual links. The operator shall be able to navigate from the home page through all screens by clicking on the graphic screen maps, buildings, floor plans, and the hierarchy links described above.

I. Graphics: Using animated gifs or other graphical format suitable for display in a web browser, graphics shall include aerial building/campus views, color building floor-plans, equipment drawings, active graphic setpoint controls, web content, and other valid HTML, XML, SVG elements. The data on each graphic page shall automatically refresh at a rate defined by the operator.

J. Display size shall be dynamic changing size based on the viewer’s chosen screen resolution. Systems that depend on scroll bars are not acceptable.

K. Floor plan graphics shall show humidity, heating and cooling zones throughout the buildings in a range of colors, which provide separate visual displays of humidity and temperature relative to their respective setpoints.

L. The colors shall be updated dynamically as a zone’s actual deviation from setpoint changes. These full screen plans shall be accessible by rolling over the floor on the building elevation rendering. This shall provide the viewer a quick and accurate overview of the building zone conditions. CO2, if applicable, shall change from shades of green starting below 700ppm above outdoor levels to red at 1000ppm.

M. The viewer may then click on any zone to be brought to the HVAC system related to that zone. Rolling over any zone shall bring up the zone description, humidity or temperature in a pop-up flag. Flags are used to keep the zone information legible regardless of how small the zone is depicted on the plan.

N. All floor plans shall be vector based to allow for zooming in and out of floor plans without pixelization.

O. Mechanical system graphics shall show the type of mechanical system components serving any zone through the use of a pictorial representation of components. Selected I/O points being controlled or monitored for each piece of equipment shall be displayed with the appropriate engineering units. Animation shall be used for rotation or moving mechanical components to enhance usability. Each piece of equipment being monitored or controlled shall be depicted including: each terminal unit, each floor and each zone.

P. Utilizing a mouse, it shall be possible to select occupied or unoccupied setpoints
(corresponding to the floor plan colors) and drag the color bars to increase or decrease heating and cooling setpoints. In addition to the slide bars, an operator may type the numeric value of the heating and cooling setpoints. The floor plan graphic shall then change colors on a zone-by-zone basis to reflect the actual temperature in each zone relative to the adjusted heating or cooling setpoint.

Q. Scheduling shall be accomplished by using the system geographic navigation tree. The viewer shall be able to define a Time of Day, Holiday or Event schedule for an individual piece of equipment, room, area, floor, tenant, building, campus, site, etc. For example, a new time schedule for every level in the system would be created by clicking at the top of the geographic hierarchy defined in the Navigation Tree.

R. Schedules shall comply with the BACnet™ standard, (Schedule Object, Calendar Object, Weekly Schedule property and Exception Schedule property) and shall allow events to be scheduled. Schedules shall have the ability to be created in the following manner: A specific date, A range of dates, and any combination of Month of Year (1-12, any), Day of Week, and Wildcard (example, allow combinations like second Tuesday of every month).

S. An alarm icon shall display on the navigation tree if any alarm exists in any part of the system. An alarm icon shall display on a specific screen if there is an active alarm on the system being displayed.

T. Trends shall conform to the BACnet™ Trend Log Object specification. The system shall be able to trend and display graphically any analog, digital or calculated points.

U. Systems that Security access from the web browser GUI to BMS OWS shall require a Login Name and Password. Access to different areas of the BMS system security shall be selectable for each operator. The system supervisor shall have the ability to set passwords and security levels for all other operators. Each operator password shall be able to restrict the functions accessible to viewing and/or changing each system application.

2.5 TREND LOG INFORMATION

A. On a separate but equally equipped machine to the main server the system shall periodically gather historically recorded data stored in the building controllers and archive the information. Archived files shall be appended with new sample data, allowing samples to be accumulated. Systems that write over archived data shall not be allowed, unless limited file size is specified by the user. Samples may be viewed at the OWS. Operator shall be able to scroll through all trended data. All trend log information shall be displayed in standard engineering units.

1. Trends shall log upon a change of state whose tolerances shall be established by the owner AND set time intervals established by the owner.

2. The BMS shall be capable of emailing trends automatically to the owner’s designee for the purpose of verifying level control of temperature and humidity. An email of a trend shall automatically be sent to designees whenever a tolerance is exceeded.

B. Software shall be included that is capable of graphing the trend logged object data. Software shall be capable of creating two-axis (x,y) graphs that display up to ten object types at the same time in different colors. Graphs shall show object values relative to time.

C. Operator shall be able to change trend log setup information. This includes the information to be logged as well as the interval at which it is to be logged. All input, output, and value object types in the system may be logged. All operations shall be password protected. Setup
and viewing may be accessed directly from any and all graphics on which object is displayed.

D. The system shall have the capacity to store ten years of archived information for all trend data at a rate of one sample per minute for a minimum of 5000 logs.

2.6 CONTROLLER DATABASE ARCHIVING

A. The host software shall provide capability to upload global control functions being performed by the network of controllers and the individual database and application programming resident in each controller in the facility, or on remote sites.

B. Uploaded programs shall be retained on hard disk for system backup.

C. Programs may be modified using Editor Functions, and downloaded to individual controllers as desired. Downloading of databases shall not interrupt alarm reporting functions, or other multi tasked functions that are ongoing.

2.7 PROGRAMMING GUIDELINES

A. All adjustable setpoints shall be developed as software points stored at memory locations so that setpoints can be changed by recommending the data stored at the memory location rather than by entering the program and changing parameters and lines in program code.

B. Global point name changing:

1. The system shall provide an easy means to allow the operator to change a point name such that the point will automatically be referenced everywhere in the system by the new name.

2. If a point name is removed from the database, any program code where the name appears must show an appropriate error signal for undefined point when the program is viewed, edited, or printed.

C. Synchronization of real-time clocks between all control panels shall be provided.

2.8 BMS NETWORK

A. Provide all communication media among controllers and panels for connection to the dedicated Ethernet BMS network.

B. All programming device set-up, etc. shall be performed through the system server.

C. The system shall be peer-to-peer on the controller level such that the values in any one controller can be read or changed from all other controllers. The software shall provide transparent transfer of all data, control programs, schedules, trends, and alarms from any one controller through the local network to any other controller, regardless of server's status.

2.9 CONTROL PANELS

A. Unitize locking cabinets with suitable brackets for wall or floor mounting; locate panels adjacent to each system under automatic control. Provide common keying for all panels. Fabricate panels of 1.6mm, furniture-quality steel or extruded-aluminum alloy, totally enclosed, with hinged doors and keyed lock.
2.10 ADVANCED APPLICATION CONTROLLERS

A. Provide all necessary hardware for a complete operating system as required. The Advanced Application level control panel shall be able to operate as a standalone panel and shall not be dependent upon any higher level computer or another controller for operation.

B. Controller shall have the BTL listing and meet the BACnet™ device profile of an Advanced Application Controller and shall support the following BACnet™ BIBBs:

1. Data Sharing
 a. Data Sharing-Read Property-A (DS-RP-A)
 b. Data Sharing-Read Property-B (DS-RP-B)
 c. Data Sharing-Read Property Multiple-B (DS-RPM-B)
 d. Data Sharing-Write Property-A (DS-WP-A)
 e. Data Sharing-Write Property-B (DS-WP-B)
 f. Data Sharing-Write Property Multiple-B (DS-WPM-B)
 g. Data Sharing-COV-A (DS-COV-A)
 h. Data Sharing-COV-B (DS-COV-B)
 i. Data Sharing-COV-Unsolicited-A (DS-COVU-A)
 j. Data Sharing-COV-Unsolicited-B (DS-COVU-B)

2. Scheduling
 a. Scheduling-A (SCED-A)
 b. Scheduling-Internal-B (SCHED-I-B)
 c. Scheduling-External-A (SCHED-E-B)

3. Trending
 a. Trending-Viewing and Modifying Trends Internal-B (T-VMT-I-B)
 b. Trending-Viewing and Modifying Trends-External-B (T-VMT-E-B)
 c. Trending-Automated Trend Retrieval-B (T-ATR-B)

4. Network Management
 a. Network Management-Connection Establishment-A (NM-CE-A)
 b. Network Management-Connection Establishment-B (NM-CE-B)

5. Alarming
 a. Alarm and Event-Notification Internal-B (AE-N-E-B)
 b. Alarm and Event-Notification External-B (AE-N-E-B)
 c. Alarm and Event-ACK-B (AE-ACK-B)
 d. Alarm and Event–Alarm Summary-B (AE-ASUM-B)
 e. Alarm and Event –Enrollment Summary-B (AE-ESUM-B)

6. Device Management
 a. Device Management-Dynamic Device Binding-A (DM-DDB-A)
 b. Device Management-Dynamic Device Binding-B (DM-DDB-B)
 c. Device Management-Dynamic Object Binding-B (DM-DOB-B)
 d. Device Management-Device Communication Control-B (DM-DCC-B)
 e. Device Management-Private Transfer-A (DM-PT-A)
 f. Device Management-Private Transfer-B (DM-PT-B)
 g. Device Management-Text Message-A (DM-TM-A)
 h. Device Management-Time Synchronization-A (DM-TS-A)
C. Each System Level Control Panel shall, at a minimum, be provided with:

2. 10-bit resolution inputs
3. Primary Network communication module, if needed for primary network communications.
4. Secondary Network communication module, if needed for secondary network communications.
5. Memory module (4 Megabyte, minimum) to accommodate all Primary Control Panel software requirements, including but not limited to, its own operating system and databases, including control processes, energy management applications, alarm management applications, historical/trend data for points specified, maintenance support applications, custom processes, operator I/O, dial-up communications.
6. Real time clock and battery
7. Data collection/ Data Trend module sized for 10,000 data samples.
8. Power supplies as required for all associated modules, sensors, actuators, etc.
9. Input/output point modules as required including spare capacity.
10. Software modules as required for all sequences of operation, logic sequences and energy management routines. Relay logic is not acceptable.
11. Monitoring of the status of all hand-off-auto switches. The status of the hand-off-auto switch shall be available as a BMS data point.
12. Monitoring of all industry standard types of analog and digital inputs and outputs, without the addition of equipment to the primary control panel.
13. Local status indication for each digital input and output for constant, up-to-date verification of all point conditions without the need for an operator I/O device. Each primary control panel shall perform diagnostics on all inputs and outputs and a failure of any input or output shall be indicated both locally and at the operator workstation.
14. Graduated intensity LEDs or analog indication of value for each analog output.
15. Approval of local authorities
16. The operator shall have the ability to manually override automatic or centrally executed commands at the primary control panels via local, point discrete, on-board hand/off/auto operator override switches. If on board switches are not available, provide separate control panels with HOA switches. Mount panel adjacent to primary control panel. These override switches shall be operable whether the panel processor is operational or not. Provide hand/off/auto switch for each digital output, including spares. Provide hand/auto switch and gradual positioning potentiometer for each analog output, including spares.
17. Each System Level Control Panel shall continuously perform self-diagnostics on all hardware modules and network communications. The System Level Control Panel shall provide both local and remote annunciation of any detected component failures, low battery conditions or repeated failure to establish communication with any system.
18. Each System Level Control Panel shall provide battery backup to support the real-time clock and all memory and programs for a minimum of 100 hours.

19. Each System Level Control Panel shall support firmware upgrades without the need to shall hardware.

20. System Level control panels shall provide at least two RS-232C serial data communication ports for operation of operator I/O devices such as industry standard printers, operator terminals and portable laptop operator’s terminals. Primary control panels shall allow temporary use of portable devices without interrupting the normal operation of permanently connected printers or terminals.

21. Isolation shall be provided at all primary control panel terminations, as well as all field point terminations to suppress induced voltage transients.

D. Spare Capacity: Provide enough inputs and outputs to handle the equipment shown to be “future” on drawings. Provide all hardware modules, software modules, processors, power supplies, communication controllers, etc. required to ensure adding a point to the spare point location only requires the addition of the appropriate sensor/actuator and field wiring/tubing.

E. Provide a UPS power conditioner and backup for the System Level Controller to provide 15 minutes of power backup.

2.11 APPLICATION SPECIFIC CONTROLLERS

A. Each Application Level Control Panel shall operate as a stand-alone controller capable of performing its user selectable control routines independently of any other controller in the system. Each application specific controller shall be a microprocessor based, multi-tasking, real time digital control processor.

B. This controller shall have the BTL listing and meet the BACnet™ device profile of an Advanced Specific Controller and shall support the following BACnet™ BiBBs:

1. Data Sharing
 a. Data Sharing-Read Property-A (DS-RP-A)
 b. Data Sharing-Read Property-B (DS-RP-B)
 c. Data Sharing-Read Property Multiple-B (DS-RPM-B)
 d. Data Sharing-Write Property-A (DS-WP-A)
 e. Data Sharing-Write Property-B (DS-WP-B)
 f. Data Sharing-Write Property Multiple-B (DS-WPM-B)
 g. Data Sharing-COV-A (DS-COV-A)
 h. Data Sharing-COV-B (DS-COV-B)
 i. Data Sharing-COV- Unsolicited-A (DS-COVU-A)
 j. Data Sharing-COV- Unsolicited-B (DS-COVU-B)

2. Scheduling
 a. Scheduling-A (SCED-A)
 b. Scheduling-Internal-B (SCHED-I-B)
 c. Scheduling-External-A (SCHED-E-B)

3. Trending
 a. Trending-Viewing and Modifying Trends Internal-B (T-VMT-I-B)
 b. Trending-Viewing and Modifying Trends-External-B (T-VMT-E-B)
 c. Trending-Automated Trend Retrieval-B (T-ATR-B)

4. Network Management
 a. Network Management-Connection Establishment-A (NM-CE-A)
 b. Network Management-Connection Establishment-B (NM-CE-B)

5. Alarming
a. Alarm and Event-Notification Internal-B (AE-N-I-B)
b. Alarm and Event-Notification External-B (AE-N-E-B)
c. Alarm and Event-ACK-B (AE-ACK-B)
d. Alarm and Event –Alarm Summary-B (AE-ASUM-B)
e. Alarm and Event –Enrollment Summary-B (AE-ESUM-B)

6. Device Management
 a. Device Management-Dynamic Device Binding-A (DM-DDB-A)
 b. Device Management-Dynamic Device Binding-B (DM-DDB-B)
 c. Device Management-Dynamic Object Binding-B (DM-DOB-B)
 d. Device Management-Device Communication Control-B (DM-DCC-B)
 e. Device Management-Private Transfer-A (DM-PT-A)
 f. Device Management-Private Transfer-A (DM-PT-B)
 g. Device Management-Text Message-A (DM-TM-A)
 h. Device Management-Time Synchronization-A (DM-TS-A)
 i. Device Management-Time Synchronization-B (DM-TS-B)
 j. Device Management-UTC Time Synchronization-A (DM-UTC-A)
 k. Device Management-UTC Time Synchronization-B (DM-UTC-B)
 l. Device Management-Reinitialize Device-B (DM-RD-B)
 m. Device Management-Object Creation and Deletion-B (DM-OCD-B)

C. Each Application Specific Controller shall, at a minimum, be provided with:
 1. A 16-bit stand-alone real time digital control microprocessor module
 2. Secondary network communications ability
 3. Power supplies as required for all associated modules, sensors, actuators, etc.
 4. 10-bit resolution input/output points as required
 5. Software as required for all sequences of operation, logic sequences and energy management routines. Relay logic is not acceptable
 6. A portable operator terminal connection port
 7. Auxiliary enclosure for analog output transducers, isolation relays, etc. Auxiliary enclosure shall be part of primary enclosure or mounted adjacent primary enclosure
 8. Local LED status indication for each digital input and output
 9. Each controller measuring air volume shall include provisions for manual and automatic calibration of the differential pressure transducer in order to maintain stable control and insuring against drift over time
 10. Each controller measuring air volume shall include a differential pressure transducer
 11. SCR control of electric heaters
 12. Approval of local authorities.

D. Each Application Specific Controller shall continuously perform self-diagnostics on all hardware and secondary network communications. The Application Specific Controller shall provide both local and remote annunciation of any detected component failures, low battery conditions, or repeated failure to establish communication to the system.

E. Provide each Application Specific Controller with sufficient memory to accommodate point databases, operating programs, local alarming and local trending. All databases and programs shall be stored in non-volatile EEPROM, EPROM and PROM, or a minimum of 72 hour battery backup shall be provided. The controllers shall be able to return to full normal operation without user intervention after a power failure of unlimited duration. Provide uninterruptible power supplies (UPSs) of sufficient capacities for all terminal controllers that do not meet this protection requirement. Operating programs shall be field selecteable for specific applications. In addition, specific applications may be modified to meet the user’s exact control strategy requirements, allowing for additional system flexibility. Controllers that require factory changes of all applications are not acceptable.
F. The Application Specific Controller shall be powered from a 24 VAC source provided by this contractor and shall function normally under an operating range of 18 to 28 VAC (25% to +17%), allowing for power source fluctuations and voltage drops. Install plenum data line and sensor cable in accordance with local code and NEC. The BMS contractor shall provide a dedicated power source and separate isolation transformer for each controller to function normally under the specified operating range. The controllers shall also function normally under ambient conditions of 0 to 50°C and 10% to 95%RH (non-condensing). Provide each controller with a suitable cover or enclosure to protect the intelligence board assembly.

2.12 ROUTERS

A. Provide a router for each sub network to connect the floor level network to the base building backbone level network. The router shall connect BACnet™ MS/TP sub networks to BACnet™ over Ethernet. The router shall be capable of handling all of the BACnet™ BiBBs that are listed for the controller that reside on the sub network.

2.13 SENSORS

A. All control signals shall be via 4-20 mA or 0-10 VDC loops.

B. Input/Output sensors and devices shall be closely matched to the requirements of the BMS for accurate, responsive, noise-free signal input/output. Control input response shall be highly sensitive and matched to the loop gain requirements for precise and responsive control. Provide the following instrumentation as required by the monitoring, control and optimization functions.

C. Space and Duct Temperature Sensors

1. All temperature sensors shall be of a thermistor type.

D. Temperature Sensors/Transmitters

1. All temperature sensors shall use 100 or 1000 ohm, platinum RTD elements each paired with a 4 wire 4-20 mA output transmitter. Nickel RTDS, silicon RTDs and thermistors are not acceptable. Transmitter shall have built-in circuit protection against reverse polarity and supply voltage transients.

E. Current Sensors:

1. Provide and install analog current sensors for all fan and compressor motors. Each sensor shall be split core, two wire, loop powered and sized for expected amperage. Units shall be UL listed.

2. The BMS shall manage all compressor staging to include compressors specifically designated as backup compressors.

F. Relays

1. Control relays shall be UL listed plug-in type with dust cover and LED “energized” indicator. Contact rating, configuration, and coil voltage shall be suitable for application.

2. Time delay relays shall be UL listed solid-state plug-in type with adjustable time delay. Delay shall be adjustable ±200% (minimum) from set point shown on plans. Contact rating, configuration, and coil voltage shall be suitable for application.
3. Provide NEMA 1 enclosure when not installed in local control panel.

2.14 AUXILIARY CONTROL DEVICES

A. Refer only to those items that are part of project as delineated in plans and specified herein.

B. Motorized control dampers, unless otherwise specified elsewhere, shall be as follows:

1. Control dampers shall be parallel or opposed blade type as below or as scheduled on drawings.

2. Outdoor and/or return air mixing dampers shall be parallel blade, arranged to direct air streams toward each other modulating dampers shall be opposed blade type.

3. Two-position shutoff dampers may be parallel or opposed blade type with blade and side seals.

4. Damper frames shall be 13 gauge galvanized steel channel or \(\frac{1}{8} \)" extruded aluminum with reinforced corner racing.

5. Damper blades shall not exceed 8" in width or 48" in length. Blades are to be suitable for medium velocity performance (12,000 fpm). Blades shall be not less than 16 gauge.

6. Damper shaft bearings shall be as recommended by manufacturer for application, Oilite.

7. All blade edges and top and bottom of the frame shall be provided with replaceable butyl rubber or neoprene seals. Side seals shall be spring-loaded stainless steel. The blade seals shall provide for a maximum leakage rate of 10 cfm per sq. ft. at 4" w.c. differential pressure. Provide airfoil blades suitable for a wide-open face velocity of 1,500 fpm.

8. Individual damper sections shall not be larger than 48"x60". Provide a minimum of one damper actuator per section.

9. Modulating dampers shall provide a linear flow characteristic where possible.

10. Dampers shall have exposed linkages.

C. Electric damper/actuators

1. The actuator shall have electronic overload or digital rotation sensing circuitry to prevent damage to the actuator throughout the rotation of the actuator.

2. Where shown, for power-failure/safety applications, an internal mechanical spring failure mechanism shall be built into the actuator housing.

3. All rotary spring-return actuators shall be capable of both clockwise and counterclockwise spring-return operation. Linear actuators shall spring-return to the retracted position.

4. Proportional actuators shall accept a 0 to 10 VDC or 0 to 20 mA control signal.
and provide a 2 to 10 VDC or 4 to 20 mA operating range.

5. All 24 VAC/VDC actuators shall operate on Class 2 wiring and shall not require more than 10 VA for AC or more than 8 W for DC applications. Actuators operating on 120 VAC or 230 VAC shall not require more than 11 VA.

6. All non-spring return actuators shall have an external manual gear release to allow manual positioning of the damper when actuator is not powered.

7. Spring-return actuators with more than 60 in lb torque capacity shall have a manual crank for this purpose.

8. All modulating actuators shall have an external, built-in switch to allow the reversing of direction of rotation.

9. Actuators shall be provided with a raceway fitting and a minimum 1 m electrical cable and shall be pre-wired to eliminate the necessity of opening the actuator housing to make electrical connections.

10. Actuators shall be UL Standard 873 Listed and CSA Class 4813 02 Certified as meeting correct safety requirements and recognized industry standards.

11. Actuators shall be designed for a minimum of 60,000 full-stroke cycles at the actuator’s rated torque.

D. Temperature sensors.

1. Temperature sensors shall be Resistance Temperature Device (RTD) or thermistors.

2. Duct sensors shall be rigid or averaging as shown. Averaging sensors shall be a minimum of 5 feet in length.

3. Space sensors shall be equipped with setpoint adjustment, override switch, display, and/or communication port as shown.

4. Provide matched temperature sensors for differential temperature measurement.

E. Humidity sensors.

1. Duct sensors shall have a sensing range of 20% to 80%.

2. Duct sensors shall be provided with a sampling chamber.

3. Outdoor air humidity sensors shall have a sensing range of 20% to 95% RH.

4. They shall be suitable for ambient conditions of -40°F to 170°F.

5. Humidity sensor’s drift shall not exceed 1% of full scale per year.

F. Flow switches.

1. Flow-proving switches shall be either paddle or differential pressure type, as shown.
2. Paddle type switches (water service only) shall be UL Listed, SPDT snap-acting with pilot duty rating (125 VA minimum). Adjustable sensitivity with NEMA 1 enclosure unless otherwise specified.

3. Differential pressure type switches (air or water service) shall be UL Listed, SPDT snap-acting, pilot duty rated (125 VA minimum), NEMA 1 enclosure, with scale range and differential suitable for intended application, or as specified.

G. Relays
 1. Control relays shall be UL Listed plug-in type with dust cover and LED "energized" indicator. Contact rating, configuration, and coil voltage suitable for application.
 2. Time delay relays shall be UL Listed solid-state plug-in type with adjustable time delay. Delay shall be adjustable ±200% (minimum) from setpoint shown on plans. Contact rating, configuration, and coil voltage suitable for application. Provide NEMA 1 enclosure when not installed in local control panel.

H. Override timers
 1. Override timers shall be spring-wound line voltage UL Listed, contact rating and configuration as required by application. Provide 0-to-6 hour calibrated dial unless otherwise specified; suitable for flush mounting on control panel face, located on local control panels or where shown.

I. Current transmitters
 1. AC current transmitters shall be self-powered combination split-core current transformer type with built-in rectifier and high-gain servo amplifier with 4 to 20 mA two-wire output. Unit ranges shall be 10 A, 20 A, 50 A, 100 A, 150 A, and 200 A full scale, internal zero and span adjustment, and ±1% full scale accuracy at 500 ohm maximum burden.
 2. Transmitter shall meet or exceed ANSI/ISA s50.1 requirements and shall be UL/CSA recognized.
 3. Unit shall be split-core type for clamp-on installation on existing wiring.

J. Pressure transducers
 1. Transducer shall have linear output signal. Zero and span shall be field-adjustable.
 2. Transducer sensing elements shall withstand continuous operating conditions of positive or negative pressure 50% greater than calibrated span without damage.

K. Differential pressure type switches (air or water service) shall be UL Listed, SPDT snap-acting, pilot duty rated (125 VA minimum), NEMA 1 enclosure, with scale range and differential suitable for intended application, or as shown.

L. Local control panels
 1. All indoor control cabinets shall be fully enclosed NEMA 1 construction with [hinged door], key-lock latch, and removable sub-panels. A single key shall be common to
2. Interconnections between internal and face-mounted devices pre-wired with color-coded stranded conductors neatly installed in plastic troughs and/or tie-wrapped. Terminals for field connections shall be UL Listed for 600-volt service, individually identified per control/interlock drawings, with adequate clearance for field wiring. Control terminations for field connection shall be individually identified per control drawings.

3. Provide ON/OFF power fuse with over-current protection for control power sources to each local panel.

PART 3 - EXECUTION

3.1 WIRING

A. All control and interlock wiring shall comply with national and local electrical codes and Division 26 of this specification. Where the requirements of this section differ from those in Division 26, the requirements of this section shall take precedence.

B. All NEC Class 1 (line voltage) wiring shall be UL Listed in approved conduit according to NEC and Division 26 requirements.

C. All low-voltage wiring shall meet NEC Class 2 requirements. (Low-voltage power circuits shall be sub-fused when required to meet Class 2 current limit.)

D. Where NEC Class 2 (current-limited) wires are in concealed and accessible locations, including ceiling return air plenums, approved cables not in conduit may be used provided that cables are UL Listed for the intended application. For example, cables used in ceiling plenums shall be UL Listed specifically for that purpose.

E. All wiring in mechanical, electrical, or service rooms - or where subject to mechanical damage - shall be installed in EMT conduit.

F. All BMS risers will be installed in EMT conduit.

G. Do not install Class 2 wiring in conduit containing Class 1 wiring. Boxes and panels containing high voltage wiring and equipment may not be used for low-voltage wiring except for the purpose of interfacing the two (e.g., relays and transformers).

H. Do not install wiring in conduit containing tubing.

I. Where plenum rated cable is run exposed, wiring is to be run parallel along a surface or perpendicular to it and neatly tied at 3 m (10 ft) intervals.

J. Where plenum rated cable is used without conduit, it shall be supported from or anchored to structural members. Cables shall not be supported by or anchored to ductwork, electrical conduits, piping, or ceiling suspension systems.

K. All wire-to-device connections shall be made at a terminal block or wire nut. All wire-to-wire connections shall be at a terminal strip or wire nut.

L. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.
M. Maximum allowable voltage for control wiring shall be 120 V. If only higher voltages are available, the contractor shall provide step-down transformers or interposing relays.

N. All plenum rated wiring shall be installed as continuous lengths, with no splices permitted between termination points.

O. All wiring in conduit shall be installed as continuous lengths, with no splices permitted between termination points or junction boxes.

P. Maintain fire rating at all penetrations. Install plenum wiring in sleeves where it passes through walls and floors.

Q. Size and type of conduit and size and type of wire shall be the responsibility of the contractor, in keeping with the manufacturer's recommendations and NEC requirements, except as noted elsewhere.

R. Include one pull string in each conduit 3/4 in. or larger.

S. Control and status relays are to be located in designated enclosures only. These enclosures can include packaged equipment control panel enclosures unless they also contain Class 1 starters.

T. Conceal all conduits, except within mechanical, electrical, or service rooms. Install conduit to maintain a minimum clearance of 15 cm (6 in.) from high-temperature equipment (e.g., pipes or flues).

U. Secure conduit with conduit clamps fastened to the structure and spaced according to code requirements. Conduit and pull boxes may not be hung on flexible duct strap or tie rods. Conduits may not be run on or attached to ductwork.

V. Adhere to this specification's Division 260 requirements where conduit crosses building expansion joints.

W. The Contractor shall terminate all control and/or interlock wiring and shall maintain updated (as-built) wiring diagrams with terminations identified at the job site.

X. Flexible metal conduits and liquid-tight, flexible metal conduits shall not exceed 1 m (3 ft) in length and shall be supported at each end. Flexible metal conduit less than ½ in. electrical trade size shall not be used. In areas exposed to moisture, including MER room, liquid-tight, flexible metal conduits shall be used.

Y. Conduit must be adequately supported, properly reamed at both ends, and left clean and free of obstructions. Conduit sections shall be joined with couplings (according to code). Terminations must be made with fittings at boxes, and ends not terminating in boxes shall have bushings installed.

3.2 CONTROL SYSTEM CHECKOUT AND TESTING

A. Perform a multi-phase commissioning procedure consisting of field I/O calibration and commissioning, system commissioning and integrated system program commissioning. Document all commissioning information on commissioning data sheets that shall be submitted prior to acceptance testing. Commissioning work that requires shutdown of system or deviation from normal function shall be performed when the operation of the
system is not required. The commissioning must be coordinated with the owner and construction manager to ensure systems are available when needed. Notify the operating personal in writing of the testing schedule so that authorized personnel from the owner and construction manager are present throughout the commissioning procedure.

B. Phase I – Field I/O Calibration and Commissioning
 1. Verify that each control panel has been installed according to plans, specifications and approved shop drawings. Calibrate, test, and have signed off each control sensor and device. Commissioning to include, but not be limited to:
 a. Verify analog limit and binary alarm reporting.
 b. Point value reporting.
 c. Binary alarm and switch settings.
 d. Fail safe operation on loss of control signal, electric power, network communications, etc.

C. Phase II – System Commissioning
 1. Each BMS program shall be put on line and commissioned. The contractor shall, in the presence of the owner and construction manager, demonstrate each programmed sequence of operation and compare the results in writing. In addition, each control loop shall be tested to verify proper response and stable control, within specified accuracy. System program test results shall be recorded on commissioning data sheets and submitted for record. Any discrepancies between the specification and the actual performance will be immediately rectified and re-tested.

3.3 CONTROL SYSTEM DEMONSTRATION AND ACCEPTANCE

A. The BMS contractor shall demonstrate 100 percent of the system functions. The contractor shall demonstrate all points and system functions until all devices and functions meet specification.

B. System Specification Verification and Demonstration inclusive of the following activities:
 1. Place three (3) digital on-off output points in the hand, off and auto position from the panel HOA switches to demonstrate the system’s ability to override a point manually. Demonstrate switch position feedback by displaying the position of the switches dynamically on the central workstation computer as they are changed. Points shall be as selected by the Architect/Engineer.
 a. Owner Date A/E Date
 2. A total of 10 points shall be selected by the Architect/Engineer/Commissioning Agent to demonstrate the capability of automatically trending based on time intervals and change of value. Demonstrate both types of trending for each point from the central workstation computer. Demonstrate dynamic trend plotting on the central workstation as specified.
 a. Owner Date A/E Date
 3. From a portable terminal connected to a DDC controller on the system, initiate communications and open one points information text, associated with one piece of HVAC equipment to demonstrate peer-to-peer communication capability.
 a. Owner Date A/E Date
 4. Disconnect one DDC Controller from the network to demonstrate that a single device failure shall not disrupt or halt peer-to-peer communication, trend collection, alarm collection. Panel to be disconnected shall be selected by the Architect/Engineer.
5. Demonstrate the ability to download programs to a DDC Controller from the server. Demonstrate the ability to upload programs resident in a DDC Controller to the server. DDC Controller shall be selected by the Architect/Engineer.

a. Owner Date A/E Date

6. Demonstrate the ability to run all reports listed in the specification from the central workstation. Demonstrate the ability to have these reports run automatically.

a. Owner Date A/E Date

7. The control system manufacturer shall demonstrate the system to the owner, engineer and construction manager prior to final acceptance of the system. The control system manufacturer shall demonstrate all control sequences function as specified and the performance of each control loop is within specified limits. Graphical trends shall be recorded and printed for each control loop as to verify the loop stability is within the specified performance limits. Each trend shall be for a duration of no less than two hours.

END OF SECTION 23 0900
SECTION 23 0993

SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes control sequences for HVAC systems, subsystems, and equipment.

1. Packaged ERU - Demand Control Ventilation
2. Packaged ERU – 100% OA VRV System
3. Package ERU – 100% OA Plate Heat Exchanger
4. Electric Cabinet Unit Heaters
5. Exhaust Fans
6. VRV System
7. Specialty Exhaust Systems
8. Makeup Air Units
9. Fire Alarm System Monitoring
10. Air Filter Monitoring

1.2 PACKAGED ENERGY RECOVERY UNIT WITH DEMAND CONTROL VENTILATION (ERU-309, 310)

A. Safeties

1. For units > 2000 cfm, Return Air smoke detector shall be wired to stop the unit upon the presence of smoke. BMS shall be notified upon smoke detector activation via dry contact wiring from FAS.

B. Controls

1. ERU shall be provided with its own factory installed controls for local standalone control operation.
2. BMS contractor shall tie-in to the unit via the BACnetTM gateway provided by the unit manufacturer.
3. The ERU shall be enabled automatically by the BMS via time schedule or manual command by the operator at the OWS.
4. When enabled, the ERU local control shall operate the unit automatically to maintain desired setpoint.

1.3 PACKAGED ENERGY RECOVERY UNIT VRV SYSTEM (ERU-300)

A. Safeties

1. Supply Air smoke detector shall be wired to stop the unit upon the presence of smoke. BMS shall be notified upon smoke detector activation via dry contact wiring from FAS.

B. Controls
1. ERU shall be provided with its own factory installed controls for local standalone control operation.
2. BMS contractor shall tie-in to the unit via the BACnetTM gateway provided by the unit manufacturer.
3. The ERU shall be enabled automatically by the BMS via time schedule or manual command by the operator at the OWS.
4. When enabled, the ERU local control shall operate the unit automatically to maintain desired setpoint.

1.4 PACKAGED ENERGY RECOVERY UNIT PLATE HEAT EXCHANGER (ERU-114, 116)

A. Safeties
1. Supply Air smoke detector shall be wired to stop the unit upon the presence of smoke. BMS shall be notified upon smoke detector activation via dry contact wiring from FAS

B. Controls
1. ERU shall be provided with its own factory installed controls for local standalone control operation.
2. BMS contractor shall tie-in to the unit via the BACnetTM gateway provided by the unit manufacturer.
3. The ERU shall be enabled automatically by the BMS via time schedule or manual command by the operator at the OWS.
4. When enabled, the ERU local control shall operate the unit automatically to maintain desired setpoint.

1.5 ELECTRIC CABINET UNIT HEATER (CUH-100, 101, 102, 103, & 118)

A. BMS contractor shall provide, mount, & wire a space sensor in a location specified by the mechanical drawings. Provide tamper resistant cover.

B. Temperature sensor shall energize the fan and heating coil to maintain the desired temperature setpoint.

C. Alarm shall be generated at the BMS when space temperature falls below setpoint.

D. Night setback control shall be provided via the BMS.

1.6 EXHAUST FAN (EF-105A, 226)

A. BMS contractor shall provide, mount, & wire a space thermostat in a location specified by the mechanical drawings.

B. Thermostat shall energize the EF to maintain the desired temperature setpoint.

C. When the exhaust fan is energized to start, its associated intake damper shall open. When the damper has opened via the damper actuated end switch, the fan shall start. When the fan is off, the intake damper shall close.

D. The BMS shall monitor the status of the fan.
1.7 **VRV SYSTEM**

A. The VRV Control System shall be provided with the BACnetTM Gateway for integration to the BMS system.

B. BMS shall monitor the space conditions as operated by the VRV systems via the BACnetTM communication link between the two systems.

C. The heat pump remote room controllers shall have a configurable display and operation buttons to provide as much or as little control as required by the owner/occupant. The controls shall be simple such as on-off, fan speed (high-medium-low), setpoint adjust (cooling or heating), and airflow direction.

1.8 **SPECIALTY EXHAUST FANS (PAINT BOOTH & DYE VAT HOOD)**

A. BMS contractor shall provide any interlock wiring to the fans associated damper.

B. When the exhaust fan is energized to start, its associated intake damper shall open. When the damper has opened via the damper actuated end switch, the fan shall start. When the fan is off, the intake damper shall close.

1.9 **MAKEUP AIR UNITS**

A. The automatic temperature controls (ATC) contractor shall provide all the required controls to interface with the Makeup Air Unit. The Makeup Unit manufacturer shall provide an interface for the modulating gas burner with integral controls.

B. Scheduling:
 1. The Makeup Air Unit shall be scheduled for “Occupied” mode of operation when the Specialty Exhaust Fan is on.

C. “Unoccupied” mode:
 1. When the Specialty Exhaust Fan is off; the Makeup Air Unit’s fan shall be off; the Makeup Air Unit’s Outside damper shall be closed; Makeup Air Unit’s Gas Heating shall be off.

D. “Occupied” mode:

E. When the Specialty Exhaust Fan is on as proven by a current sensor, the Makeup Air Outside damper shall open; after proof of the Makeup Air Unit’s Outside damper opening via an end-switch the Makeup Air Fan shall start & run continuously.

F. Heating mode:

G. When the Outside Air temperature is above 70 °F the gas heating shall be locked out. The gas heating shall be allowed to modulate to maintain the Discharge Air Setpoint of 70 °F. A Discharge Air Thermostat (LTC) (by MUA unit manufacturer) shall control the Discharge Air Temperature by modulating the Gas Heating control valve. An override room thermostat shall also be provided to prevent the room from overheating.
1.10 FIRE ALARM SYSTEM MONITORING

A. Fire Alarm System shall provide a dry contact for BMS monitoring of smoke alarm condition. BMS shall monitor alarm condition and display at the OWS.

1.11 AIR FILTER MONITORING

A. A Differential Pressure Switch at each filter bank (for ERU’s, MUA’s, & Paint Booth) shall be set as per the manufacturers rating for a dirty filter. When the filter exceeds this rating, the filter switch shall indicate a dirty filter alarm.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 0993
SECTION 23 1123
FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS
A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 2. Service Regulators: 65 psig minimum unless otherwise indicated.
B. Natural-Gas System Pressure within Buildings: More than 0.5 psig but not more than 2 psig.
C. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.
D. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
1.5 SUBMITTALS

A. Product Data: For each type of the following:
 1. Piping specialties.
 2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 3. Pressure regulators. Indicate pressure ratings and capacities.
 4. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
 1. Shop Drawing Scale: 1/4 inch per foot.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of seismic restraints.
 2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.6 INFORMATIONAL SUBMITTALS.

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Welding certificates.

E. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For motorized gas valves and pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Construction Manager Owner no fewer than five days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Construction Manager's Owner's written permission.

1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

6. Mechanical Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Dresser Piping Specialties; Division of Dresser, or engineer approved equal.
 b. Stainless-steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Stainless-steel bolts, washers, and nuts.
 e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

B. PE Pipe: ASTM D 2513, SDR 11.

1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.

2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

 b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering.
 c. Aboveground Portion: PE transition fitting.
 d. Outlet shall be threaded or flanged or suitable for welded connection.
 e. Tracer wire connection.
 f. Ultraviolet shield.
 g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
b. Outlet shall be threaded or flanged or suitable for welded connection.
c. Bridging sleeve over mechanical coupling.
d. Factory-connected anode.
e. Tracer wire connection.
f. Ultraviolet shield.
g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

5. Plastic Mechanical Couplings, NPS 1-1/2 and Smaller: Capable of joining PE pipe to PE pipe.
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Mueller Co.; Gas Products Div. or engineer approved equal.
 b. PE body with molded-in, stainless-steel support ring.
 c. Buna-nitrile seals.
 d. Acetal collets.
 e. Electro-zinc-plated steel stiffener.

6. Plastic Mechanical Couplings, NPS 2 and Larger: Capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Mueller Co.; Gas Products Div. or engineer approved equal.
 b. Fiber-reinforced plastic body.
 c. PE body tube.
 d. Buna-nitrile seals.
 e. Acetal collets.
 f. Stainless-steel bolts, nuts, and washers.

7. Steel Mechanical Couplings: Capable of joining plain-end PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1) Dresser Piping Specialties; Division of Dresser, Inc. or engineer approved equal.
 b. Steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Stainless-steel bolts, washers, and nuts.
 e. Factory-installed anode for steel-body couplings installed underground.

C. Drawn-Temper Copper Tube: Comply with ASTM B 88, Type L.
b. Bolts and Nuts: ASME B18.2.1, carbon steel or stainless steel.

3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.

D. Annealed-Temper Copper Tube: Comply with ASTM B 88, Type L.
 a. Copper fittings with long nuts.
 b. Metal-to-metal compression seal without gasket.
 c. Dryseal threads complying with ASME B1.20.3.
 3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.

E. Tin-Lined Copper Tube: ASTM B 280, seamless, annealed, with interior tin-plated lining.
 a. Copper fittings with long nuts.
 b. Metal-to-metal compression seal without gasket.
 c. Dryseal threads complying with ASME B1.20.3.

2.2 PIPING SPECIALTIES

A. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.

1. CWP Rating: 125 psig.
2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.
3. Ball: Chrome-plated brass.
4. Stem: Bronze; blowout proof.
5.Seats: Reinforced TFE; blowout proof.
6. Packing: Separate packnut with adjustable-stem packing threaded ends.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.
3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Separate body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.

5. Operator: Square head or lug type with tamperproof feature where indicated.

6. Pressure Class: 125 psig.

7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. Cast-Iron, Lubricated Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Or engineer approved equal.

2. Body: Cast iron, complying with ASTM A 126, Class B.

3. Plug: Bronze or nickel-plated cast iron.

4. Seat: Coated with thermoplastic.

5. Stem Seal: Compatible with natural gas.

7. Operator: Square head or lug type with tamperproof feature where indicated.

8. Pressure Class: 125 psig.

9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

2.5 MOTORIZED GAS VALVES

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Honeywell International Inc.
 b. Or engineer approved equal.

2. Body: Brass or aluminum.

5. Normally closed.
7. Electrical operator for actuation by appliance automatic shutoff device.

B. Electrically Operated Valves: Comply with UL 429.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 b. Or engineer approved equal.

2. Pilot operated.
3. Body: Brass or aluminum.
5. Springs and Valve Trim: Stainless steel.
6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
7. NEMA ICS 6, Type 4, coil enclosure.

2.6 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80. (coordinate with local utility company)

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Fisher Control Valves and Regulators; Division of Emerson Process Management
 b. Or engineer approved equal.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 100 psig.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Maxitrol Company
 b. Or engineer approved equal.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Maxitrol Company
 b. Or engineer approved equal.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.7 SERVICE METERS

A. Service Meters: Comply with local utility company.

B. Service-Meter Bars: Comply with local utility company.

C. Service-Meter Bypass Fittings: Comply with local utility company.
2.8 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Watts Regulator Co.; a division of Watts Water Technologies, Inc. or engineer approved equal.

2. Description:
 b. Pressure Rating: 125 psig minimum at 200 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Watts Regulator Co.; a division of Watts Water Technologies, Inc. or engineer approved equal.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 200 deg F.

2.9 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install drip traps where condensate is subject to freezing.

 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

 2. Install sediment traps in accordance with International Fuel Gas Code.
N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install pressure gage downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

Z. Install service meters downstream from pressure regulators.

3.4 OUTDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Install underground, natural-gas piping buried at least 36 inches below finished grade.
 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Install fittings for changes in direction and branch connections.

E. Install pressure gage downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.5 SERVICE-METER ASSEMBLY INSTALLATION (comply with local utility requirements)

A. Install service-meter assemblies aboveground, on concrete bases.

B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.

C. Install strainer on inlet of service-pressure regulator and meter set.

D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.

E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.

F. Install service meters downstream from pressure regulators.

G. Install metal bollards to protect meter assemblies. Comply with requirements in Section 05 5000 "Metal Fabrications" for pipe bollards.

3.6 VALVE INSTALLATION

A. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.7 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.8 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 5. NPS 4and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.
3.9 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.10 LABELING AND IDENTIFYING

A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.11 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI EXT 5.1D.
 d. Color: Yellow.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd semigloss.
 d. Color: Yellow.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.
3.12 CONCRETE BASES
A. Concrete Bases: Anchor equipment to concrete base.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 2. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 3. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.13 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

3.14 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

3.15 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG
A. Refer to International Fuel Gas Code.
B. Aboveground, branch piping NPS 1 and smaller shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
C. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
D. Underground, below building, piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
E. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
F. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.16 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

A. Refer to International Fuel Gas Code.

B. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

C. Aboveground, distribution piping shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with steel welding fittings and welded joints.

3.17 OUTDOOR PIPING SCHEDULE

A. Refer to International Fuel Gas Code.

B. Underground natural-gas piping shall be the following:
 1. PE pipe and fittings joined by heat fusion, or mechanical couplings; service-line risers with tracer wire terminated in an accessible location.

C. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.18 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, lubricated plug valve.

E. Valves in branch piping for single appliance shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 23 1123
SECTION 23 2113

HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes pipe and fitting materials, and joining methods for the following:
 1. Condensate-drain piping.

1.3 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 1. Condensate-Drain Piping: 150deg F

1.4 SUBMITTALS

A. Product Data: For each type of the following:
 1. Fittings.

B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

C. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Other building services.
 3. Structural members.

D. Welding certificates.

E. Qualification Data: For Installer.

F. Field quality-control test reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (aboveground).

B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (belowground and within slabs).

C. Copper or Bronze Pressure-Seal Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Viega (Stadler-Viega) or engineer approved equal.
 2. Housing: Copper.
 4. O-Rings and Pipe Stops: EPDM.
 5. Grip Ring: Stainless Steel on 2-1/2” to 4”.
 6. Tools: Manufacturer's special tools.
 7. Minimum 200-psig working-pressure rating at 250 deg F.
 9. Provide manufacturer’s 50-year warranty.

D. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Watts Regulator Co.; a division of Watts Water Technologies, Inc. or engineer approved equal.
 2. Description:
 b. Pressure Rating: 125 psig minimum at 250 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Watts Regulator Co.; a division of Watts Water Technologies, Inc. or engineer approved equal.
 2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 250 deg F
d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Pipeline Seal and Insulator, Inc. or engineer approved equal.
 2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Grinnell Mechanical Products or engineer approved equal.
 2. Description:
 a. Standard: IAPMO PS 66
 b. Electroplated steel nipple, complying with ASTM F 1545.
 c. Pressure Rating: 300 psig at 225 deg F.
 d. End Connections: Male threaded or grooved.
 e. Lining: Inert and noncorrosive, propylene.

2.4 VALVES
A. Gate, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS
A. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

3.2 PIPING INSTALLATIONS
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve or clean-out servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

M. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

N. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."

O. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

P. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

Q. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

U. Fire caulk/Smoke seal all piping penetrations of walls, ceilings, and floors as required by Division 07 Section “Penetration Firestopping.”
3.3 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Seismic restraints are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

C. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 6. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
 7. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch.
 8. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch.
 9. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch.
 10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.
 11. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch.
 12. NPS 14: Maximum span, 25 feet; minimum rod size, 1 inch.
 13. NPS 16: Maximum span, 27 feet; minimum rod size, 1 inch.
 14. NPS 18: Maximum span, 28 feet; minimum rod size, 1-1/4 inch
 15. NPS 20: Maximum span, 30 feet; minimum rod size, 1-1/4 inch

E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 6. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.

F. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.4 PIPE JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Copper tubing shall be cut square to permit proper joining with fittings.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

J. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Insure that sealing elements and grip rings (2-1/2'' to 4'') are in place and free from damage. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. Leave insertion marks on pipe after assembly.

3.5 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Flush hydronic piping systems with clean water.

B. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
3. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

4. Prepare written report of testing.

5. If pressure sealed fittings are used the system shall be tested per fitting manufacturers requirements.

END OF SECTION 23 2113
SECTION 23 2300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-134a:

B. Line Test Pressure for Refrigerant R-410A:

1.4 SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:

1. Thermostatic expansion valves.
2. Solenoid valves.
3. Hot-gas bypass valves.
4. Filter dryers.
5. Strainers.
6. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1. Shop Drawing Scale: 1/4 inch equals 1 foot
2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between...
compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

C. Welding certificates.
D. Field quality-control test reports.
E. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type L or ASTM B 280, Type ACR.
B. Wrought-Copper Fittings: ASME B16.22.
C. Wrought-Copper Unions: ASME B16.22.
D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
E. Brazing Filler Metals: AWS A5.8.
F. Flexible Connectors:
 2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
 5. Seal Cap: Forged-brass or valox hex cap.
 6. End Connections: Socket, union, threaded, or flanged.
 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 6. End Connections: Socket, union, threaded, or flanged.
 7. Maximum Opening Pressure: 0.50 psig.
 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
 1. Body: Forged brass with brass cap including key end to remove core.
 2. Core: Removable ball-type check valve with stainless-steel spring.
 4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 4. End Connections: Threaded.
 6. Maximum Operating Temperature: 240 deg F.

G. Thermostatic Expansion Valves: Comply with ARI 750.
 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 5. Suction Temperature: 42 deg F.
 7. Reverse-flow option (for heat-pump applications).
 8. End Connections: Socket, flare, or threaded union.

H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 5. Seat: Polytetrafluoroethylene.
 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
 9. Set Pressure: as required
10. Throttling Range: Maximum 5 psig.
12. Maximum Operating Temperature: 240 deg F.

I. Straight-Type Strainers:
 2. Screen: 100-mesh stainless steel.
 3. End Connections: Socket or flare.
 5. Maximum Operating Temperature: 275 deg F.

J. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

K. Moisture/Liquid Indicators:
2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.

L. Replaceable-Core Filter Dryers: Comply with ARI 730.
1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
5. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
9. Maximum Operating Temperature: 240 deg F.

M. Mufflers:
2. End Connections: Socket or flare.
4. Maximum Operating Temperature: 275 deg F.

N. Receivers: Comply with ARI 495.
1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
2. Comply with UL 207; listed and labeled by an NRTL.
4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
5. End Connections: Socket or threaded.
7. Maximum Operating Temperature: 275 deg F.

O. Liquid Accumulators: Comply with ARI 495.
2. End Connections: Socket or threaded.
4. Maximum Operating Temperature: 275 deg F.
2.3 REFRIGERANTS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. DuPont Company; Fluorochemicals Div. or engineer approved equal.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction, Hot-Gas, and Liquid Lines for Conventional Air-Conditioning Applications: Copper, Type ACR or Type L (B), drawn-temper tubing and wrought-copper fittings with brazed joints.

B. Safety-Relief-Valve Discharge Piping: Copper, Type ACR or Type L (B) drawn-temper tubing and wrought-copper fittings with brazed joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
2. Thermostatic expansion valves.
3. Hot-gas bypass valves.
4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve.
L. Install receivers sized to accommodate pump-down charge.
M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
O. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 1. Shot blast the interior of piping.
 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

S. Identify refrigerant piping and valves according to Division 23 Section "Identification for HVAC Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
E. **Brazed Joints:** Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

F. **Threaded Joints:** Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

 1. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Steel pipe can be threaded, but threaded joints must be seal brazed or seal welded.

H. **Welded Joints:** Construct joints according to AWS D10.12/D10.12M.

I. **Flanged Joints:** Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:

 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.

D. Support multi-floor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves except bypass valves that are used for other purposes.
 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 23 2300
SECTION 23 3113
METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Single-wall rectangular ducts and fittings.
2. Double-wall rectangular ducts and fittings.
4. Double-wall round and flat-oval ducts and fittings.
5. Sheet metal materials.
6. Duct liner.
7. Sealants and gaskets.
8. Hangers and supports.

B. Related Sections:

1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
1.4 **SUBMITTALS**

A. **Product Data:** For each type of the following products:

1. Liners and adhesives.
2. Sealants and gaskets.

B. **Shop Drawings:**

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of bottom of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, and vibration isolation.

C. **Delegated-Design Submittal:**

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports.

D. **Coordination Drawings:** Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:

 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

E. **Welding certificates.**
F. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. McGill AirFlow LLC
 2. Or engineer approved equal.

B. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Maximum Thermal Conductivity: 0.24 Btu x in. /h x sq. ft. x deg F at 75 deg F mean temperature.
 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 3. Coat insulation with antimicrobial coating.
 4. Cover insulation with polyester film complying with UL 181, Class 1.

G. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

H. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

I. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. McGill AirFlow LLC
 b. Or engineer approved equal.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.4 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. McGill AirFlow LLC
2. Or engineer approved equal.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.

1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Maximum Thermal Conductivity: 0.24 Btu x in. /h x sq. ft. x deg F at 75 deg F mean temperature.
 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 3. Coat insulation with antimicrobial coating.
 4. Cover insulation with polyester film complying with UL 181, Class 1.

2.5 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G90
 2. Finishes for Surfaces Exposed to View: Hot dipped galvanized steel.

C. Carbon-Steel Sheets: ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless Steel: ASTM A 480/A 480M, Type 304 or 316; cold rolled, annealed sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule."

E. Aluminum Sheets: ASTM B 209, alloy 3003, temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

F. Factory- or Shop-Applied Antimicrobial Coating:
 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
5. Shop-Applied Coating Color: Black.
6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

G. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

H. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.6 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville Linacoustic RC or R-300 (minimum 1” thick or as indicated on the drawings, whichever is greater).
 b. Or engineer approved equal.
 2. Maximum Thermal Conductivity:
 a. Type I Flexible: 0.24 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Insulation Pins and Washers:
 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick aluminum; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally or as recommended by manufacturer.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.7 HAZARDOUS EXHAUST SYSTEMS

A. Codes: Hazardous exhaust systems shall comply with the International Mechanical Code, Section 510.

B. Hazardous exhaust systems are systems designed to capture and control hazardous emissions generated from product handling or processes, and convey those emissions to the outdoors. Hazardous emissions include flammable vapors, gases, fumes, mists, or dusts, and volatile or airborne materials posing a health hazard, such as toxic or corrosive materials.

C. Duct Construction: Ducts utilized to convey hazardous exhaust shall be constructed of approved G90 galvanized sheet steel, with a minimum nominal thickness as specified in Table 510.8. Where the products being exhausted are detrimental to the duct material, the duct shall be constructed of alternate materials that are compatible with the exhaust. Example: Acid-resistant, fume-handling, exhaust ducts (serving a Science Lab fume hood) shall be stainless steel in lieu of G90 galvanized sheet steel.
Table 510.8 Minimum Duct Thickness

<table>
<thead>
<tr>
<th>Diameter of Duct or Maximum Side Dimension</th>
<th>Nonabrasive Materials</th>
<th>Nonabrasive/Abrasive Materials</th>
<th>Abrasive Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8 inches (No. 24 gage)</td>
<td>0.028 inch</td>
<td>0.034 inch (No. 22 gage)</td>
<td>0.040 inch (No. 20 gage)</td>
</tr>
<tr>
<td>9-19 inches (No. 22 gage)</td>
<td>0.034 inch</td>
<td>0.040 inch (No. 20 gage)</td>
<td>0.052 inch (No. 18 gage)</td>
</tr>
<tr>
<td>19-30 inches (No. 20 gage)</td>
<td>0.040 inch</td>
<td>0.052 inch (No. 18 gage)</td>
<td>0.064 inch (No. 16 gage)</td>
</tr>
<tr>
<td>Over 30 inches (No. 18 gage)</td>
<td>0.052 inch</td>
<td>0.064 inch (No. 16 gage)</td>
<td>0.079 inch (No. 14 gage)</td>
</tr>
</tbody>
</table>

D. Duct joints shall be made tight with lap joints having a minimum lap of 1 inch.

E. Ducts shall have a clearance to combustibles in accordance with Table 510.8.2.

Table 510.8.2 - Clearance to Combustibles

<table>
<thead>
<tr>
<th>Type of Exhaust or Temperature of Exhaust (degrees F)</th>
<th>Clearance to Combustibles (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 100</td>
<td>1</td>
</tr>
<tr>
<td>100-600</td>
<td>12</td>
</tr>
<tr>
<td>Flammable vapors</td>
<td>6</td>
</tr>
</tbody>
</table>

F. Ducts shall be supported at intervals not exceeding 10 feet. Supports shall be constructed of noncombustible material.

2.8 CLOTHES DRYER EXHAUST DUCTS

A. Codes: Clothes dryer exhaust ducts shall comply with the International Mechanical Code, Section 504, Clothes Dryer Exhaust.

B. Material: All ducts shall be constructed of rigid metal (either rigid aluminum or rigid galvanized steel) of thickness required by code.

C. Installation: Clothes dryers shall be exhausted in accordance with the manufacturer's instructions. Dryer exhaust systems shall be independent of all other systems and shall convey the moisture and any other products of combustion to the outside of the building.

D. Exhaust Penetrations: Ducts that exhaust clothes dryers shall not penetrate or be located within fire blocking, draftstopping or any wall, floor/ceiling, or other assembly required by the International Building Code to be fire-resistance rated, unless such duct is constructed of galvanized steel or aluminum of thickness specified in Section 603.4 Metallic Ducts (of the International Mechanical Code) and the fire-resistance rating is maintained in accordance with the International Building Code.
Table 603.4
Duct Construction Minimum Sheet Metal Thickness for Single Dwelling Unit

<table>
<thead>
<tr>
<th>Duct Size</th>
<th>Galvanized</th>
<th>Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum thickness (inches)</td>
<td>Equivalent galvanized gage no.</td>
</tr>
<tr>
<td>Round ducts and enclosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectangular ducts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14" or less</td>
<td>0.0157</td>
<td>28</td>
</tr>
<tr>
<td>16" & 18"</td>
<td>0.0187</td>
<td>26</td>
</tr>
<tr>
<td>20" & over</td>
<td>0.0236</td>
<td>24</td>
</tr>
<tr>
<td>Exposed rectangular ducts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14" or less</td>
<td>0.0157</td>
<td>28</td>
</tr>
<tr>
<td>Over 14"</td>
<td>0.0187</td>
<td>26</td>
</tr>
</tbody>
</table>

E. Cleanouts: Each vertical riser shall be provided with a means for cleanout.

F. Exhaust Installation: Dryer exhaust ducts for clothes dryers shall terminate on the outside of the building and shall be equipped with a backdraft damper. Screens shall not be installed at the duct termination. Ducts shall not be connected or installed with metal screws or fasteners that will obstruct the exhaust flow. Clothes dryer exhaust ducts shall not be connected to a vent connector, vent, or chimney. Clothes dryer exhaust ducts shall not extend into or through ducts or plenums.

G. Makeup Air: Installation exhausting more than 200 cfm shall be provided with makeup air. Where a closet is designed for installation of a clothes dryer, an opening having an area of not less than 100 square inches shall be provided in the closet enclosure or makeup air shall be provided by other approved means.

H. Domestic Clothes Dryer Ducts: Exhaust ducts for domestic clothes dryers shall be constructed of metal and shall have a smooth interior finish. The exhaust duct shall be a minimum nominal size of 4 inches in diameter. The entire exhaust system shall be supported and secured in place. The male end of the duct at overlapped duct joints shall extend in the direction of airflow. Clothes dryer transition ducts used to connect the appliance to the exhaust duct system shall be limited to single lengths not to exceed 8 feet and shall be listed and labeled for the application. Transition ducts shall not be concealed within construction.

1. Domestic Clothes Dryer Duct Maximum Length: The maximum length of a clothes dryer exhaust shall not exceed 25 feet from the dryer location to the outlet terminal. The maximum length of the duct shall be reduced 2.5 feet for each 45-degree bend and 5 feet for each 90-degree bend. The maximum length of the exhaust duct does not include the transition duct.

a. Exception: Where the make and model of the clothes dryer to be installed is known and the manufacturer’s installation instructions for such a dryer are provided to the code official, the maximum length of the exhaust duct, including any transition
duct, shall be permitted to be in accordance with the dryer’s manufacturer’s installation instructions.

I. Commercial Clothes Dryers: The installation of dryer exhaust ducts serving Type 2 clothes dryers shall comply with the appliance manufacturer’s installation instructions. Exhaust fan motors installed in exhaust systems shall be located outside of the airstream. In multiple installations, the fan shall operate continuously or be interlocked to operate when any individual unit is operating. Ducts shall have a minimum clearance of 6 inches to combustible materials. Clothes dryer transition ducts used to connect the appliance to the exhaust duct system shall be limited to single lengths not to exceed 8 feet in length and shall be listed and labeled for the application. Transition ducts shall not be concealed within construction.

2.9 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 4 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
 5. Mold and mildew resistant.
 6. VOC: Maximum 75 g/L (less water).
 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 8. Service: Indoor or outdoor.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.10 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate clear inside dimension, general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were
used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings. Increase sheet metal sizes to compensate for lining thickness.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round and flat-oval ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer.
3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

C. Duct system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.
E. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply, Return, Exhaust and Outdoor air ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, Chilled beams, Induction, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat oval: 12.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Exhaust Ducts:

1. Ducts Connected to Dye Vat Hoods or Type II Hoods (Waste Heat and Water):
 a. Type 304, stainless-steel sheet.
 b. Exposed to View: No. 4 or No. 3 finish (finish shall match dishwasher hood).
 c. Concealed: No. 2D finish.
 d. Welded seams and flanged joints with watertight EPDM gaskets.
 e. Pressure Class: Positive or negative 3-inch wg.
 f. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 g. SMACNA Leakage Class: 3.

2. Ducts Connected to Paint Booth or Fans Exhausting Laboratory and Process (ASHRAE 62.1, Class 3 and 4) Air:
 a. Type 316 or Type 304, stainless-steel sheet.
 1) Exposed to View: No. 4 or No. 3 finish.
 2) Concealed: No. 2B or No. 2D finish.
 b. Pressure Class: Positive or negative 4-inch wg.
 d. SMACNA Leakage Class: 3.
 e. Comply with International Mechanical Code, Section 510, Hazardous Exhaust Systems.

D. Aluminum Ducts:

1. All systems serving high humidity areas such as shower/drying areas, etc.

E. Intermediate Reinforcement:

2. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.

3. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.

F. Liner:

1. Unless otherwise indicated all supply, Return, and exhaust air ducts shall be lined as indicated.
 a. Supply Air Ducts: Fibrous glass, Type I, 1-1/2 inch thick (minimum 6.0 R-value).
 b. Return Air Ducts: Fibrous glass, Type I, 1-1/2 inch thick (minimum 6.0 R-value).
 c. Exhaust Air Ducts: Fibrous glass, Type I, 1-1/2 inch thick (minimum 6.0 R-value).

2. Supply Fan Plenums: Fibrous glass, Type II 1-1/2 inches thick (minimum 6.0 R-value).
3. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II 1-1/2 inches thick (minimum 6.0 R-value).
4. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.
5. All liner/insulation shall meet or exceed ASHRAE 90.1-2013 or current adopted energy code, whichever is stricter.

G. Double-Wall Duct Interstitial Insulation:

1. Supply Air Ducts: 1-1/2 inch thick (minimum 6.0 R-value).
2. Return Air Ducts: 1-1/2 inch thick (minimum 6.0 R-value).
3. Exhaust Air Ducts: 1-1/2 inch thick (minimum 6.0 R-value).
4. All liner/insulation shall meet or exceed ASHRAE 90.1-2013 or current adopted energy code, whichever is stricter.

H. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

I. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
a. Velocity 1000 fpm or Lower: 90-degree tap.
b. Velocity 1000 to 1500 fpm: Conical tap.
c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 3113
SECTION 23 3300
AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Backdraft and pressure relief dampers.
 2. Barometric relief dampers.
 4. Control dampers.
 5. Fire dampers.
 6. Ceiling dampers.
 7. Flange connectors.
 8. Duct silencers.
 10. Remote cable damper operators.
 11. Duct-mounted access doors.
 12. Flexible connectors.
 13. Flexible ducts.
 14. Duct accessory hardware.
 15. Duct Silencers.

B. Related Sections:
 1. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 2. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
a. Special fittings.
c. Control damper installations.
d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
e. Duct security bars.
f. Wiring Diagrams: For power, signal, and control wiring.

C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

D. Source quality-control reports.

E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

F. Delegated Design: Design duct silencers to comply with performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.4 QUALITY ASSURANCE

B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

2. Exposed-Surface Finish: Mill phosphatized.
B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Greenheck Fan Corporation or engineer approved equal.

B. Description: Gravity balanced.

D. Maximum System Pressure: 1-inch wg

E. Frame: 0.052-inch-thick, galvanized sheet steel, with welded corners and mounting flange.

F. Blades: Multiple single-piece blades, center-pivoted, maximum 6-inch width.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 1. Material: Galvanized steel.
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Galvanized steel.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball or synthetic pivot bushings.

M. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
 4. Chain pulls.
 5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20-gage minimum.
 b. Sleeve Length: 6 inches minimum.
 6. Screen Mounting: Rear mounted.
 7. Screen Material: Aluminum.
 8. Screen Type: Bird.
 9. 90-degree stops.
2.4 BAROMETRIC RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Greenheck Fan Corporation or engineer approved equal.

B. Suitable for horizontal or vertical mounting.

D. Maximum System Pressure: 2-inch wg.

E. Frame: 0.064-inch-thick, galvanized sheet steel, with welded corners and mounting flange.

F. Blades:
 1. Multiple, 0.025-inch-thick, roll-formed aluminum.
 3. Action: Parallel.
 5. Eccentrically pivoted.

G. Blade Seals: Neoprene.

H. Blade Axles: Galvanized steel.

I. Tie Bars and Brackets:
 1. Material: Aluminum.
 2. Rattle free with 90-degree stop.

J. Return Spring: Adjustable tension.

K. Bearings: Stainless steel.

L. Accessories:
 1. Flange on intake.
 2. Adjustment device to permit setting for varying differential static pressures.

2.5 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ruskin Company or engineer approved equal.
 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch minimum thickness.
b. Mitered and welded corners.
c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Stiffen damper blades for stability.
 c. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

2.6 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Greenheck Fan Corporation or engineer approved equal.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. Galvanized-steel channels, 0.064 inch thick.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 8 inches.
 2. Parallel- and opposed-blade design.
 4. 0.064 inch thick.

E. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:
 1. Molded synthetic.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.
2.7 **FIRE DAMPERS**

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1. Greenheck Fan Corporation or engineer approved equal.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.

 1. Minimum Thickness: 0.052 or 0.138 inch thick, as indicated, and of length to suit application.

 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

2.8 **CEILING DAMPERS**

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1. Ruskin Company or engineer approved equal.

B. General Requirements:

 1. Labeled according to UL 555C by an NRTL.

 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."

C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.

D. Blades: Galvanized sheet steel with refractory insulation.

F. Fire Rating: 2 hours.

2.9 **SEVERE ENVIRONMENT DAMPERS**

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

 1. Air Balance Inc.; a division of Mestek, Inc.
2. Greenheck Fan Corporation.
3. Ruskin Company.
5. Or engineer approved equal

B. Severe environment dampers shall be made of type 316 stainless steel and shall be corrosion-resistant. The heat responsive devices (for fire and/or smoke dampers) shall be UL compliant.

C. Applications include high humidity and mildly corrosive airstreams (swimming pools, laboratories, waste water treatment plants, food processing plants, and coastal/maritime buildings).

2.10 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Ductmate Industries, Inc. or engineer approved equal.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.11 DUCT SILENCERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. IAC Acoustics or engineer approved equal.

B. Materials:
 1. Outer casings of rectangular silencers shall be made of 22 gauge type #G-90 lock-former-quality galvanized steel.
 2. Interior partitions for rectangular silencers shall be not less than 26 gauge type #G-90 galvanized lock-former-quality perforated steel.
 3. Filler material shall be inorganic glass fiber of a proper density to obtain the specified acoustic performance and be packed under not less than 5% compression to eliminate voids due to vibration and settling. Material shall be inert, vermin- and moisture-proof.
 4. Combustion ratings for the silencer acoustic fill shall be not greater than the following when tested to ASTM E 84, NFPA Standard 255, or UL No. 723:
 a. Flamespread Classification: 20
 b. Smoke Development Rating: 20

C. Construction:
 1. Units shall be constructed in accordance with the ASHRAE Guide recommendations for high pressure duct work. Seams shall be lock formed and mastic filled. Rectangular casing seams shall be in the corners of the silencer shell to provide maximum unit strength and rigidity. Interior partitions shall be fabricated from single-piece, margin-perforated sheets and shall have die-formed entrance and exit shapes so as to provide
the maximum aerodynamic efficiency and minimum self-noise characteristics in the sound attenuator. Blunt noses or squared off partitions will not be accepted.

2. Attachment of the interior partitions to the casing shall be by means of an interlocking track assembly. Tracks shall be solid galvanized steel and shall be welded to the outer casing. Attachment of the interior partitions to the tracks shall be such that a minimum of 4 thicknesses of metal exist at this location. The track assembly shall stiffen the exterior casing, provide a reinforced attachment detail for the interior partitions, and shall maintain a uniform airspace width along the length of the silencer for consistent aerodynamic and acoustic performance. Interior partitions shall be additionally secured to the outer casing with welded nose clips at both ends of the sound attenuator.

3. Sound attenuating units shall not fail structurally when subjected to a differential air pressure of 8 inches water gauge from inside to outside the casing. Airtight construction shall be provided by use of a duct sealing compound on the job-site material and labor furnished by the contractor.

D. Acoustical Performance:

1. All silencer ratings shall be determined in a duct-to-reverberant room test facility which provides for airflow in both directions through the test silencer in accordance with ASTM Specification E477-99. The test facility shall be NVLAP accredited for the ASTM E477-99 test standard. Data from a non-accredited laboratory will not be acceptable. The test set-up and procedure shall be such that all effects due to end reflection, directivity, flanking transmission, standing waves and test chamber sound absorption are eliminated.

2. Acoustic ratings shall include Dynamic Insertion Loss (DIL) and Self-Noise (SN) Power Levels both for FORWARD FLOW (air and noise in same direction) and REVERSE FLOW (air and noise in opposite directions) with airflow of at least 2000 fpm entering face velocity. Data for rectangular and tubular type silencers shall be presented for tests conducted using silencers no smaller than the following cross-sections:
 a. Rectangular, inch: 24x24, 24x30, or 24x36
 b. Tubular, inch: 12, 24, 36, and 48

E. Aerodynamic Performance:

1. All silencer ratings shall be determined in a duct-to-reverberant room test facility which provides for airflow in both directions through the test silencer in accordance with ASTM Static pressure loss of silencers shall not exceed those listed in the silencer schedule as the airflow indicates. Airflow measurements shall be made in accordance with ASTM specification E477-99 and applicable portions of ASME, AMCA, and ADC airflow test codes. Tests shall be reported on the identical units for which acoustic data is presented.

F. Certification:

1. With submittals, the manufacturer shall supply certified test data on Dynamic Insertion Loss, Self-Noise Power Levels, and Aerodynamic Performance for Reverse and Forward Flow test conditions. Test data shall be for a standard product. All rating tests shall be conducted in the same facility, shall utilize the same silencer, and shall be open to inspection upon request from the Architect/Engineer.

G. Duct Transitions:

1. When transitions are required to adapt silencer dimensions to connecting duct work they shall be furnished by the installing contractor.

H. Capacities and Characteristics: Refer to drawing schedule.
2.12 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. METALAIRE, Inc.
 4. SEMCO Incorporated.
 6. Or engineer approved equal

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Single wall.

F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.13 REMOTE CABLE OPERATED DAMPERS

A. Manufacturers: Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 1. Metropolitan Air Technologies.
 2. DuroDyne
 3. United Enertech.
 4. Pottorff.
 5. Young Regulator Company.

B. For non-lay-in ceilings (gypsum board, plaster, etc.), furnish and install remote cable-operated opposed-blade damper for duct mounted applications, separate from the diffuser or register, for remote manual damper adjustment.

C. Similar to Bowden cable control system, cable in lengths as required.

D. Installation of a gear driven cable operated damper allows the balancing contractor a convenient way to adjust air volume from a more accessible location without having to access the ceiling. The gear driven cable operated damper is mounted upstream of the air device with the control cable inside or outside of the airstream. The actuator at the end of the adjustment cable is accessible from the diffuser/grille (internal) or is routed to an appropriate area such as a wall or ceiling mount (external). The gear actuator features a hex head so adjustments can be made easily and then locked in place with a 1/4” standard nut driver or medium standard flat screw driver.
Comm. No. 2010-18

E. Furnish and install concealed ceiling and/or wall box kits (when required).

2.14 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Ductmate Industries, Inc. or engineer approved equal.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression latches with outside and inside handles.

2.15 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Ductmate Industries, Inc. or engineer approved equal.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0528-inch steel.

D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.

E. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.16 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Ventfabs, Inc. or engineer approved equal.

B. Materials: Flame-retardant or noncombustible fabrics.
C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

2.17 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Flexmaster U.S.A., Inc. Type 8M-Acoustical Insulated or engineer approved equal.

B. Insulated, Flexible Duct: UL 181, Class 1, acoustically transparent CPE inner film with mechanically locked helix without adhesives, factory wrapped fiberglass insulation blanket, reinforced metalized vapor barrier. Helix is corrosion resistant galvanized steel, formed and mechanically locked to fabric. Vapor barrier is fire retardant reinforced aluminized material.
 1. Pressure Rating: 10-inch wg positive and 5-inch wg negative thru 16” diameter, 1” wg negative at 18” & 20” diameter.
 3. Temperature Range: Minus 20 to plus 250 deg F.
 4. Insulation at 1-1/2 inches thick, Minimum 6.0 R-value.
 5. All insulation shall meet or exceed ASHRAE 90.1-2013 or current adopted energy code, whichever is stricter.

C. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 20 inches, to suit duct size.

2.18 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
2.19 **DRYER VENT TERMINATION THROUGH FLAT ROOF**

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. In-O-Vate Technologies/DryerJack Model DJK486U or engineer approved equal.

B. Complies with International Mechanical Code IMC 504.4 & International Residential Code IRC 1502.3.

C. For flat or tapered insulation roofs where curbs installations are required. Provide minimum 12” high roof curb. Unit has built-in curb mount.

D. Laboratory tested to less than 0.01 water column inches of airflow restriction (non-restrictive design with low pressure drop).

E. Materials include 28-gauge galvanized steel hood and 24-gauge galvanized steel curb cover.

F. Flapper closure design deters bird and rodent entry.

G. Access door accommodates cleaning tools for ease of duct cleaning and maintenance.

2.20 **DRYER WALL VENT (THROUGH EXTERIOR WALLS)**

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. In-O-Vate Technologies/Dryer Wall Vent low-profile model DWV4 (color to be selected by architect) or engineer approved equal.

B. Meets or Exceeds Building Code Requirements - Complies with International Mechanical Code 504.4 & International Residential Code IRC 1502.3.

C. Materials: 22-gauge galvanized steel housing, 30-gauge galvanized steel damper, and polyester TGIC weather resistant powder coating.

D. Damper opens freely to 130-degrees with low strength closure magnets. Rubber bumpers for quiet closing.

E. Four Built-in Mounting Holes.

2.21 **DRYER TRANSITION HOSE**

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. In-O-Vate Technologies/DryerFlex or engineer approved equal.

B. Dryer transition ducts used to connect the dryer to the exhaust duct system shall be a single length that is listed and labeled in accordance with UL 2158A (Class 0). Transition ducts shall be a maximum of 8 feet in length and shall not be concealed within construction.

C. Multiple layers of 100% Aluminum Ribbon, tightly wound over hot galvanized zinc coated wire (crush-resistant). Workability of "slinky" foil flex while maintaining the airflow efficiency of semi-rigid.
2.22 DRYER ELBOWS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. In-O-Vate Technologies/DryerEll model LT90 (LT45 is 45-degree elbow model) or engineer approved equal.

B. 10”-radius smooth 90-degree elbow with equivalent duct length of 18” (in lieu of 5 feet of equivalent duct length for a 4” radius mitered 90-degree elbow from code chart).

C. Material: 0.018” (26-gauge) aluminized steel.

2.23 DRYER BOX (RECESSED DRYER RECEPTACLE)

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. In-O-Vate Technologies/Dryer Box Model DB-480 or engineer approved equal.

B. Universal dryer box (works in venting scenarios upwards and downward).

C. Material: 0.028–inches aluminized steel (22 gauge).

D. UL Classified for a one-hour rated wall.

E. Meets code requirement as a clean-out.

2.24 DRYER EQUIVALENT LENGTH NOTIFICATION LABEL/TAG

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. In-O-Vate Technologies/DryerPlacard PLAC34 or engineer approved equal.

B. Material: 3” x 4” x 0.10” thick Lexan velvet-textured polycarbonate, permanent label with 3M 9471 pressure sensitive adhesive.

C. Complies with ICC Code sections 504.6.5 and IRC 1502.4.5: “Length Identification” where the exhaust duct is concealed within the building construction, the equivalent length of the exhaust duct shall be identified on a permanent label or tag. The label or tag shall be located within 6 feet of the exhaust duct connection.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.
2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream from turning vanes.
9. Control devices requiring inspection.
10. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Division 23 Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

N. Connect terminal units to supply ducts with maximum 6-inch lengths of flexible duct. Do not use flexible ducts to change directions.
O. Connect diffusers or light troffer boots to ducts directly or with maximum 72-inch lengths of flexible duct clamped or strapped in place.

P. Connect flexible ducts to metal ducts with liquid adhesive plus tape and draw bands.

Q. Install duct test holes where required for testing and balancing purposes.

R. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 3300
SECTION 23 3423
HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Centrifugal roof ventilators.
 2. Centrifugal inline fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on sea level.

B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
 3. Sound ratings: Provide sound data measurements/ratings measured at same distance as basis of design specified equipment.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

D. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Roof framing and support members relative to duct penetrations.
2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

E. Field quality-control reports.

F. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

D. Sound Ratings shall be equal or better than basis of design. Any sound rating deviation shall be approved by owner.

1.6 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set(s) for each belt-driven unit.
PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following

1. Greenheck or engineer approved equal.

B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.

C. Motors (Electronically Commutated Motors, ECM):

1. Motor enclosures: Open type
2. Motor to be a DC electronic commutation type motor (ECM) specifically designed for fan applications. AC induction type motors are not acceptable. Examples of unacceptable motors are: Shaded Pole, Permanent Split Capacitor (PSC), Split Phase, Capacitor Start and 3 phase induction type motors.
3. Motors are permanently lubricated, heavy duty ball bearing type to match with the fan load and pre-wired to the specific voltage and phase.
4. Internal motor circuitry to convert AC power supplied to the fan to DC power to operate the motor.
5. Motor shall be speed controllable down to 20% of full speed (80% turndown). Speed shall be controlled by either a potentiometer dial mounted at the motor or by a 0-10 VDC signal.
6. Motor shall be a minimum of 85% efficient at all speeds.

D. Accessories:

1. Variable-Speed Controller for ECM motor: Reduce speed from 100 to 20 percent. See drawing schedule for remote or unit mounted or DDC controlled.
2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.

E. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.

1. Configuration: Self-flashing without a cant strip, with mounting flange.
2. Overall Height: 12 inches.
3. Sound Curb: Curb with sound-absorbing insulation.
5. Metal Liner: Galvanized steel.

F. Capacities and Characteristics: See Plan Schedules.

2.2 CENTRIFUGAL INLINE FANS

A. Manufacturers: Subject to compliance with requirements, provide products by the following
1. Greenheck or engineer approved equal.

B. Duct mounted supply, exhaust or return fans shall be of the centrifugal, direct-driven, inline type. The fan housing shall be of a square design constructed of heavy-gauge galvanized steel or aluminum and shall include square duct mounting collars.

C. Fan construction shall include two removable access panels located perpendicular to the motor mounting panel. The access panels must be of sufficient size to permit easy access to all interior components.

D. The fan wheel shall be centrifugal, backward-inclined, constructed of aluminum, and shall include a wheel cone carefully matched to the inlet cone for precise running tolerances. Wheels shall be statically and dynamically balanced.

E. Motors shall be permanently lubricated and carefully matched to the fan loads. Motors shall be readily accessible for maintenance.

F. A factory-mounted and wired NEMA-1 disconnect switch shall be provided as standard, except with explosion resistant motors, where disconnects are optional. Factory wiring shall be provided from motor to the handy box.

G. All fans shall bear the AMCA Certified Ratings Seal for Sound and Air Performance.

H. Fan shall bear a permanently affixed manufacturer’s nameplate containing the model number and individual serial number for future identification.

I. Vari-Green Motor: Motor to be an electronic commutation (EC) motor specifically designed for fan applications. AC induction type motors are not acceptable. Examples of unacceptable motors are: Shaded Pole, Permanent Split Capacitor (PSC), Split Phase, Capacitor Start and 3 phase induction type motors. Motors shall be permanently lubricated with heavy-duty ball bearings to match the fan load and prewired to the specific voltage and phase. Internal motor circuitry shall convert AC power supplied to the fan to DC power to operate the motor. Motor shall be speed controllable down to 20% of full speed (80% turndown). Speed shall be controlled by either a potentiometer dial mounted on the motor or by a 0-10 VDC signal (as indicated on the drawing plan schedules). Motor shall be a minimum of 85% efficient at all speeds.

J. Accessories:

1. Variable-Speed Controller for ECM motor: Reduce speed from 100 to 20 percent. See drawing schedule for remote or unit mounted or DDC controlled.
2. Insulated Housing: For noise reduction and condensation control, the interior of the fan housing can be lined with a 1-inch fiberglass duct liner. The optional motor cover shall also be insulated.
3. Dampers: Gravity parallel blade dampers (model WD-330) are available for duct mounting. These dampers feature sturdy galvanized frames, aluminum blades with vinyl blade seals, and a balanced design for minimal resistance to airflow.
4. Wiring Pigtail: Allows direct hook-up to the power supply eliminating field wiring at the fan.

2.3 **MOTORS**

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

B. Enclosure Type: Totally enclosed, fan cooled.

2.4 **SOURCE QUALITY CONTROL**

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 **INSTALLATION**

A. Install power ventilators level and plumb.

B. Support units using elastomeric mounts having a static deflection of 1 inch. Vibration- and seismic-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

1. Secure vibration and seismic controls to concrete bases using anchor bolts cast in concrete base.

C. Install floor-mounted units on concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

D. Install floor-mounted units on concrete bases designed to withstand, without damage to equipment, the seismic force required by code. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

E. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Division 07 Section "Roof Accessories" for installation of roof curbs.

F. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

G. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
H. Install units with clearances for service and maintenance.

I. Label units according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 10. Shut unit down and reconnect automatic temperature-control operators.
 11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.
3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 23 3423
SECTION 23 3713
DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Louver face diffusers.
 3. Adjustable bar registers and grilles.
 4. Fixed face grilles.
B. Related Sections:
 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
 3. Sound ratings: Provide sound data measurements/ratings measured at same distance as basis of design specified equipment.
B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.
D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

5. Duct access panels.

E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Rectangular and Square Ceiling Diffusers:
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Titus or engineer approved equal.

2. Devices shall be specifically designed for variable-air-volume flows.
5. Face Size: 24 by 24 inches or 12 by 12 inches.
6. Face Style: Three cone, Four cone, or Plaque.
7. Mounting: Surface, T-bar, or Mounting panel.
8. Pattern: Fixed or Adjustable.
9. Dampers: Combination damper and grid.
10. Accessories:
 a. Equalizing grid.
 b. Plaster ring.

B. Louver Face Diffuser:
1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Titus or engineer approved equal.

2. Devices shall be specifically designed for variable-air-volume flows.
5. Mounting: Surface, T-bar, or Mounting panel.
6. Pattern: One-way, Four-way, or Adjustable core style.
7. Dampers: Combination damper and grid.
8. Accessories:
 a. Square to round neck adaptor.
 b. Adjustable pattern vanes.
 c. Equalizing grid.
 d. Plaster ring.
2.2 CEILING LINEAR SLOT OUTLETS

A. Linear Slot Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Titus or engineer approved equal.

2. Devices shall be specifically designed for variable-air-volume flows.
5. Finish - Tees: Baked enamel, color selected by Architect.
6. Slot Width: Refer to product specified.
7. Number of Slots: Refer to product specified.
8. Length: Refer to product specified.
9. Accessories: Coordinate with architect ceiling plans.

2.3 REGISTERS AND GRILLES

A. Adjustable Bar Register:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Titus or engineer approved equal.

7. Frame: 1 inch wide.
8. Mounting: Countersunk screw or Lay in.
9. Damper Type: Adjustable opposed blade.
10. Accessories:

 a. Front or Rear-blade gang operator.

B. Adjustable Bar Grille:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Titus or engineer approved equal.

7. Frame: 1 inch wide.
8. Mounting: Countersunk screw or Lay in.
2.4 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

B. Sound Ratings shall be equal or better than basis of design. Any sound rating deviation shall be approved by owner.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 3713
SECTION 23 5100
BREECHINGS, CHIMNEYS, AND STACKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Domestic hot water heater vents.

B. Definitions

1. Underwriters' Laboratories, Inc. (UL)

1.3 ACTION SUBMITTALS

A. Product Data: For the following:

1. Vents.
2. Concentric vent kits.
3. Guy wires and connectors.

B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection.
2. Contractor shall be required to submit breeching layout drawings for the Engineer's approval.
3. Computer software calculations for sizing vents, breeching, chimneys, and stacks shall be required as part of the shop drawing submittal.
4. Metal content for both interior and exterior liners and insulation must be clearly identified.
5. Breeching shall meet the required Type and Category of breeching as required by the boiler or applicable equipment manufacturer.
6. Contractor shall utilize two 45° elbows to sweep all turns. To eliminate dead ends and to achieve proper airflow, 90° elbows or tees shall not be acceptable.
7. Breeching components shall include but not be limited to adapter flanges, tees, elbows, clean-outs, drain caps, band joiners, high temperature sealant, roof flashing, and rain cap (or finishing cone) as required to make a full breeching system.
8. Where prefabricated breeching is specified, unbranded or field fabricated breeching shall not be acceptable.
C. Warranty: Special warranty specified in this Section.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

D. International Fuel Gas Code - Installation: Vent systems shall be sized, installed and terminated in accordance with the vent (chimney/flue) and appliance (boiler, domestic hot water heater, emergency generator) manufacturer's installation instructions and Section 503 (Venting of Equipment).

1.6 COORDINATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section “Roof Accessories.”

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.

1. Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DOMESTIC HOT WATER HEATER VENTS

A. The following venting specification is for an A.O. Smith, Cyclone, model BTH, high efficiency, domestic hot water heater. The contractor shall follow the manufacturer’s latest recommended installation instructions and as per code.

B. The domestic hot water heater shall be vented using only Schedule 40 CPVC (ASTM F-411) pipe. The fittings, other than the TERMINATIONS shall be equivalent to CPVC fittings, ASTM F-438 for CPVC pipe. If CPVC Pipe and fittings are used, then the proper cement must be used for all joints, including joining the pipe to the Termination Tee; CPVC Materials shall use ASTM F-493 Grade Cement. NOTE: For water heaters in locations with high ambient temperatures
(above 100°F) and/or insufficient dilution air, it is recommended that CPVC pipe and fittings (MUST USE SUPPLIED VENT TERMINAL) be used.

2.2 GUYING AND BRACING MATERIALS

A. Cable: Three galvanized, stranded wires of the following thickness:

1. For ID Sizes 4 to 15 Inches: 5/16 inch
2. For ID Sizes 18 to 24 Inches: 3/8 inch.
3. For ID Sizes 27 to 30 Inches: 7/16 inch.
4. For ID Sizes 33 to 36 Inches: 1/2 inch.
5. For ID Sizes 39 to 48 Inches: 9/16 inch.
6. For ID Sizes 51 to 60 Inches: 5/8 inch.

B. Angle Iron: Two galvanized steel, 2 by 2 by 0.25 inch

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF LISTED VENTS AND CHIMNEYS

A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.

B. Seal between sections of positive-pressure vents according to manufacturer’s written installation instructions, using sealants recommended by manufacturer.

C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.

D. Slope breechings down in direction of appliance, with condensate drain connection where shown on drawings.

E. Lap joints in direction of flow.

F. Connect base section to foundation using anchor lugs of size and number recommended by manufacturer.

G. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.

H. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.
3.3 INSTALLATION OF UNLISTED, FIELD-FABRICATED BREECHINGS

A. Suspend breechings independent of their appliance connections.

B. Align breechings at connections, with smooth internal surface and a maximum 1/8-inch misalignment tolerance.

C. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

D. Lap joints in direction of flow.

E. Support breechings from building structure with bolts, concrete inserts, steel expansion anchors, welded studs, C clamps, or beam clamps according to manufacturer’s written instructions.

3.4 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.

C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION 23 5100
SECTION 23 7200
AIR-TO-AIR ENERGY RECOVERY EQUIPMENT – PLATE TYPE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Packaged rooftop units with enthalpic fixed-plate total heat exchanger, gas furnaces, and DX cooling.

1.3 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design vibration isolation and seismic-restraint details, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Seismic Performance: Air-to-air energy recovery equipment shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

C. Sound Ratings shall be equal or better than basis of design. Any sound rating deviation shall be approved by owner. Refer to sound data for units at end of document Appendix.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: For air-to-air energy recovery equipment. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
C. Delegated-Design Submittal: For air-to-air energy recovery equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of air-to-air energy recovery equipment.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
3. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which equipment or suspension systems will be attached.

B. Seismic Qualification Certificates: For air-to-air energy recovery equipment, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-to-air energy recovery equipment to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) of each type of filter specified.
2. Fan Belts: One set(s) of belts for each belt-driven fan in energy recovery units.
3. Wheel Belts: One set(s) of belts for each heat wheel.

1.8 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ARI Compliance:

C. ASHRAE Compliance:
1. Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
2. Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat Exchangers."

D. NRCA Compliance: Roof curbs for roof-mounted equipment shall be constructed according to recommendations of NRCA.

E. UL Compliance:
1. Packaged heat recovery ventilators shall comply with requirements in UL 1812, "Ducted Heat Recovery Ventilators"; or UL 1815, "Nonducted Heat Recovery Ventilators."
2. Electric coils shall comply with requirements in UL 1995, "Heating and Cooling Equipment."

1.9 COORDINATION
A. Coordinate layout and installation of air-to-air energy recovery equipment and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
B. Coordinate sizes and locations of concrete bases with actual equipment provided.
C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.10 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of air-to-air energy recovery equipment that fail in materials or workmanship within specified warranty period.
1. Warranty Period for Packaged Energy Recovery Units: Two years.
2. Warranty Period for Fixed-Plate Total Heat Exchangers: 10 years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products by the following:
1. Valent.
2. Xetex.
3. Engineer approved equal.

2.2 GENERAL

A. Contractor shall provide a packaged roof mounted flat plate air-to-air heat recovery ventilator. Unit to include exchanger, supply air and exhaust air blowers, motors with starters and relays, air filters, and specified options.

2.3 WELDED STEEL BASE FRAME

A. Unit shall have a welded structural steel base with structural supports under blowers and components. Frame shall be coated with rust inhibiting paint. Lifting lugs shall be an integral part of the base. Unit floor shall be minimum 16-gauge galvanized steel.

2.4 DOUBLE WALL CONSTRUCTION

A. Unit housing shall be of formed heavy gauge galvanized steel supports (18-gauge min). Double walled construction with 2” of rigid closed cell insulation between walls. External walls shall be constructed with 20 gauge (minimum) galvanized steel with an internal liner of 22 gauge (minimum) galvanized steel. Framing and panels of dissimilar metals that could create a galvanic effect are not allowed. Optional fully painted exterior with 2 coats minimum of industrial enamel over primed paint grip galvanized sheet metal.

B. Exchanger section shall have a full width drain pan minimum 3” deep with FPT drains on supply and exhaust air plenums minimum.

2.5 HINGED ACCESS DOORS

A. Provide access to all exchanger surfaces, blowers, motors, and filters, through double wall hinged access doors held closed by a minimum of two dual acting roller cam latches. Continuous hollow rubber gasket shall be applied to all access openings to provide water and airtight seals. Door hinges shall be galvanized steel (stainless steel optional).

2.6 ROOFTOP UNIT

A. Weatherized outdoor construction shall include; pitched roof panels that overhang the sidewalls to shed water away from access panels, capped roof seams, weather hoods with birdscreens, outside air shut-off damper and exhaust air backdraft damper. Secondary roof panels that could trap moisture are not allowed. Roof curb shall be heavy gauge galvanized steel with additional supports and cross members as needed. Curb to have 1” to 1.5” thick fiberglass insulation and wood nailer.

2.7 ENTHALPIC FLAT PLATE HEAT EXCHANGER

A. Enthalpic air-to-air heat exchanger constructed of aluminum and polymer sheets. Cross-flow core heat exchanger transfers both sensible and energy between airstreams. Sized to meet or exceed ASHRAE 90.1 minimum effectiveness of 50%. No additional moving parts required to
transfer energy between airstreams. Heat exchanger assembly easily cleaned with non-
pressurized water. Microban antimicrobial protection to prevent the growth of bacteria and mold.
0% exhaust air transfer ratio as determined by AHRI 1060. Polymer membrane capable of
freezing without damage.

2.8 BLOWERS

A. Blowers shall be forward curved DWDI class I for quiet efficient operation arranged in a draw
through configuration relative to exchanger. Motors to be efficient ODP T-frame, 1750-rpm
nominal with minimum service factor of 1.15 mounted on adjustable base. Motor and blower to
be mounted on common frame and isolated from unit case with RIS isolators and flexible duct
combinations. Motors and blowers shall have V-belt drives with variable pitch sheaves on motors.

2.9 FILTERS

A. 2" THICK 30/30 Outside/Return Air Filters

B. Outside air and Return air filters shall be a 2" pleated filter media with non-woven
synthetic/cotton fiber media. The media is to be continuously bonded to a 31-gauge galvanized
expanded metal support grid with an effective open face area of not less than 95%. The filter
media shall have an average efficiency of 25-31% and an average arrestance of not less than
90% when tested in accordance with ASHRAE 52-76 standard. Filters shall be mounted within
unit in galvanized holding frames upstream of exchanger and accessible through access
panels.

2.10 DAMPERS

A. General: Dampers shall have 16-gauge galvanized hat channel frames and blades with 1/2"
cadmium plated shafts and nylon bearings. Low leakage dampers have extruded santoprene
blade seals and stainless-steel jamb seals. Dampers to be opposed blade operation standard,
parallel blade optional. Extended ½” round shaft for direct coupled actuators, 1” round jackshaft
on multiple section dampers.

B. Outside Air Dampers: Outside air dampers shall be mounted on the inlet of the unit and
operated by a spring return direct-coupled actuator.

C. Face and Bypass Damper: Face and bypass dampers shall be interlocked so that when the
face damper is open the bypass damper shall be closed. A 3/4” round jackshaft shall drive both
sections with a single direct-coupled actuator.

D. Exhaust Backdraft Damper: Exhaust air backdraft damper to be parallel blade with extruded
aluminum blades and frame with nylon bearings. Low leakage backdraft dampers have P.V.C.
foam seals.

2.11 COILS

A. General: Casings shall be constructed of continuous galvanized steel. Coil side plates shall be
reinforced flange type for greater strength and ease of stacking and shall have 3/8” holes on 6”
centers for mounting. Full-length fin channels shall be furnished to brace the coil core and
prevent air bypass. Primary surface shall be round, seamless copper tubing brazed into
intruded header tube holes, using brazing alloys. Secondary surface shall consist of rippled-
corrugated aluminum plate fins for higher capacity and strength. Low efficiency flat plate fins will not be acceptable. Fins shall have full drawn collars to provide a continuous surface cover over the entire tube. Fins shall not have sharp edges which accumulate dirt. Bare copper tube shall not be visible between fins. Tubes shall be expanded into fins to provide a continuous primary to secondary compression bond over the entire finned length, for maximum heat transfer rates.

B. DX Cooling Coil: Coils shall have connections provided for universal right- or left-handed airflow applications. Coils shall be circuited in a counterclockwise manner to provide the maximum mean effective temperature difference for maximum heat transfer rates. All coils exceeding 45" FL shall be furnished with four fin angles to properly position the coil core. Complete coil core shall be tested with 315 pounds air pressure under warm water and guaranteed for 250 psig working pressures. Coils shall be dehydrated with 140F DB, 40F dew point air before shipment. Hydrostatic tests alone will not be acceptable. Coils shall be ARI certified and UL listed. Unit shall have welded stainless steel drain pans under DX coils and dehumidification section that are sloped to provide positive drainage.

C. Hot Gas Reheat Coil:
1. Unit shall be equipped with a fully modulating hot gas reheat coil with hot gas coming from the unit condenser
2. Hot gas reheat coil shall be a Micro Channel design. The aluminum tube shall be a micro channel design with high efficiency aluminum fins. Fins shall be brazed to the tubing for a direct bond. The capacity of the reheat coil shall allow for a 20°F temperature rise at all operating conditions.
3. The modulating hot gas reheat systems shall allow for independent control of the cooling coil leaving air temperature and the reheat coil leaving air temperature. The cooling coil and reheat coil leaving air temperature setpoints shall be adjustable through the unit controller. During the dehumidification cycle the unit shall be capable of 100% of the cooling capacity. The hot gas reheat coil shall provide discharge temperature control within +/- 2°F.
4. Each coil shall be factory leak tested with high-pressure air under water.

2.12 DUCT GAS FURNACE

A. The module shall be a Recognized Component by Intertek Testing Services (ITS / ETL). All modules will have a minimum thermal efficiency of 80%. The module shall employ a tubular heat exchanger and a draft inducer assembly to provide for positive venting of flue gases. Burner assemblies shall employ inshot type burners constructed of aluminized steel body and sintered metal flame holder with integral carryover plenum. Each burner will have an input of 50,000 Btuh. The ignition system will include a 6000 V Igniter and flame rod detection. Ceramic hot surface ignition systems are unacceptable.

B. Gas-fired duct furnace(s) provided shall employ a tubular heat exchanger constructed of 16-gauge, minimum, type 304 stainless tubes, 2 ¼" diameter having a minimum wall thickness of .049". Tubes and shall be produced to ASTM A249 construction standards for heat exchanger application. Tubes shall employ integral formed-dimple restrictors to eliminate noise associated with expansion and contraction of internal baffles during heating cycles, and to provide for unobstructed drainage of condensate that occurs in the tubes during cooling operation. Drainage shall be configured so that burners and burner surfaces are not exposed to condensate during cooling system operation.

C. Full Modulation: On a call for heat and subsequent safe burner light off, the burner firing rate is controlled between 25% and 100% of full rated capacity. The modulation will be continuous between 25% and 100%, “stepped” modulation is not acceptable.
2.13 CONTROLS INCLUDED

A. All modules will include an ignition control, roll out switch and air proving switch. Additionally, on full modulation models a fan relay, delay timer and high fire gas valve control relay are included. Modules to accept either 0 to 10vDC or 4 to 20ma input signals (signal provided by others) will be integral to the control system. Additionally, these modules will supply a suitable analog output signal to the modulating gas valve. Two independent and adjustable (when compared to the analog input signal) SPDT relays will be provided for fan and valve control.

2.14 SEQUENCE OF OPERATION

A. The thermostat closes on a call for heat providing 24 VAC to the ignition control. The 120-volt draft inducer is energized. The air proving switch closes initiating a 30 second pre-purge. At the end of the pre-purge period, the igniter and gas valve are energized. If the burners ignite within the 5-second trial for ignition period, power is maintained to the gas valve and the igniter is de-energized. The flame presence is continuously monitored by the flame rod. At this point we are in the steady state heating condition. The module will continue to operate until the thermostat is satisfied. The thermostat will then open and interrupt power to the ignition control and shut off the unit. The control is capable of up to three retrials if the above sequence of start up is interrupted at any point. Beyond that a manual resetting of the control is required.

2.15 CONTROLS

A. Comply with requirements in Section 23 0923 "Direct Digital Control (DDC) System for HVAC" and Section 23 0993.11 "Sequence of Operations for HVAC DDC" for control equipment and sequence of operation.

B. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display status and alarms of heating and ventilating unit.

1. ASHRAE 135.1 (BACnet) or Industry-accepted, open-protocol communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the heating and ventilating unit from an operator workstation. Control features and monitoring points displayed locally at heating and ventilating unit control panel shall be available through the DDC system for HVAC.

2.16 CAPACITIES AND CHARACTERISTICS

A. See drawing schedules for details.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine casing insulation materials and filter media before air-to-air energy recovery equipment installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install heat wheels so supply and exhaust airstreams flow in opposite directions and rotation is away from exhaust side to purge section to supply side.

1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
2. Install removable panels or access doors between supply and exhaust ducts on building side for bypass during startup.
3. Access doors and panels are specified in Section 23 3300 "Air Duct Accessories."

B. Install fixed-plate heat exchangers so supply and exhaust airstreams flow in opposite directions.

1. Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to heat exchanger. Access doors and panels are specified in Section 23 3300 "Air Duct Accessories."

C. Install gas-fired furnaces according to NFPA 54, "National Fuel Gas Code."

D. Roof Curb: Install on roof structure or concrete base, level and secure, according to The NRCA "Roofing and Waterproofing Manual - Volume 4: Construction Details - Low-Slope Roofing," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts" and ARI Guideline B. Install air-to-air energy recovery equipment on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 7200 "Roof Accessories." Secure air-to-air energy recovery equipment to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

E. Unit Support: Install unit level on structural curbs and/or pilings. Coordinate wall penetrations and flashing with wall construction. Secure air-to-air energy recovery equipment to structural support with anchor bolts.

F. Install wind and seismic restraints according to manufacturers' written instructions. Wind and seismically restrained vibration isolation roof-curb rails are specified in Section 23 0548 "Vibration and Seismic Controls for HVAC."

G. Install units with clearances for service and maintenance.

H. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

I. Pipe drains from drain pans to nearest floor drain; use ASTM B 88, Type L, drawn-temper copper water tubing with soldered joints, same size as condensate drain connection.
3.3 CONNECTIONS

A. Install piping adjacent to unit to allow service and maintenance.

B. Connect piping to units mounted on vibration isolators with flexible connectors.

C. Connect cooling condensate drain pans with air seal trap at connection to drain pan and install cleanouts at changes in pipe direction.

D. Refrigerant Piping: Comply with applicable requirements in Section 23 2300 "Refrigerant Piping."

E. Gas Piping: Comply with requirements in Section 23 1123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union and with sufficient clearance for burner removal and service. Make connection with AGA-approved flexible connectors.

F. Comply with requirements for ductwork specified in Section 23 3113 "Metal Ducts."

G. Install electrical devices furnished with units but not factory mounted.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Adjust seals and purge.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
4. Set initial temperature and humidity set points.
5. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

D. Air-to-air energy recovery equipment will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-to-air energy recovery units.

END OF SECTION 23 7200
SECTION 23 7414
PACKAGED, OUTDOOR, ROOFTOP & ENERGY RECOVERY UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:
 1. Direct-expansion cooling.
 2. Hot-gas reheat.
 4. Economizer outdoor- and return-air damper section.
 5. Integral, space temperature controls.
 6. Roof curbs.
 7. See Drawings for units with energy recovery wheel.

1.3 DEFINITIONS
A. DDC: Direct-digital controls.
B. ECM: Electrically commutated motor.
C. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
D. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.
F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
H. VVT: Variable-air volume and temperature.
1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design RTU supports to comply with wind performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Wind-Restraint Performance:
 1. Basic Wind Speed: 100 mph.
 2. Building Classification Category: III.
 3. Minimum 10 lb/sq. ft multiplied by the maximum area of the mechanical component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

C. Sound Ratings shall be equal or better than basis of design. Any sound rating deviation shall be approved by owner. Refer to sound data for units at end of document Appendix.

1.5 SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, sound criteria which shall not exceed the values specified in basis of design equipment, dimensions, required clearances, characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Sound ratings: Provide sound data measurements/ratings measured at same distance as basis of design specified equipment.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.

D. Manufacturer Wind Loading Qualification Certification: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which RTUs will be attached.
 2. Roof openings
 3. Roof curbs and flashing.

F. Field quality-control test reports.
G. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

H. Warranty: Special warranty specified in this Section.

1.6 QUALITY ASSURANCE

A. ARI Compliance:
 1. Comply with ARI 210/240 and ARI 340/360 for testing and rating energy efficiencies for RTUs.
 2. Comply with ARI 270 for testing and rating sound performance for RTUs.

B. ASHRAE Compliance:
 1. Comply with ASHRAE 15 for refrigeration system safety.
 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 3. Comply with applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.

E. UL Compliance: Comply with UL 1995.

F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
 2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than 15 years from date of Substantial Completion.
 3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
 4. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One set for each belt-driven fan.
 2. Filters: One set of filters for each unit.
PART 2 - PRODUCTS

2.1 Manufacturers: Subject to compliance with requirements, provide products by the following

A. Daikin or engineer approved equal.

2.2 COILS

A. Supply-Air Refrigerant Coil:
1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
5. Overflow sensor for system shutdown.

B. Outdoor-Air Refrigerant Coil:
1. Aluminum-copper tube in steel casing with equalizing-type vertical distributor.
2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.

C. Hot-Gas Reheat Refrigerant Coil:
1. Aluminum-copper tube in steel casing with equalizing-type vertical distributor.
2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.

2.3 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.4 GENERAL DESCRIPTION

A. Furnish as shown on plans, Daikin Applied Rebel Single Zone Heating and Cooling Unit(s) model DPS. Unit performance and electrical characteristics shall be per the job schedule.

B. Configuration: Fabricate as detailed on prints and drawings:
1. Return plenum /economizer section
2. Filter section
3. Cooling coil section
4. Supply fan section
5. Gas heating section.
6. Condensing unit section

C. The complete unit shall be cETLus listed.
D. Each unit shall be specifically designed for outdoor rooftop application and include a weatherproof cabinet. Each unit shall be completely factory assembled and shipped in one piece. Packaged units shall be shipped fully charged with R-410 Refrigerant and oil.

E. The unit shall undergo a complete factory run test prior to shipment. The factory test shall include a refrigeration circuit run test, a unit control system operations checkout, a unit refrigerant leak test and a final unit inspection.

F. All units shall have decals and tags to indicate caution areas and aid unit service. Unit nameplates shall be fixed to the main control panel door. Electrical wiring diagrams shall be attached to the control panels. Installation, operating and maintenance bulletins and start-up forms shall be supplied with each unit.

G. Performance: All scheduled EER, IEER, capacities and face areas are minimum accepted values. All scheduled amps, kW, and HP are maximum accepted values that allow scheduled capacity to be met.

2.5 CABINET, CASING, AND FRAME

A. Panel construction shall be double-wall construction for all panels. All floor panels shall have a solid galvanized steel inner liner on the air stream side of the unit to protect insulation during service and maintenance. Insulation shall be a minimum of 1” thick with an R-value of 7.0, and shall be 2 part injected foam. Panel design shall include no exposed insulation edges. Unit cabinet shall be designed to operate at total static pressures up to 5.0 inches w.g.

B. Exterior surfaces shall be constructed of pre-painted galvanized steel for aesthetics and long term durability. Paint finish to include a base primer with a high quality, polyester resin topcoat of a neutral beige color. Finished panel surfaces to withstand a minimum 750-hour salt spray test in accordance with ASTM B117 standard for salt spray resistance.

C. Service doors shall be provided on the fan section, filter section, control panel section, and heating vestibule in order to provide user access to unit components. All service access doors shall be mounted on multiple, stainless steel hinges and shall be secured by a latch system. Removable service panels secured by multiple mechanical fasteners are not acceptable.

D. The unit base shall overhang the roof curb for positive water runoff and shall seat on the roof curb gasket to provide a positive, weathertight seal. Lifting brackets shall be provided on the unit base to accept cable or chain hooks for rigging the equipment.

2.6 ECONOMIZER SECTION

A. Unit shall be provided with an outdoor air economizer section. The economizer section shall include outdoor, return, and exhaust air dampers. The economizer operation shall be fully integral to the mechanical cooling and allow up to 100% of mechanical cooling if needed to maintain the cooling discharge air temperature. The outdoor air hood shall be factory installed and constructed from galvanized steel finished with the same durable paint finish as the main unit. The hood shall include moisture eliminator filters to drain water away from the entering air stream. The outside and return air dampers shall be sized to handle 100% of the supply air volume. The dampers shall be parallel blade design. Damper blades shall be gasketed with side seals to provide an air leakage rate of 4 cfm / square foot of damper area at 1” differential pressure per ASHRAE 90.1 Energy Standard. A barometric exhaust damper shall be provided to exhaust air out of the back of the unit. A bird screen shall be provided to prevent infiltration of rain and foreign materials. Exhaust damper blades shall be lined with vinyl gasketing on contact
edges. Control of the dampers shall be by a factory installed direct coupled actuator. Damper actuator shall be of the modulating, spring return type. A comparative enthalpy control shall be provided to sense and compare enthalpy in both the outdoor and return air streams to determine if outdoor air is suitable for “free” cooling. If outdoor air is suitable for “free” cooling, the outdoor air dampers shall modulate in response to the unit’s temperature control system.

2.7 ENERGY RECOVERY

A. The rooftop unit shall be provided with an AHRI certified rotary wheel air-to-air heat exchanger in a cassette frame complete with seals, drive motor and drive belt. The energy recovery wheel shall be an integral part of the rooftop unit with unitary construction and does not require field assembly. Bolt-on energy recovery units that require field assembly and section to section gasketing and sealing are not acceptable.

C. The rooftop unit shall be designed with a track so the entire energy recovery wheel cassette can slide out from the rooftop unit to facilitate cleaning.

D. The unit shall have 2” Merv 7 filters for the outdoor air before the wheel to help keep the wheel clean and reduce maintenance. Filter access shall be by a hinged access door with 1/4 turn latches.

E. The matrix design shall have channels to reduce cross contamination between the outdoor air and the exhaust air. The layers shall be effectively captured in aluminum and stainless steel segment frames that provide a rigid and self-supporting matrix. All diameter and perimeter seals shall be provided as part of the cassette assembly and shall be factory set. Drive belt(s) of stretch urethane shall be provided for wheel rim drive without the need for external tensioners or adjustment.

F. The total energy recovery wheel shall be coated with silica gel desiccant permanently bonded without the use of binders or adhesives, which may degrade desiccant performance. The substrate shall be lightweight polymer and shall not degrade nor require additional coatings for application in marine or coastal environments. Coated segments shall be washable with detergent or alkaline coil cleaner and water. Desiccant shall not dissolve nor deliquesce in the presence of water or high humidity.

G. Wheels shall be provided with removable energy transfer matrix. Wheel frame construction shall be a welded hub, spoke and rim assembly of stainless, plated and/or coated steel and shall be self-supporting without matrix segments in place. Segments shall be removable without the use of tools to facilitate maintenance and cleaning.

H. Wheel bearings shall be selected to provide an L-10 life in excess of 400,000 hours. Rim shall be continuous rolled stainless steel. Wheels shall be connected to the shaft by means of taper lock hubs.

I. The exhaust air fan shall be a direct drive SWSI plenum fan. The exhaust fan shall be sized for the airflow requirements per the construction schedule. The unit controller shall control the exhaust fan to maintain building pressure. A VFD shall be provided for the exhaust fan motor or the exhaust fan motor shall be an ECM motor. The rooftop unit shall have single point electrical power connection and shall be ETL listed.
J. The control of the energy recovery wheel shall be an integral part of the rooftop unit's DDC controller. The DDC controller shall have visibility of the outdoor air temperature, leaving wheel temperature, return air temperature, and exhaust air temperature. These temperatures shall be displayed at the rooftop units DDC controller LCD display. All of these temperatures shall be made available through the BACnet interface.

K. The rooftop unit with the energy recovery wheel shall incorporate the economizer operation. The energy recovery wheel shall have a bypass damper. When the unit is in the economizer mode of operation the energy recovery wheel shall stop and the bypass dampers shall be opened. The outdoor air shall be drawn through the bypass dampers to reduce the pressure drop of the outdoor airstream.

L. The rooftop unit DDC controller shall provide frost control for the energy recovery wheel. When a frost condition is encountered the unit controller shall stop the wheel. When in the frost control mode the wheel shall be jogged periodically and not be allowed to stay in the stationary position.

2.8 EXHAUST FAN

A. Exhaust fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with aluminum fan blades that are continuously welded to the hub plate and end rim. The exhaust fan shall be a direct drive fan mounted to the motor shaft.

B. The fan motor shall be a totally enclosed EC motor that is speed controlled by the rooftop unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.

C. Fan assembly shall be a slide out assembly for servicing and maintenance.

D. The unit DDC controller shall provide building static pressure control. The unit controller shall provide proportional control of the exhaust fans from 25% to 100% of the supply air fan designed airflow to maintain the adjustable building pressure setpoint. The field shall mount the required sensing tubing from the building to the factory mounted building static pressure sensor.

2.9 FILTERS

A. Unit shall be provided with a draw-through filter section. The filter rack shall be designed to accept a 2” prefilter and a 4” final filter. The unit design shall have a hinged access door for the filter section. The manufacturer shall ship the rooftop unit with 2” construction filters. The contractor shall furnish and install, at building occupancy, the final set of filters per the contract documents.

2.10 COOLING COIL

A. The indoor coil section shall be installed in a draw through configuration, upstream of the supply air fan. The coil section shall be completed with a factory piped cooling coil and an ASHRAE 62.1 compliant double sloped drain pan.

B. The direct expansion (DX) cooling coils shall be fabricated of seamless high efficiency copper tubing that is mechanically expanded into high efficiency aluminum plate fins. Coils shall be a
multi-row, staggered tube design with a minimum of 3 rows. All cooling coils shall have an interlaced coil circuiting that keeps the full coil face active at all load conditions. All coils shall be factory leak tested with high pressure air under water.

C. The cooling coil shall have an electronic controlled expansion valve. The unit controller shall control the expansion valve to maintain liquid subcooling and the superheat of the refrigerant system.

D. The refrigerant suction lines shall be fully insulated from the expansion valve to the compressors.

E. The drain pan shall be stainless steel and positively sloped. The slope of the drain pan shall be in two directions and comply with ASHRAE Standard 62.1. The drain pan shall have a minimum slope of 1/8" per foot to provide positive draining. The drain pan shall extend beyond the leaving side of the coil. The drain pan shall have a threaded drain connection extending through the unit base.

2.11 HOT GAS REHEAT

A. Unit shall be equipped with a fully modulating hot gas reheat coil with hot gas coming from the unit condenser

B. Hot gas reheat coil shall be a Micro Channel design. The aluminum tube shall be a micro channel design with high efficiency aluminum fins. Fins shall be brazed to the tubing for a direct bond. The capacity of the reheat coil shall allow for a 20°F temperature rise at all operating conditions.

C. The modulating hot gas reheat systems shall allow for independent control of the cooling coil leaving air temperature and the reheat coil leaving air temperature. The cooling coil and reheat coil leaving air temperature setpoints shall be adjustable through the unit controller. During the dehumidification cycle the unit shall be capable of 100% of the cooling capacity. The hot gas reheat coil shall provide discharge temperature control within +/- 2°F.

D. Each coil shall be factory leak tested with high-pressure air under water.

2.12 SUPPLY FAN

A. Supply fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with aluminum fan blades that are continuously welded to the hub plate and end rim. The supply fan shall be a direct drive fan mounted to the motor shaft.

B. Fan assembly shall be a slide out assembly for servicing and maintenance

C. All fan assemblies shall be statically and dynamically balanced at the factory, including a final trim balance, prior to shipment.

D. The fan motor shall be a totally enclosed EC motor that is speed controlled by the rooftop unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.
E. The supply fan shall be capable of airflow modulation from 30% to 100% of the scheduled designed airflow. The fan shall not operate in a state of surge at any point within the modulation range.

2.13 VARIABLE AIR VOLUME CONTROL

A. The unit controller shall proportionally control the Electronically Commutated Motors (ECM) on the supply and exhaust fans. The supply fan shall be controlled to maintain an adjustable duct pressure setpoint. A duct static pressure sensor shall be factory mounted in the control panel. The field shall furnish and install the pneumatic tubing for the duct static pressure sensor and the building pressure sensor. The field shall furnish and install the outdoor air pressure sensor.

B. The unit controller shall proportional control the ECM motors on the supply fan based on space temperature. The unit controller shall increase/decrease the speed of the supply fan in order to maintain the space temperature within its setpoint and deadband. The unit controller shall provide discharge air temperature control with the compressor modulation.

2.14 HEATING SECTION

A. The rooftop unit shall include a natural gas heating section. The gas furnace design shall be one natural gas fired heating module factory installed downstream of the supply air fan in the heat section. The heating module shall be a tubular design with in-shot gas burners.

B. Each module shall have two stages of heating control. The module shall be complete with furnace controller and control valve capable of 5:1 modulating operation.

C. The heat exchanger tubes shall be constructed of stainless steel.

D. The module shall have an induced draft fan that will maintain a negative pressure in the heat exchanger tubes for the removal of the flue gases.

E. Each burner module shall have two flame roll-out safety protection switches and a high temperature limit switch that will shut the gas valve off upon detection of improper burner manifold operation. The induced draft fan shall have an airflow safety switch that will prevent the heating module from turning on in the event of no airflow in the flue chamber.

F. The factory-installed DDC unit control system shall control the gas heat module. Field installed heating modules shall require a field ETL certification. The manufacturer’s rooftop unit ETL certification shall cover the complete unit including the gas heating modules.

2.15 CONDENSING SECTION

A. Outdoor coils shall have seamless copper tubes, mechanically bonded into aluminum plate-type fins. The fins shall have full drawn collars to completely cover the tubes. A sub-cooling coil shall be an integral part of the main outdoor air coil. Each outdoor air coil shall be factory leak tested with high-pressure air under water.

B. Outdoor air coils shall be protected from incidental contact to coil fins by a coil guard. Coil guard shall be constructed of cross wire welded steel with PVC coating.

C. Fan motors shall be an ECM type motor for proportional control. The unit controller shall proportionally control the speed of the condenser fan motors to maintain the head pressure of
the refrigerant circuit from ambient condition of 0~125°F. Mechanical cooling shall be provided to 25º F. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase.

D. The condenser fan shall be low noise blade design. Fan blade design shall be a dynamic profile for low tip speed. Fan blade shall be of a composite material.

E. The unit shall have scroll compressors. One of the compressors shall be an inverter compressor providing proportional control. The unit controller shall control the speed of the compressor to maintain the discharge air temperature.

F. Pressure transducers shall be provided for the suction pressure and head pressure. Temperature sensor shall be provided for the suction temperature and the refrigerant discharge temperature of the compressors. All of the above devices shall be an input to the unit controller and the values be displayed at the unit controller.

G. Refrigerant circuit shall have a bypass valve between the suction and discharge refrigerant lines for low head pressure compressor starting and increased compressor reliability. When there is a call for mechanical cooling the bypass valve shall open to equalizing the suction and discharge pressures. When pressures are equalized the bypass valve shall close and the compressor shall be allowed to start.

H. Each circuit shall be dehydrated and factory charged with R-410A Refrigerant and oil.

2.16 ELECTRICAL

A. Unit wiring shall comply with NEC requirements and with all applicable UL standards. All electrical components shall be UL recognized where applicable. All wiring and electrical components provided with the unit shall be number and color-coded and labeled according to the electrical diagram provided for easy identification. The unit shall be provided with a factory wired weatherproof control panel. Unit shall have a single point power terminal block for main power connection. A terminal board shall be provided for low voltage control wiring. Branch short circuit protection, 115-volt control circuit transformer and fuse, system switches, and a high temperature sensor shall also be provided with the unit. Each compressor and condenser fan motor shall be furnished with contactors and inherent thermal overload protection. Supply fan motors shall have contactors and external overload protection. Knockouts shall be provided in the bottom of the main control panels for field wiring entrance.

B. A single non-fused disconnect switch shall be provided for disconnecting electrical power at the unit. Disconnect switches shall be mounted internally to the control panel and operated by an externally mounted handle.

2.17 CONTROLS

A. Control equipment and sequence of operation are specified in Division 23 Section "Instrumentation and Control for HVAC."

B. Basic Unit Controls (Controls by A.T.C. Contractor): Extend the building’s automatic temperature control to interface with the rooftop units and/or energy recovery units.

C. Provide a complete integrated microprocessor based Direct Digital Control (DDC) system to control all unit functions including temperature control, scheduling, monitoring, unit safety
protection, including compressor minimum run and minimum off times, and diagnostics. This system shall consist of all required temperature sensors, pressure sensors, controller and keypad/display operator interface. All MCBs and sensors shall be factory mounted, wired and tested.

D. The stand-alone DDC controllers shall not be dependent on communications with any on-site or remote PC or master control panel for proper unit operation. The microprocessor shall maintain existing set points and operate standalone if the unit loses either direct connect or network communications. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. All factory and user set schedules and control points shall be maintained in nonvolatile memory. No settings shall be lost, even during extended power shutdowns.

E. The DDC control system shall permit starting and stopping of the unit locally or remotely. The control system shall be capable of providing a remote alarm indication. The unit control system shall provide for outside air damper actuation, emergency shutdown, remote heat enable/disable, remote cool enable/disable, heat indication, cool indication, and fan operation.

F. All digital inputs and outputs shall be protected against damage from transients or incorrect voltages. All field wiring shall be terminated at a separate, clearly marked terminal strip.

G. The DDC controller shall have a built-in time schedule. The schedule shall be programmable from the unit keypad interface. The schedule shall be maintained in nonvolatile memory to insure that it is not lost during a power failure. There shall be one start/stop per day and a separate holiday schedule. The controller shall accept up to sixteen holidays each with up to a 5-day duration. Each unit shall also have the ability to accept a time schedule via BAS network communications.

H. The keypad interface shall allow convenient navigation and access to all control functions. The unit keypad/display character format shall be 4 lines x 20 characters. All control settings shall be password protected against unauthorized changes. For ease of service, the display format shall be English language readout. Coded formats with look-up tables will not be accepted. The user interaction with the display shall provide the following information as a minimum:

1. Return air temperature.
2. Discharge air temperature.
3. Outdoor air temperature.
4. Space air temperature.
5. Outdoor enthalpy, high/low.
6. Compressor suction temperature and pressure.
7. Compressor head pressure and temperature.
8. Expansion valve position.
10. Inverter compressor speed.
11. Dirty filter indication.
12. Airflow verification.
13. Cooling status.
14. Control temperature (Changeover).
15. VAV box output status.
17. Unit status.
18. All time schedules.
19. Active alarms with time and date.
20. Previous alarms with time and date.
22. Supply fan and exhaust fan speed.
23. System operating hours.
a. Fan
b. Exhaust fan
c. Cooling
d. Individual compressor
e. Heating
f. Economizer
g. Tenant override

I. The user interaction with the keypad shall provide the following:
 1. Controls mode
 a. Off manual
 b. Auto
 c. Heat/Cool
 d. Cool only
 e. Heat only
 f. Fan only
 2. Occupancy mode
 a. Auto
 b. Occupied
 c. Unoccupied
 d. Tenant override
 3. Unit operation changeover control
 a. Return air temperature
 b. Space temperature
 c. Network signal
 4. Cooling and heating change-over temperature with deadband
 5. Cooling discharge air temperature (DAT)
 6. Supply reset options
 a. Return air temperature
 b. Outdoor air temperature
 c. Space temperature
 d. Airflow (VAV)
 e. Network signal
 f. External (0-10 vdc)
 g. External (0-20 mA)
 7. Temperature alarm limits
 a. High supply air temperature
 b. Low supply air temperature
 c. High return air temperature
 8. Lockout control for compressors.
 9. Compressor interstage timers
 10. Night setback and setup space temperature.
 11. Building static pressure.
 12. Economizer changeover
 a. Enthalpy
 b. Drybulb temperature
 13. Currently time and date
 14. Tenant override time
 15. Occupied/unoccupied time schedule
 16. One event schedule
 17. Holiday dates and duration
 18. Adjustable set points
 19. Service mode
 a. Timers normal (all time delays normal)
 b. Timers fast (all time delays 20 sec)
J. If the unit is to be programmed with a night setback or setup function, an optional space sensor shall be provided. Space sensors shall be available to support field selectable features. Sensor options shall include:
1. Zone sensor with tenant override switch
2. Zone sensor with tenant override switch plus heating and cooling set point adjustment. (Space Comfort Control systems only)

K. To increase the efficiency of the cooling system the DDC controller shall include a discharge air temperature reset program for part load operating conditions. The discharge air temperature shall be controlled between a minimum and a maximum discharge air temperature (DAT) based on one of the following inputs:
1. Airflow
2. Outside air temperature
3. Space temperature
4. Return air temperature
5. External signal of 1-5 vdc
6. External signal of 0-20 mA
7. Network signal

2.18 ACCESSORIES (See Plan Schedule Notes)

2.19 ROOF CURBS

A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C 916, Type I.

C. Curb Height: As required

D. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" for wind-load requirements.
2.20 CAPACITIES AND CHARACTERISTICS (See Plan Schedule)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07 Section "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

C. Install wind and seismic restraints according to manufacturer's written instructions. Wind and seismically restrained vibration isolation roof-curb rails are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

D. Provide high water level sensor in unit condensate pan and wire cooling control circuit in series through N.C. contact.

3.3 CONNECTIONS

A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or splash block at unit.

B. Install piping adjacent to RTUs to allow service and maintenance.
 1. Gas Piping: Comply with applicable requirements in Division 23 Section "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

C. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
3. Connect supply ducts to RTUs with flexible duct connectors specified in Division 23 Section "Air Duct Accessories."
4. Install return-air duct continuously through roof structure.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.

C. Tests and Inspections:
 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions and do the following:
 1. Inspect for visible damage to unit casing.
 2. Inspect for visible damage to furnace combustion chamber.
 3. Inspect for visible damage to compressor, coils, and fans.
 4. Inspect internal insulation.
 5. Verify that labels are clearly visible.
 6. Verify that clearances have been provided for servicing.
 7. Verify that controls are connected and operable.
 8. Verify that filters are installed.
 9. Clean condenser coil and inspect for construction debris.
 10. Clean furnace flue and inspect for construction debris.
 11. Connect and purge gas line.
 12. Remove packing from vibration isolators.
 13. Inspect operation of barometric relief dampers.
 14. Verify lubrication on fan and motor bearings.
 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 16. Adjust fan belts to proper alignment and tension.
 17. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.
 18. Inspect and record performance of interlocks and protective devices; verify sequences.
19. Operate unit for an initial period as recommended or required by manufacturer.
20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency.
 a. Measure gas pressure on manifold.
 b. Inspect operation of power vents.
 c. Measure combustion-air temperature at inlet to combustion chamber.
 d. Measure flue-gas temperature at furnace discharge.
 e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
22. Adjust and inspect high-temperature limits.
23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.
27. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Relief-air fan operation.
 f. Smoke and firestat alarms.
29. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.6 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 23 7414
SECTION 237423.16 - PACKAGED, INDIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes indirect-fired makeup-air units.

1.3 DEFINITIONS

A. DDC: Direct digital control.

1.4 ACTION SUBMITTALS

A. Product Data: For each type and configuration of outdoor, indirect-fired makeup-air unit.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:
 1. Product Data: For ventilation equipment, indicating compliance with ASHRAE 62.1, Section 5 - "Systems and Equipment."

C. Shop Drawings: For each type and configuration of outdoor, indirect-fired heating and ventilating unit.
 1. Signed, sealed, and prepared by or under the supervision of a qualified professional engineer.
 2. Include plans, elevations, sections, and mounting/attachment details.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 5. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 6. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
 7. Include diagrams for power, signal, and control wiring.

Two River Theater 23 7423.16 -1 PACKAGED, INDIRECT-FIRED, Addition and Alterations OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS
1.5 INFORMATIONAL SUBMITTALS

A. Startup service reports.

B. Sample Warranty: For manufacturer's special warranty.

C. Seismic Qualification Certificates: For outdoor, indirect-fired makeup-air units, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For indirect-fired makeup-air units to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set(s) for each unit.
 2. Fan Belts: One set(s) for each unit.

1.8 QUALITY ASSURANCE

A. Comply with NFPA 70.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.9 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of indirect-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than 10 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cambridge Engineering, Inc.
4. Sterling.

2.2 SYSTEM DESCRIPTION

A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, controls, filters, and indirect-fired gas burner to be installed exterior to the building.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings:

1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with water-resistant sealant.
3. Factory Finish for Steel and Galvanized-Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
4. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
 a. Seismic Fabrication Requirements: Fabricate mounting base and attachment to air-handling-unit sections, accessories, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when air-handling-unit frame is anchored to building structure.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Configuration: Horizontal unit with discharge (as shown on the drawings) for roof-mounting or concrete-base (as shown on the drawings) installation.

C. Cabinet: Aluminized- or galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet. Pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

D. Outer Casing: 18-gauge or 0.0598-inch-thick steel with heat-resistant, baked-enamel.
E. Inner Casing:

1. Burner Section Inner Casing: 0.0299-inch thick steel.
2. Double-wall casing with inner wall of perforated or solid steel, for all sections:
 a. Blower section.
 b. Filter section.
 c. Mixing box.
 d. Inlet plenum.
 e. Discharge plenum.
 f. Access Doors: Hinged with handles for burner and fan motor assemblies on both sides of unit.

3. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on complete unit.
 a. Thickness: 2 inches.
 b. Insulation Adhesive: Comply with ASTM C 916, Type I.
 c. Density: 1.5 lb/cu. ft.
 d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.

F. Casing Insulation and Adhesive:

1. Materials: ASTM C 1071, Type I for blanket or Type II for board.
2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the heating-coil section.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, mechanical, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric, depending on service-air velocity.

3. Location and Application: Encased between outside and inside casing.

G. Inspection and Access Panels and Access Doors:

1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Access Doors:
a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
b. Gasket: Neoprene, applied around entire perimeters of panel frames.
c. Size: At least 24 inches wide by full height of unit casing up to a maximum height of 72 inches.

4. Locations and Applications:
 a. Fan Section: **Doors and inspection and access panels.**
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panels.
 d. Damper Section: **Inspection and access panels or Doors.**
 e. Filter Section: **Inspection and access panels or Doors** large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

2.4 ACCESSORIES
 A. See drawing schedules for accessories.

2.5 OUTDOOR-AIR INTAKE HOOD
 A. Type: Manufacturer's standard hood or louver.
 B. Materials: Match cabinet.
 C. Bird Screen: Comply with requirements in ASHRAE 62.1.
 D. Filter: Aluminum, 1 inch cleanable.
 E. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.6 ROOF CURBS
 A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC."

2.7 SUPPLY-AIR FAN
 A. Fan Type: Centrifugal, rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, self-aligning, permanently lubricated ball bearings. Bearing rating: **L10 of 150,000 hours.**
 B. Drive: V-belt drive with matching fan pulley and adjustable motor sheaves and belt assembly.
 C. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with restrained, spring isolators.
 D. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.
2.8 AIR FILTERS

A. Comply with **NFPA 90A** and **NFPA 90B**.

B. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, *with a MERV 8 according to ASHRAE 52.2.*

1. Thickness: **2 inches**.
2. Media: Interlaced *glass* or *polyester* fibers.
3. Frame: Galvanized steel.

2.9 DAMPERS

A. Outdoor-Air Damper: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.

B. Damper Operator: Direct coupled, electronic with spring return as required by the control sequence.

2.10 INDIRECT-FIRED GAS BURNER

1. CSA Approval: Designed and certified by and bearing label of CSA.
2. Burners: **Stainless steel**.
 a. Gas Control Valve: **Modulating**.
 b. Fuel: **Natural gas**.
 c. Minimum Combustion Efficiency: **80 percent**.
 d. Ignition: Electronically controlled electric spark with flame sensor.

B. Venting: Power vented, with integral, motorized centrifugal fan interlocked with gas valve.

C. Combustion-Air Intake: Separate combustion-air intake and vent terminal assembly.

D. Heat Exchanger: **Stainless steel**.

E. Safety Controls:

1. Vent Flow Verification: **Differential pressure switch to verify open vent** or **Flame rollout switch**.
2. Control Transformer: 24-V ac.
3. High Limit: Thermal switch or fuse to stop burner.
5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
6. Gas Manifold: Safety switches and controls complying with ANSI standards and **FM Global** and **XL Insurance as required**.
8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if
high-limit temperature is exceeded.
9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries.
Controls are reset manually by turning the unit off and on.

2.11 UNIT CONTROL PANEL

A. Factory-wired, fuse-protected control transformer, connection for power supply and field-wired
unit to remote control panel.

B. Control Panel: Surface-mounted or Recessed, with trim ring, remote panel, with engraved
plastic cover and the following lights and switches:
 1. On-off-auto fan switch.
 4. Heating operation indicating light.
 5. Thermostat.
 6. Damper position potentiometer.
 7. Dirty-filter indicating light operated by unit-mounted differential pressure switch.
 8. Safety-lockout indicating light.
 9. Enclosure: NEMA 250, Type as required by application/location.

2.12 CONTROLS

A. Comply with requirements in Section 230923 "Direct Digital Control (DDC) System for HVAC"
and Section 230993.11 "Sequence of Operations for HVAC DDC" for control equipment and
sequence of operation.

B. Control Devices:
 1. Duct discharge air sensor and remote room thermostat with adjustment for make-up air
application. Coordinate with automatic temperature control system. Room thermostat will
override the discharge air setpoint to avoid overheating the room.
 2. Fire-Protection Thermostats: Fixed or adjustable settings to operate at not less than 75
deg F above normal maximum operating temperature.

C. Fan Control: Interlock fan to start with exhaust fan(s) to which this heating and ventilating unit is
associated for makeup air.

D. Outdoor-Air Damper Control, 100 Percent Outdoor-Air Units: Outdoor-air damper shall open
when supply fan starts, and close when fan stops.

E. Temperature Control: Operates gas valve to maintain supply-air temperature.
 1. Operates gas valve to maintain discharge-air temperature with factory-mounted sensor in
blower outlet.
 2. Operates gas valve to maintain space temperature with wall-mounting, field-wired
sensor with temperature adjustment, and unit-mounted control adjustment and
adjustment on remote-control panel.
 3. Timer shall select remote setback thermostat to maintain space temperature at 50 deg F
adjustable.
 4. Burner Control: Two or four steps of control using one or two burner sections in series.
5. Burner Control: 20 to 100 percent modulation of the firing rate. 10 to 100 percent with dual burner units.

F. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display status and alarms of heating and ventilating unit.

1. Hardwired Points:
 a. Room temperature.
 b. Discharge-air temperature.
 c. Burner operating.

2. **ASHRAE 135.1 (BACnet), LonTalk, Modbus, or Industry-accepted, open-protocol as required by the with automatic temperature controls for** communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the heating and ventilating unit from an operator workstation. Control features and monitoring points displayed locally at heating and ventilating unit control panel shall be available through the DDC system for HVAC.

2.13 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

 1. Efficiency: **Premium efficient.**

2.14 CAPACITIES AND CHARACTERISTICS

A. See drawing schedule for details.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting:
1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

 B. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."
 C. Install controls and equipment shipped by manufacturer for field installation with indirect-fired heating and ventilating units.
 D. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." and ARI Guideline B. Install units on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

3.3 CONNECTIONS

 A. Drawings indicate general arrangement of piping, fittings, and specialties.
 1. Gas Piping: Comply with requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.
 B. Duct Connections: Connect supply ducts to indirect-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 233300 "Air Duct Accessories" for flexible duct connectors.
 C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

 A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 B. Perform tests and inspections with the assistance of a factory-authorized service representative.
 C. Units will be considered defective if they do not pass tests and inspections.
 D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

 A. Engage a factory-authorized service representative to perform startup service.
B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:

1. Inspect for visible damage to burner combustion chamber.
2. Inspect casing insulation for integrity, moisture content, and adhesion.
3. Verify that clearances have been provided for servicing.
4. Verify that controls are connected and operable.
5. Verify that filters are installed.
6. Purge gas line.
7. Inspect and adjust vibration isolators and seismic restraints.
8. Verify bearing lubrication.
9. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
10. Adjust fan belts to proper alignment and tension.

C. Start unit according to manufacturer's written instructions.

1. Complete startup sheets and attach copy with Contractor's startup report.
2. Inspect and record performance of interlocks and protective devices; verify sequences.
3. Operate unit for run-in period recommended by manufacturer.
4. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 a. Measure gas pressure at manifold.
 b. Measure combustion-air temperature at inlet to combustion chamber.
 c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
5. Calibrate thermostats.
6. Adjust and inspect high-temperature limits.
7. Inspect dampers for proper stroke and interlock.
8. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
9. Measure and record airflow. Plot fan volumes on fan curve.
10. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 a. High-limit heat.
 b. Alarms.
11. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension.
13. Verify outdoor-air damper operation.

3.6 ADJUSTING

A. Adjust initial temperature set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 237423.16
SECTION 23 8129
VARIABLE REFRIGERANT VOLUME & SPLIT SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes split-system air-conditioning and heat-pump units consisting of separate
 evaporator-fan and compressor-condenser components. Some systems are the variable
 refrigerant volume type with heat recovery.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating
 characteristics, and furnished specialties and accessories. Include performance data in terms
 of capacities, outlet velocities, static pressures, sound power characteristics, motor
 requirements, and electrical characteristics.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required
 clearances, method of field assembly, components, and location and size of each field
 connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
C. Samples for Initial Selection: For units with factory-applied color finishes.
D. Field quality-control reports.
E. Operation and Maintenance Data: For split-system air-conditioning units to include in
 emergency, operation, and maintenance manuals.
F. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70,
 by a qualified testing agency, and marked for intended location and application.
B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for
 Refrigeration Systems."
2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-Up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.5 COORDINATION
A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.6 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:
 a. For Compressor: Six year(s) from date of Substantial Completion.
 b. For Parts: One year(s) from date of Substantial Completion.
 c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Subject to compliance with requirements, provide products by the following:

 1. Daikin or engineer approved equal.

2.2 GENERAL
A. The variable capacity, heat recovery air conditioning system shall be a Variable Refrigerant Volume (heat and cool model) split system as specified. The system shall consist of multiple evaporators, branch selector boxes, joints and headers, a three pipe refrigeration distribution system using PID control and condenser unit. The condenser shall be a direct expansion (DX), air-cooled heat recovery, multi-zone air-conditioning system with variable speed inverter driven compressors using R-410A refrigerant. All zones are each capable of operating separately with individual temperature control. A dedicated hot gas pipe shall be required to ensure optimum heating operation performance. Two-pipe, heat recovery systems utilizing a lower temperature mixed liquid/gas refrigerant to perform heat recovery are not acceptable due to reduced heating capabilities.

 B. The condensing unit shall be interconnected to indoor units in accordance with manufacturer's engineering data book detailing each available indoor unit. The indoor units shall be connected to the condensing unit utilizing manufacturer's specified piping joints and headers to ensure correct refrigerant flow and balancing. T style joints are not acceptable for a variable refrigerant system.
C. Operation of the system shall permit either individual cooling or heating of each indoor unit simultaneously or all of the indoor units associated with each branch of the cool/heat selector box. Each indoor unit or group of indoor units shall be able to provide set temperature independently via a local remote controller and a BMS interface.

D. Branch selector boxes shall be located as shown on the shop drawing submittals. The branch selector boxes shall have the capacity to control up to 290 MBH (cooling) downstream of the branch selector box. Each branch of the branch selector box shall consist of three electronic expansion valves, refrigerant control piping and electronics to facilitate communications between the box and main processor and between the box and indoor units. The branch selector box shall control the operational mode of the subordinate indoor units. The use of three EEV’s ensures continuous heating during defrost (multiple condenser systems), no heating impact during changeover and reduced sound levels. The use of solenoid valves for changeover and pressure equalization shall not be acceptable due to refrigerant noise.

E. Autocharging – Each system shall have a refrigerant auto-charging function.

F. Defrost Heating – Multiple condenser VRV systems shall maintain continuous heating during defrost operation. Reverse cycle (cooling mode) defrost operation shall not be permitted due to the potential reduction in space temperature.

G. Oil Return Heating – Multiple condenser VRV systems shall maintain continuous heating during oil return operation. Reverse cycle (cooling mode) oil return during heating operation shall not be permitted due to the potential reduction in space temperature.

H. The operating range in cooling or cooling dominant simultaneous cooling/heating will be -4°F DB ~ 122°F DB.

I. Each system as standard shall be capable of onsite reprogramming to allow low ambient cooling operation down to -4°F DB.

J. The operating range in heating or heating dominant simultaneous cooling/heating will be -13°F WB – 60°F WB.

K. The units shall be compatible with interfacing with a BMS system via optional LonWorks or BACnet gateways.

2.3 INDOOR UNITS (Heat Pump Heat Recovery)

A. 4-Way Ceiling Cassette Unit:

1. General: Indoor unit shall be a ceiling cassette fan coil unit, operable with R-410A refrigerant, equipped with an electronic expansion valve, for installation into the ceiling cavity equipped with an air panel grill. It shall be a four-way air distribution type, impact resistant with a washable decoration panel. The supply air is distributed via motorized louvers which can be horizontally and vertically adjusted from 0° to 90°. Computerized PID control shall be used to control superheat to deliver a comfortable room temperature condition. The unit shall be equipped with a programmed drying mechanism that dehumidifies while limiting changes in room temperature. The indoor units sound pressure shall range from 29 dB(A) to 34 dB(A) at low speed measured at 5 feet below the unit.

2. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.

3. Both refrigerant lines shall be insulated from the outdoor unit.
4. The 4-way supply air flow can be field modified to 3-way and 2-way airflow to accommodate various installation configurations including corner installations.
5. Return air shall be through the concentric panel, which includes a resin net mold resistant filter.
6. The indoor units shall be equipped with a condensate pan and condensate pump. The condensate pump provides up to 21” of lift and has a built-in safety shutoff and alarm.
7. The indoor units shall be equipped with a return air thermistor.
8. All electrical components are reached through the decoration panel, which reduces the required side service access.
9. The indoor unit will be separately powered with 208~230V/1-phase/60Hz.

B. Unit Cabinet:

1. Cabinet: Enameled steel or plastic with removable panels on front and ends in standard color selected by discharge drain pans with drain connection and integral condensate pump.
 a. The cabinet shall be space saving and shall be located into the ceiling.
 b. Three auto-swing positions shall be available to choose, which include standard, draft prevention and ceiling stain prevention.
 c. The cabinet shall be constructed with sound absorbing foamed polystyrene and polyethylene insulation.

2. Refrigerant Coil:
 b. The coil shall be of a waffle louver fin and high heat exchange, rifled bore tube design to ensure highly efficient performance.
 c. The coil shall be a 2-row cross fin copper evaporator coil with 17 FPI design completely factory tested.
 d. The refrigerant connections shall be flare connections and the condensate will be 1-1/32 inch outside diameter PVC.
 e. A condensate pan shall be located under the coil.
 f. A condensate pump with a 21 inch lift shall be located below the coil in the condensate pan with a built-in safety alarm.
 g. A thermistor will be located on the liquid and gas line.

3. Fan: Direct drive, centrifugal.

4. Fan Motors:
 a. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 b. Retain first subparagraph below if enclosure is not open-dripproof type. Retain second subparagraph for premium efficiency.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Electrical Division Sections.
 f. Retain first subparagraph below to require that disconnect switches be supplied with unit.
 g. Mount unit-mounted disconnect switches on interior of unit.

5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
2.4 OUTDOOR UNITS (Heat Pump Heat Recovery)

A. Air-Cooled, Inverter Compressor-Condenser Components:

1. The condensing unit shall be factory assembled in the USA and pre-wired with all necessary electronic and refrigerant controls. The refrigeration circuit of the condensing unit shall consist of Daikin inverter scroll compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports, liquid receiver and suction accumulator. High/low pressure gas line, liquid and suction lines must be individually insulated between the condensing and indoor units.

 a. The condensing unit can be wired and piped with access from the left, right, rear or bottom.
 b. The connection ratio of indoor units to condensing unit shall be permitted up to 200%.
 c. Each condensing system shall be able to support the connection of up to 64 indoor units dependent on the model of the condensing unit.
 d. The sound pressure level standard shall be that value as listed in the Daikin engineering manual for the specified models at 3 feet from the front of the unit. The condensing unit shall be capable of operating automatically at further reduced noise during night time or via an external input.
 e. The system will automatically restart operation after a power failure and will not cause any settings to be lost, thus eliminating the need for reprogramming.
 f. The unit shall incorporate an auto-charging feature. Manual changing should be support with a minimum of 2 hours of system operation data to ensure correct operation.
 g. The condensing unit shall be modular in design and should allow for side-by-side installation with minimum spacing.
 h. The following safety devices shall be included on the condensing unit; high pressure sensor and switch, low pressure sensor, control circuit fuses, crankcase heaters, fusible plug, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
 i. To ensure the liquid refrigerant does not flash when supplying to the various indoor units, the circuit shall be provided with a sub-cooling feature.
 j. Oil recovery cycle shall be automatic occurring 2 hours after start of operation and then every 8 hours of operation. Each system shall maintain continuous heating during oil return operation.
 k. The condensing unit shall be capable of heating operation at -13°F wet bulb ambient temperature without additional low ambient controls or an auxiliary heat source.

2. The multiple condenser VRV systems shall continue to provide heat to the indoor units in heating operation while in the defrost mode

3. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.

4. VFD Inverter Control and Variable Refrigerant Temperature – Each condensing unit shall use high efficiency, variable speed all “inverter” compressor(s) coupled with inverter fan motors to optimize part load performance. The system capacity and refrigerant temperatures shall be modulated automatically to set suction and condensing pressures while varying the refrigerant volume for the needs of the cooling or heating loads. The control will be automatic and customizable depending on load and weather conditions.
5. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.

a. Compressor Type: Scroll. (Inverter)
b. Feature in first subparagraph below is not available from all manufacturers.
c. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
d. LEED Credit EA 4 awards a single point if all HVAC&R equipment has HCFC-free refrigerants. R-407C and R-410A are HCFC-free refrigerants.
e. Refrigerant Charge: R-410A.
f. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.
g. The capacity control range shall be as low as 3% to 100%.
h. The inverter scroll compressors shall be variable speed (PVM inverter) controlled which is capable of changing the speed to follow the variations in total cooling and heating load as determined by the suction gas pressure as measured in the condensing unit. In addition, samplings of evaporator and condenser temperatures shall be made so that the high/low pressures detected are read every 20 seconds and calculated. With each reading, the compressor capacity (INV frequency) shall be controlled to eliminate deviation from target value. Non inverter-driven compressors, which may cause starting motor current to exceed the nominal motor current (RLA) and require larger wire sizing, shall not be allowed.
i. The inverter driven compressor in each condensing unit shall be of highly efficient reluctance DC (digitally commutating), hermetically sealed scroll “G-type” or “J-type”.
j. Neodymium magnets shall be adopted in the rotor construction to yield a higher torque and efficiency in the compressor instead of the normal ferrite magnet type. At complete stop of the compressor, the neodymium magnets will position the rotor into the optimum position for a low torque start.
k. The capacity control range shall be as low as 3% to 100%.
l. The compressors’ motors shall have a cooling system using discharge gas, to avoid sudden changes in temperature resulting in significant stresses on winding and bearings.
m. Each compressor shall be equipped with a crankcase heater, high pressure safety switch, and internal thermal overload protector.
n. Oil separators shall be standard with the equipment together with an intelligent oil management system.
o. The compressor shall be spring mounted to avoid the transmission of vibration eliminating the standard need for spring insolation.
p. In the event of compressor failure, the remaining compressors shall continue to operate and provide heating or cooling as required at a proportionally reduced capacity. The microprocessor and associated controls shall be designed to specifically address this condition.
q. In the case of multiple condenser modules, conjoined operation hours of the compressors shall be balanced by means of the Duty Cycling Function, ensuring sequential starting of each module at each start/stop cycle, completion of oil return, completion of defrost or every 8 hours and extending the operating life of the system.

6. Retain first subparagraph below for heat-pump units.

8. Fan: The condensing unit shall consist of one or more propeller type, direct-drive fan motors that have multiple speed operation via a DC (digitally commutating) inverter.
 a. Condenser Coil:
 b. The condenser coil shall be manufactured from copper tubes expanded into aluminum fins to form a mechanical bond.
 c. The heat exchanger coil shall be of a waffle louver fin and rifled bore tube design to ensure high efficiency performance.
 d. The heat exchanger on the condensing units shall be manufactured from Hi-X seamless copper tube with N-shape internal grooves mechanically bonded on to aluminum fins to an e-Pass Design.
 e. The fins are to be covered with an anti-corrosion Ultra Gold coating as standard with a salt spray test rating of 1000hr (ASTM B117 & Blister Rating:10), Acetic acid salt spray test: 500hr (ASTM G85 & Blister Rating:10)
 f. The pipe plates shall be treated with powdered polyester resin for corrosion prevention. The thickness of the coating must be between 2.0 to 3.0 microns.
 g. The outdoor coil shall have three-circuit heat exchanger design eliminating the need for bottom plate heater. The lower part of the coil shall be used for inverter cooling and be on or off during heating operation enhancing the defrost operation.

10. Low Ambient Kit: Permits operation down to 23 degree F.

11. Mounting Base: refer to plans.

2.5 BRANCH SELECTOR BOX (For Heat Recovery System)

A. General: The branch selector boxes are designed specifically for use with VRV heat recovery system components.
 1. These selector boxes shall be factory assembled, wired, and piped.
 2. Branch controllers must be run tested at the factory.
 3. These selector boxes must be mounted indoors.
 4. When simultaneously heating and cooling, the units in heating mode shall energize their subcooling electronic expansion valve.

B. Unit Cabinet:
 1. These units shall have a galvanized steel plate casing.
 2. Each cabinet shall house 3 electronic expansion valves for refrigerant control per branch.
 3. The cabinet shall contain one subcooling heat exchanger per branch.
 4. The unit shall have sound absorption thermal insulation material made of flame and heat resistant foamed polyethylene.

C. Condensate Removal:
 1. The unit shall not require provisions for condensate removal.

2.6 REFRIGERANT PIPING

A. The system shall be capable of refrigerant piping up to 540 actual feet or 623 equivalent feet from the condensing unit to the furthest indoor unit, a total combined liquid line length of 3,280 feet of piping between the condensing and indoor units with 295 feet maximum vertical difference, without any oil traps.
B. Piping joints and headers shall be used to ensure proper refrigerant balance and flow for optimum system capacity and performance. T style joints shall not be acceptable as this will negatively impact proper refrigerant balance and flow for optimum system capacity and performance.

2.7 ACCESSORIES

A. Control equipment and sequence of operation are specified in Mechanical Division Sections "HVAC Instrumentation and Controls" and "Sequence of Operation."

B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.

C. Automatic-reset timer to prevent rapid cycling of compressor.

D. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

E. Drain Hose: For condensate.

F. Additional Monitoring: Via Local Panel.
 1. Monitor constant and variable motor loads.
 3. Monitor economizer cycle.
 4. Monitor cooling and heating load.
 5. Monitor air distribution static pressure and ventilation air volumes.

2.8 CAPACITIES AND CHARACTERISTICS: SEE PLAN SCHEDULES

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install ground-mounted, compressor-condenser components on 4-inch-thick, reinforced concrete base that is 4 inches larger, on each side, than unit.

D. Install seismic restraints.

E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit, in accordance with manufacturer recommendations.

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

F. With Integral Condensate Pump.

3.3 STARTUP SERVICE

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Adjust seals and purge.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 4. Set initial temperature and humidity set points.
 5. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

D. Prepare test and inspection reports

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 23 8129
SECTION 23 8238
CABINET HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes cabinet heaters.

1.3 SUBMITTALS
A. Product Data: Include specialties and accessories for each unit type and configuration.
B. Shop Drawings: Submit the following for each unit type and configuration:
 1. Plans, elevations, sections, and details.
 2. Details of anchorages and attachments to structure and to supported equipment.
 4. Equipment schedules to include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.
C. Coordination Drawings: Reflected ceiling plans drawn to scale and coordinating penetrations and ceiling-mounted items. Show the following:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Size and location of access panels in hard ceilings to provide access to concealed units.
 5. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
D. Color Charts for Initial Selection: Manufacturer's color charts showing the full range of colors available for units with factory-applied color finishes.
E. Field Test Reports: Written reports of tests specified in Part 3 of this Section.
F. Maintenance Data: For cabinet heaters to include in maintenance manuals specified in Division 1. Include the following:
 1. Maintenance schedules and repair parts lists for motors, coils, integral controls, and filters.
1.4 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 COORDINATION
 A. Coordinate layout and installation of cabinet heaters and suspension system components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

1.6 EXTRA MATERIALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Cabinet Heater Filters: Furnish one spare filter for each filter installed.

PART 2 - PRODUCTS

2.1 Manufacturers: Subject to compliance with requirements, provide products by the following:
 A. Electric Heat Manufacturers:
 1. Marley - Berko.
 3. TPI Corporation - Markel.
 4. TPI Corporation – Raywall.

2.2 CABINET HEATERS
 A. Description: An assembly including filter, chassis, coil, fan, and motor in blow-through configuration with heating coil.
 B. Cabinet: See drawings for configurations.

2.3 MATERIALS
 A. Chassis: 18 gauge galvanized steel.
 B. Coil Section Insulation: 1-inch duct liner complying with ASTM C 1071 and attached with adhesive complying with ASTM C 916.
 1. Fire-Hazard Classification: Duct liner and adhesive shall have a maximum flame-spread rating of 25 and smoke-developed rating of 50 when tested according to ASTM E 84.
C. Cabinet: Galvanized steel, with removable panels fastened with tamperproof fasteners and key-operated access door.

D. Cabinet Finish: Bonderize, phosphatize, and flow-coat with baked-on primer with manufacturer's standard paint, in color selected by Architect, applied to factory-assembled and tested cabinet unit heater before shipping.

2.4 ELECTRIC-RESISTANCE HEATING ELEMENTS

A. Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium-oxide insulating refractory and sealed in high-mass steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch. Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F at any point during normal operation.

2. Wiring Terminations: Match conductor materials and sizes indicated.

2.5 FAN

A. Centrifugal, with forward-curved, double-width wheels and fan scrolls made of galvanized steel or thermoplastic material; directly connected to motor.

2.6 FAN MOTORS

A. Multispeed motor with integral thermal-overload protection and resilient mounts. Connect motor to chassis wiring with plug connection.

2.7 ACCESSORIES

A. Aluminum wall boxes with integral eliminators and insect screen.
B. Steel subbase, height as indicated.
C. Plastic motor-oiler tubes extending to beneath top discharge grille.
D. Steel recessing flanges for recessing cabinet unit heaters into ceiling or wall.
E. Filters: 1-inch thick, glass-fiber media in fiberboard frame.
F. Dampers: Steel damper blade(s) with polyurethane stop across entire blade length and having factory-mounted electric operators for proportioning amounts of outside air and return air.

2.8 CONTROLS

A. Control Devices: Unit-mounted fan-speed switch and wall-mounting thermostat.

2.9 SOURCE QUALITY CONTROL
Part 3 - Execution

3.1 Examination

A. Examine areas to receive cabinet heaters for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for electrical connections to verify actual locations before cabinet unit heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 Installation

A. Install cabinet heaters level and plumb.

B. Install cabinet heaters to comply with NFPA 90A.

C. Suspend cabinet heaters from structure with rubber-in-shear vibration isolators (rubber hangers). Vibration isolators are specified in Section "Mechanical Vibration Controls and Seismic Restraints."

D. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls.

3.3 Connections

A. Unless otherwise indicated, install shutoff valve and union or flange at each connection.

B. Ground equipment.

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 Field Quality Control

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

B. Units will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

D. Replace defective units. Retest as specified above after replacements are made.

3.5 CLEANING

A. After installing units, inspect unit cabinet for damage to finish. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. After installing units, clean cabinet unit heaters internally according to manufacturer's written instructions.

C. Install new filters in each cabinet heater within two weeks after Substantial Completion.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters.

1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment.

2. Review data in maintenance manuals. Refer to Division 1 for Closeout Procedures and Division 1 for Operation and Maintenance Data.

3. Schedule training with Owner, through Architect, with at least seven days' advance notice.

END OF SECTION 23 8238
SECTON 26 0500
COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Electrical equipment coordination and installation.
2. Sleeves for raceways and cables.
3. Sleeve seals.
5. Common electrical installation requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

3. Pressure Plates: Plastic. Include two for each sealing element.

4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, non-staining, mixed with water to consistency suitable for application and a 30-minute working time.
PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches above finished floor level.

G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry

1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."
K. **Roof-Penetration Sleeves:** Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. **Aboveground, Exterior-Wall Penetrations:** Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. **Underground, Exterior-Wall Penetrations:** Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly.

END OF SECTION 26 0500
SECTION 26 0519
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less

1.2 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Field quality-control test reports.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
 2. Alpha Wire.
 3. Belden Inc.
 5. General Cable Technologies Corporation.
B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THW-2 Type THHN-2 THWN-2 Type XHHW-2.
D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC with ground wire.
2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Related Documents

2.4 SLEEVE SEALS

A. Related Documents

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Type THHN-2-THWN-2, single conductors in raceway Type XHHW-2, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and underground: Type THHN-2-THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.

D. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-2-THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 26 0533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 26 0529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 26 0553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 FIRESTOPPING

A. Apply Firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Through Penetration Firestop System."
3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors for compliance with requirements.

B. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 26 0519
SECTION 26 0526
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes methods and materials for grounding systems and equipment.

1.2 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Field quality-control test reports.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Burndy; Part of Hubbell Electrical Systems.
2. Dossert; AFL Telecommunications LLC.
3. ERICO International Corporation.
4. Fushi Copperweld Inc.
5. Galvan Industries, Inc.; Electrical Products Division, LLC.
6. Harger Lightning and Grounding.
7. ILSCO.
9. Robbins Lightning, Inc.
10. Siemens Power Transmission & Distribution, Inc.

2.2 SYSTEM DESCRIPTION
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with UL 467 for grounding and bonding materials and equipment.
2.3 CONDUCTORS

A. Insulated Conductors: copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.4 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

B. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Structural Steel: Welded connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Metal-clad cable runs.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

C. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

D. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.
3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer’s written instructions.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power Distribution Units or Panelboards Serving Electronic Equipment: 1.3 ohm(s).

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 0526
SECTION 26 0529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Steel slotted support systems.
 2. Aluminum slotted support systems.
 3. Conduit and cable support devices.
 4. Support for conductors in vertical conduit.
 5. Structural steel for fabricated supports and restraints.
 6. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
 7. Fabricated metal equipment support assemblies.

B. Related Requirements:
 1. Section 26 0548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.
 2. Include rated capacities and furnished specialties and accessories.
B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.

2. Slotted support systems.
3. Equipment supports.
4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.

1. Include design calculations and details of hangers.
2. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Ductwork, piping, fittings, and supports.
3. Structural members to which hangers and supports will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Projectors.
 g. Pipe Grid

B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M.
2. AWS D1.2/D1.2M.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the supported equipment and systems will be fully operational after the seismic event."

2. Component Importance Factor: 1.0.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame Rating: Class 1.

2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches oc in at least one surface.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.

4. Channel Width: Selected for applicable load criteria.

5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Aluminum Slotted Support Systems: Extruded-aluminum channels and angles with minimum 13/32-inch diameter holes at a maximum of 8 inches oc in at least one surface.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
5. Channel Width: Selected for applicable load criteria.
6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
3) Hilti Inc.
4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 05 5000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101
3. NECA 102.
4. NECA 105.
5. NECA 111.

B. Comply with requirements in Section 07 8413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 26 0533 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.
3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts, Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69 and Spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 05 5000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 3000 "Cast-in-Place Concrete." or Section 03 3053 "Miscellaneous Cast-in-Place Concrete."

C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 09 9113 "Exterior Painting" and Section 09 9123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 0529
SECTION 26 0533
RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. ENT: Electrical nonmetallic tubing.
C. EPDM: Ethylene-propylene-dieneterpolymer rubber.
D. FMC: Flexible metal conduit.
E. IMC: Intermediate metal conduit.
F. GRC: Galvanized rigid steel conduit.
G. LFMC: Liquidtight flexible metal conduit.
H. NBR: Acrylonitrile-butadiene rubber.
I. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS
A. Product Data: For floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 1. Custom enclosures and cabinets.
C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Structural members in the paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

D. Qualification Data: For professional engineer and testing agency.

E. Source quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFC Cable Systems, Inc.
3. Anamet Electrical, Inc.
4. Electri-Flex Company.
5. O-Z/Gedney.
6. Picoma Industries.
7. Republic Conduit.
8. Robroy Industries.
10. Thomas & Betts Corporation.
11. Western Tube and Conduit Corporation.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

G. EMT: Comply with ANSI C80.3 and UL 797.

H. FMC: Comply with UL 1; zinc-coated steel.
I. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

J. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

K. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 3. Arnco Corporation.
 4. CANTEX Inc.
 7. ElecSYS, Inc.
 8. Electri-Flex Co.
 9. Lamson & Sessions; Carlon Electrical Products.
 10. Manhattan/CDT/Cole-Flex.
 11. RACO; a Hubbell Company.
 12. Thomas & Betts Corporation.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.

D. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. RTRC: Comply with UL 1684A and NEMA TC 14.

G. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

H. Fittings for LFNC: Comply with UL 514B.

I. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1, 3R unless otherwise indicated, and sized according to NFPA 70.
 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type or as indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 2. EGS/Appleton Electric.
 7. RACO; a Hubbell Company.
 10. Spring City Electrical Manufacturing Company.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A. In "Cast-Metal Outlet and Device Boxes"

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Metal Floor Boxes:
 1. Material: Cast metal or sheet metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

K. Gangable boxes are allowed.

L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC or IMC.
 2. Concealed Conduit, Aboveground: GRC or IMC.
 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: IMC. Raceway locations include the following:
 a. Mechanical rooms.
 b. Basements
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Damp or Wet Locations: GRC IMC.
 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.
D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 3. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot (3-m) intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
5. Change from ENT to IMC before rising above floor.

J. Stub-ups to Above Recessed Ceilings:
1. Use EMT, IMC, or RMC for raceways.
2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

U. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

V. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

W. Expansion-Joint Fittings:
1. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer’s written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

X. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Y. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements.

Z. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

AA. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

BB. Locate boxes so that cover or plate will not span different building finishes.

CC. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

DD. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

EE. Set metal floor boxes level and flush with finished floor surface.

3.3 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 26 0533
SECTION 26 0543
UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Direct-buried conduit, ducts, and duct accessories.
 2. Handholes and boxes.

1.3 DEFINITIONS
A. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include duct-bank materials, including separators and miscellaneous components.
 2. Include ducts and conduits and their accessories, including elbows, end bells, bends,
 fittings, and solvent cement.
 3. Include accessories for handholes and boxes.
 4. Include warning tape.

B. Shop Drawings:
 1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and
 accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement details.
 d. Include frame and cover design and handhole frame support rings.
 e. Include grounding details.
 f. Include joint details.

1.5 INFORMATIONAL SUBMITTALS
A. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and
 underground structures.
1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
2. Drawings shall be signed and sealed by a qualified professional engineer.

B. Product Certificates: For concrete and steel used in precast concrete handholes, as required by ASTM C 858.

C. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.

D. Source quality-control reports.

E. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.7 FIELD CONDITIONS

A. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR DUCTS AND RACEWAYS

A. Comply with ANSI C2.

2.2 CONDUIT

B. RNC: NEMA TC 2, Type EPC-40-PVC and Type EPC-80-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.3 PRECAST CONCRETE HANDHOLES AND BOXES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Christy Concrete Products.
2. Elmhurst-Chicago Stone Co.
3. Oldcastle Precast, Inc.
4. Rinker Group, Ltd.
5. Riverton Concrete Products.
6. Utility Concrete Products, LLC.

B. Comply with ASTM C 858 for design and manufacturing processes.
C. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
 1. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.
 2. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 3. Cover Legend: Molded lettering, "ELECTRIC." Or as indicated for each service.
 4. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.
 5. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 6. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
 7. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 a. Type and size shall match fittings to duct or conduit to be terminated.
 b. Fittings shall align with elevations of approaching ducts and be located near interior corners of handholes to facilitate racking of cable.
 8. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.4 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C 1037.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of ducts, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of ducts and duct-bank entrances into handholes and boxes with final locations and profiles of ducts and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to handholes, and as approved by Architect.

C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 31 1000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 31 1000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Schedule 40 PVC, in direct-buried duct bank unless otherwise indicated.

B. Ducts for Electrical Branch Circuits: RNC, NEMA Schedule 40 PVC, in direct-buried duct bank unless otherwise indicated.
3.3 EARTHWORK

A. Excavation and Backfill: Comply with Section 31 2000 "Earthworks," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary top soiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.

D. Cut and patch existing pavement in the path of underground ducts and utility structures.

3.4 DUCT INSTALLATION

A. Install ducts according to NEMA TCB 2.

B. Slope: Pitch ducts a minimum slope of 1:300 down toward handholes and away from buildings and equipment. Slope ducts from a high point in runs between two handholes, to drain in both directions.

C. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches both horizontally and vertically, at other locations unless otherwise indicated.

D. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

E. Installation Adjacent to High-Temperature Steam Lines: Where duct banks are installed parallel to underground steam lines, perform calculations showing the duct bank will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct bank crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

F. Duct Entrances to Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to handhole. Install an expansion fitting near the center of all straight line direct-buried duct banks with calculated expansion of more than 3/4 inch.
3. Grout end bells into structure walls from both sides to provide watertight entrances.

G. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall, without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Section 26 0500 "Common Work Results for Electrical."
H. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

I. Pulling Cord: Install 100-lbf-test nylon cord in empty ducts.

J. Direct-Buried Duct Banks:

1. Excavate trench bottom to provide firm and uniform support for duct bank. Comply with requirements in Section 31 2000 "Earthworks" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.
2. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
3. Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches between tiers.
4. Depth: Install top of duct bank at least 36 inches below finished grade unless otherwise indicated.
5. Set elevation of bottom of duct bank below frost line.
6. Install ducts with a minimum of 3 inches between ducts for like services and 6 inches between power and signal ducts.
7. Elbows: Install manufactured duct elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
8. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
9. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 31 2000 "Earthworks" for installation of backfill materials.
 a. Place minimum 3 inches of sand as a bed for duct bank. Place sand to a minimum of 6 inches above top level of duct bank.

K. Warning Tape: Bury magnetic warning tape approximately 12 inches above all ducts and duct banks. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.5 INSTALLATION OF CONCRETE HANDHOLES, AND BOXES

A. Precast Concrete Handhole Installation:
1. Comply with ASTM C 891 unless otherwise indicated.
2. Install units level and plumb and with orientation and depth coordinated with connecting ducts, to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:
1. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
2. Where indicated, cast handhole cover frame integrally with handhole structure.

C. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

D. Field-Installed Bolting Anchors in Concrete Handholes: Do not drill deeper than 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.6 GROUNDING

A. Ground underground ducts and utility structures according to Section 26 0526 “Grounding and Bonding for Electrical Systems.”

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 6-inch-long mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.
3. Test handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 26 0526 “Grounding and Bonding for Electrical Systems.”

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.8 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of handholes. Remove foreign material.

END OF SECTION 26 0543
SECTION 26 0544
SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 07 8413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches thickness shall be 0.052 inch
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches thickness shall be 0.138 inch

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.
 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel.
 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Presealed Systems.

2.4 GROUT

A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 **SILICONE SEALANTS**

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 1. **Grade:** Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
 2. Sealant shall have VOC content of 25 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, non-shrinking foam.

PART 3 - EXECUTION

3.1 **SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS**

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. **Interior Penetrations of Non-Fire-Rated Walls and Floors:**
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 9200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 26 0544
SECTION 26 0548.16
SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Restraint channel bracings.
 2. Restraint cables.
 4. Mechanical anchor bolts.
 5. Adhesive anchor bolts.

B. Related Requirements:
 1. Section 26 0529 "Hangers and Supports for Electrical Systems" for commonly used electrical supports and installation requirements.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For each seismic-restraint device.
 1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic and wind forces required to select seismic and wind restraints and for designing vibration isolation bases.
a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

3. Seismic- and Wind-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

E. Comply with NFPA 70.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

1. Basic Wind Speed: 127 MPH.
2. Building Classification Category: III.
3. Minimum 20 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.
 a. Component Importance Factor: 1.0.
 c. Component Amplification Factor: 2.5.
3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 23.9%.
4. Design Spectral Response Acceleration at 1.0-Second Period: 6.5%.

2.2 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper B-Line, Inc.; a Division of Cooper Industries.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Atkore International.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Kinetics Noise Control, Inc.
2. Loos & Co., Inc.
3. Vibration Mountings & Controls, Inc.

B. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.
2.4 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper B-Line, Inc.; a Division of Cooper Industries.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. TOLCO; a brand of NIBCO INC.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper B-Line, Inc.; a Division of Cooper Industries.
2. Hilti, Inc.
4. Mason Industries, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.6 ADHESIVE ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Hilti, Inc.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless
steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 3000 "Cast-in-Place Concrete." and Section 03 3053 "Miscellaneous Cast-in-Place Concrete."

B. Equipment and Hanger Restraints:

1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
2. Install seismic-restraint devices using methods approved an agency acceptable to authorities having jurisdiction providing required submittals for component.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
F. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer's recommended torque using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.

B. Seismic controls will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 26 0548.16
SECTION 26 0553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 4. Warning labels and signs.
 5. Instruction signs.
 7. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch with stamped legend, punched for use with self-locking cable tie fastener.

2.2 METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

E. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil- thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the cable diameter such that the clear shield overlaps the entire printed legend.

C. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around cable it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch with stamped legend, punched for use with self-locking cable tie fastener.

E. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil- thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the conductor diameter such that the clear shield overlaps the entire printed legend.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
F. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around conductor it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

2.5 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:
1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
2. 1/4-inch grommets in corners for mounting.
3. Nominal size, 7 by 10 inches

D. Metal-Backed, Butyrate Warning Signs:
1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
2. 1/4-inch grommets in corners for mounting.
3. Nominal size, 10 by 14 inches

E. Warning label and sign shall include, but are not limited to, the following legends:
1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES"

2.6 EQUIPMENT IDENTIFICATION LABELS

A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

2.7 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
1. Minimum Width: 3/16 inch
2. Tensile Strength at 73 deg F According to ASTM D 638: 12,000 psi
3. Temperature Range: Minus 40 to plus 185 deg F

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
1. Minimum Width: 3/16 inch
2. Tensile Strength at 73 deg F According to ASTM D 638: 12,000 psi
3. Temperature Range: Minus 40 to plus 185 deg F

C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 1. Minimum Width: 3/16 inch
 2. Tensile Strength at 73 deg F According to ASTM D 638: 7000 psi
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F
 5. Color: Black.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.

G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

I. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.
3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl tape applied in bands. Install labels at 10-foot maximum intervals.

B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, use color-coding conductor tape to identify the phase.
 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

C. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, use self-adhesive, self-laminating polyester labels self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.

D. Control-Circuit Conductor Termination Identification: For identification at terminations provide heat-shrink preprinted tubes self-adhesive, self-laminating polyester labels self-adhesive vinyl labels with the conductor designation.

E. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.

F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

H. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual.
Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label. Stenciled legend 4 inches high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Enclosed switches.
 e. Enclosed circuit breakers.
 f. Enclosed controllers.
 g. Variable-speed controllers.
 h. Push-button stations.
 i. Remote-controlled switches, dimmer modules, and control devices.
 j. Battery-inverter units.
 k. Monitoring and control equipment.

END OF SECTION 26 0553
SECTION 26 0923
LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Indoor occupancy and vacancy sensors.
 2. Switchbox-mounted occupancy sensors.
B. Related Requirements:
 1. Section 26 2726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. Show installation details for the following:
 a. Vacancy and Occupancy sensors.
 2. Interconnection diagrams showing field-installed wiring.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which equipment will be attached.
 3. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
f. Control modules.
g. Pipe Grid

B. Field quality-control reports.

C. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control devices.

2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY AND VACANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. nLight Controls, Acuity Brands
2. Leviton Manufacturing Co., Inc.
3. Sensor Switch, Inc.
4. WattStopper; a Legrand® Group brand.

B. General Requirements for Sensors:

1. Wall and Ceiling-mounted, solid-state indoor vacancy and occupancy sensors.
2. Dual technology.
3. Integrated or Separate power pack.
4. Hardwired connection to switch.
5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Operation:
 a. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 30 minutes.
 b. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 30 minutes.
7. Sensor Output: Sensor is powered from the power pack.
9. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
10. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
12. Bypass Switch: Override the "on" function in case of sensor failure.

C. Dual-Technology Type: Wall or Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

 1. Sensitivity Adjustment: Separate for each sensing technology.
 2. Detector Sensitivity: Detect occurrences of 6-inch minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft when mounted on a 96-inch high ceiling.

2.2 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. nLight Controls, Acuity Brands
 2. Leviton Manufacturing Co., Inc.
 3. Sensor Switch, Inc.
 4. WattStopper; a Legrand® Group brand.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-off switch, suitable for mounting in a single gang switchbox, with provisions for connection to BAS using hardwired connection using wireless connection.

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application, and shall comply with California Title 24.
 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor:
1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq.ft.
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP, manual "on," automatic "off."
5. Voltage: Dual voltage - 120 and 277 V.
6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
8. Color: White or as selected by Architect.

2.3 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multi-conductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multi-conductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
3.3 WIRING INSTALLATION

A. Comply with NECA 1.

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

A. Identify components and power and control wiring according to Section 26 0553 "Identification for Electrical Systems."
 1. Identify circuits or luminaires controlled by vacancy sensors at each sensor.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

 1. Operational Test: After installing sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Lighting control devices will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

 1. For vacancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 26 0923
SECTION 26 2213
LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Source quality-control reports.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Comply with NFPA 70.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Transformers Rated 15 kVA and Larger:
 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.
2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 1. One leg per phase.
 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 3. Grounded to enclosure.

C. Coils: Continuous windings without splices except for taps.
 1. Coil Material: Copper.
 2. Internal Coil Connections: Brazed or pressure type.

D. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

E. Enclosure: Ventilated.
 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 3. Wiring Compartment: Sized for conduit entry and wiring installation.
 4. Finish: Comply with NEMA 250.
 a. Finish Color: Gray weather-resistant enamel.

F. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

K. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.
M. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:

1. 9.00 kVA and Less: 40 dBA.
2. 9.01 to 30.00 kVA: 45 dBA.
3. 30.01 to 50.00 kVA: 45 dBA.
4. 50.01 to 150.00 kVA: 50 dBA.
5. 300.01 to 500.00 kVA: 60 dBA.

2.4 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 26 0553 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
2. Ratio tests at rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at rated voltage connections.
4. No load losses, and excitation current and rated voltage at rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
D. Verify that ground connections are in place and requirements in Section 26 0526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250 enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

B. Construct concrete bases according to Section 03 3000 "Cast-in-Place Concrete" or Section 03 3053 "Miscellaneous Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions, and requirements in Section 26 0529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Secure transformer to concrete base according to manufacturer's written instructions.

D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 26 0526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections with the assistance of a factory-authorized service representative.
C. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection.
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
 g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

D. Remove and replace units that do not pass tests or inspections and retest as specified above.

E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 26 2213
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:

 1. Service and distribution switchboards rated 600 V and less.
 2. Disconnecting and overcurrent protective devices.

1.3 ACTION SUBMITTALS

 A. Product Data: For each switchboard, overcurrent protective device, surge protection device,
 ground-fault protector, accessory, and component.

 1. Include dimensions and manufacturers’ technical data on features, performance,
 electrical characteristics, ratings, accessories, and finishes.

 B. Shop Drawings: For each switchboard and related equipment.

 1. Include dimensioned plans, elevations, sections, and details, including required
 clearances and service space around equipment. Show tabulations of installed devices,
 equipment features, and ratings.
 2. Detail enclosure types for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 5. Include descriptive documentation of optional barriers specified for electrical insulation
 and isolation.
 6. Include evidence of NRTL listing for series rating of installed devices.
 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent
 protective devices and auxiliary components.
 8. Include time-current coordination curves for each type and rating of overcurrent
 protective device included in switchboards. Submit on translucent log-log graft paper;
 include selectable ranges for each type of overcurrent protective device.
 9. Include diagram and details of proposed mimic bus.
 10. Include schematic and wiring diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

 A. Qualification Data: For Installer.
B. Seismic Qualification Data: Certificates, for switchboards, overcurrent protective devices, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field Quality-Control Reports:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 a. Routine maintenance requirements for switchboards and all installed components.
 b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 c. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Remove loose packing and flammable materials from inside switchboards and to prevent condensation.

C. Handle and prepare switchboards for installation according to NECA 400, NEMA PB 2.1.
1.8 FIELD CONDITIONS

A. Installation Pathway: Remove and replace access doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations:
 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Construction Manager and Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Construction Manager's written permission.
 4. Comply with NFPA 70E.

1.9 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Three years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 and the IBC.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 SWITCHBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 2.

F. Comply with NFPA 70.

G. Comply with UL 891.

H. Front-Connected, Front-Accessible Switchboards:

1. Main Devices: Panel mounted.
3. Sections front and rear aligned.

I. Nominal System Voltage: 480Y/277 V.

J. Main-Bus Continuous: Refer to drawings.

K. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 26 0548.16 "Seismic Controls for Electrical Systems."
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

L. Indoor Enclosures: Steel, NEMA 250, Type 1.
M. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
N. Barriers: Between adjacent switchboard sections.
O. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.
P. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
Q. Removable, Hinged Rear Doors and Compartment Covers: Secured by standard bolts, for access to rear interior of switchboard.
R. Buses and Connections: Three phase, four wire unless otherwise indicated.
 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 3. Copper feeder circuit-breaker line connections.
 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 5. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
 6. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 7. Disconnect Links:
 a. Isolate neutral bus from incoming neutral conductors.
 b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
S. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.
T. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long and short time adjustments.
 d. Ground-fault pickup level, time delay, and I squared t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.
6. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
8. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store switchboards according to NECA 400, NEMA PB 2.1.
1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
3. Protect from moisture, dust, dirt, and debris during storage and installation.
4. Install temporary heating during storage per manufacturer's instructions.

B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NECA 400, NEMA PB 2.1.

B. Equipment Mounting: Install switchboards on concrete base, 6-inch nominal thickness. Comply with requirements for concrete base specified in Section 03 3053 "Miscellaneous Cast-in-Place Concrete."

1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to switchboards.
6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.

D. Comply with mounting and anchoring requirements specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."

E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

F. Install filler plates in unused spaces of panel-mounted sections.

G. Install overcurrent protective devices, surge protection devices, and instrumentation.

1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Comply with NECA 1.
3.3 CONNECTIONS

A. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.

B. Support and secure conductors within the switchboard according to NFPA 70.

C. Extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Acceptance Testing:
 a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 b. Test continuity of each circuit.

2. Test ground-fault protection of equipment for service equipment per NFPA 70.
4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

C. Switchboard will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, and overcurrent protective devices.

END OF SECTION 26 2413
SECTION 26 2416

PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.3 SUBMITTALS

A. Product Data: For each type of Panelboard, switching and overcurrent protective device,
 transient voltage suppression device, accessory, and component indicated. Include dimensions
 and manufacturers' technical data on features, performance, electrical characteristics, ratings,
 and finishes.

B. Shop Drawings: For each Panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of
 installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent
 protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
 8. Include time-current coordination curves for each type and rating of overcurrent
 protective device included in panelboards. Submit on translucent log-log graft paper;
 include selectable ranges for each type of overcurrent protective device.

C. Panelboard Schedules: For installation in panelboards. Submit final versions after load
 balancing.

D. Operation and Maintenance Data: For panelboards and components to include in emergency,
 operation, and maintenance manuals. In addition to items specified in Division 01 Section
 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective
 devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective
 device that allows adjustments.
E. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers as noted on drawing panel schedules.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Arc-Flash Protection Markings:
 1. Panelboards that are likely to require examination, adjustment, servicing or maintenance while energized shall be marked, by the equipment manufacturer – based on the Fault Current Interrupting Capacity of the equipment, to warn qualified persons of potential electric arc flash hazard. The marking shall be located so as to be clearly visible to qualified persons before examination, adjustment, servicing or maintenance of the equipment.
 2. NFPA 70E-2004, STANDARD FOR ELECTRICAL SAFETY IN THE WORKPLACE, provides assistance in determining severity of potential exposure, planning safe work practices, and selecting personal protective equipment (PPE)
 3. ANSI Z535.4-1998, PRODUCT SAFETY SIGN AND LABELS, provides guidelines for the design of safety signs and labels for application to products.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Handle and prepare panelboards for installation according to NECA 407.

1.6 PROJECT CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F
 b. Altitude: Not exceeding 6600 feet.
B. Intermittent of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect and Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Owner's written permission.
 3. Comply with NFPA 70E.

1.7 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace devices that fails in materials or workmanship within specified warranty period.
 1. Warranty Period: three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Enclosures: Flush- and surface-mounted cabinets as requested.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, type 1
 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as Panelboard front with flanges for attachment to Panelboard, wall, and ceiling or floor.
 5. Gutter Extension and Barrier: Same gage and finish as Panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 6. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Galvanized steel same finish as panels and trim.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

B. Incoming Mains Location: Top or bottom as required.

C. Phase, Neutral, and Ground Buses:
2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
3. Neutral Bus: Neutral bus rated 100 percent of phase bus and UL listed.
4. Split Bus: Vertical buses divided into individual vertical sections.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
2. Main and Neutral Lugs: Mechanical type.
3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
5. Subfeed Double Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

E. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
1. For doors more than 36 inches high, provide two latches, keyed alike.

D. Mains: Circuit breaker, or Lugs only as shown on plans.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only as shown on plans.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection 6-mA trip.
8. Molded-Case Circuit-Breaker MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge HID lighting circuits.
d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
e. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
f. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in ON or OFF position.
g. Handle Clamp: Loose attachment, for holding circuit-breaker handle in ON position.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NECA 407.

B. Mount panel board 6 feet above finished floor to highest operating handle unless otherwise indicated.

C. Mount Panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

D. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

E. Install filler plates in unused spaces.

F. Stub four 1-inch empty conduits from Panelboard into accessible ceiling space or space designated to be ceiling space in the future.

G. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

H. Comply with NECA 1.
3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section 26 0553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing Panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each Panelboard with a nameplate complying with requirements for identification specified in Division 26 Section 26 0553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section 26 0553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Test insulation resistance for each Panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

E. Panelboards will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 1. Measure as directed during period of normal system loading.
2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.

4. Tolerance: Difference exceeding 20 percent between phase loads, within a Panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

END OF SECTION 26 2416
SECTION 26 2726
WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Straight-blade convenience receptacles.
2. GFCI receptacles.
3. Twist-locking receptacles.
4. Pendant Cord Connector Devices
5. Cord and plug sets.
6. Toggle switches.
7. Decorator-style convenience.
8. Wall-box dimmers.
9. Wall plates.
10. Floor service outlets.
11. Poke-through assemblies.

1.3 DEFINITIONS

A. Abbreviations of Manufacturers' Names:

1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.

B. EMI: Electromagnetic interference.

C. GFCI: Ground-fault circuit interrupter.

D. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

E. RFI: Radio-frequency interference.

F. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

D. Devices for Owner-Furnished Equipment:

1. Receptacles: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Duplex Convenience Receptacles: Specification grade, 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Manufacturers: Subject to compliance with requirements, provide products by the following provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2.3 GFCI RECEPTACLES

A. General Description:

1. Specification grade, 125 V, 20 A, straight blade, non-feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2.4 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Receptacles: Specification grade. Voltage and NEMA configuration as required for kitchen equipment or as shown on the plans.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2.5 PENDANT CORD-CONNECTOR DEVICES

A. Description:
 1. Matching, locking-type plug and receptacle body connector.
 2. NEMA WD 6 Configurations L5-20P and L5-20R, heavy-duty grade, and FS W-C-596 or other as scheduled on the plans.
 4. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.6 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
2.7 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A, specification grade.

1. Single Pole:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.

2. Two Pole:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.

3. Three Way:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.

4. Four Way:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2. Description: Single pole, with LED-lighted handle, illuminated when switch is off.
2.8 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.9 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: Smooth, high-impact thermoplastic 0.035-inch thick.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with in-use lockable cover.

2.10 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-typ, dual-service units suitable for wiring method used.

B. Compartments: Barrier separates power from voice and data communication cabling.

C. Service Plate: Rectangular, solid brass with satin finish.

D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

E. Data Communication Outlet: Blank cover with bushed cable opening.

2.11 POKE-THROUGH ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Pass & Seymour/Legrand (Pass & Seymour).
 3. Square D; by Schneider Electric.

B. Description:
 1. Factory-fabricated and wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
 2. Comply with UL 514 scrub water exclusion requirements.
 3. Service-Outlet Assembly: As scheduled on the plans, complying with requirements in Section 27 1513 "Communications Copper Horizontal Cabling."
4. Size: Selected to fit nominal 4-inch cored holes in floor and matched to floor thickness.
5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
6. Closure Plug: Arranged to close unused 4-inch cored openings and reestablish fire rating of floor.

2.12 FINISHES

A. Device Color: White or as selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Convenience Receptacles:
1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

E. Wiring device will be considered defective if it does not pass tests and inspections.

END OF SECTION 26 2726
SECTION 26 2813

FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Enclosed switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in electronic format suitable for use in coordination software and in PDF format.

5. Coordination charts and tables and related data.

6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7700 "Closeout Procedures," Section 01 7823 "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.

2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.

4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bussmann, an Eaton business.
2. Edison; a brand of Bussmann by Eaton.
3. Littelfuse, Inc.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Feeders: Class RK1, fast acting.
 2. Motor Branch Circuits: Class RK5, time delay.
 3. Other Branch Circuits: Class RK1, time delay.
 4. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 26 2813
SECTION 26 2816
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Molded-case circuit breakers MCCBs.
 5. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings, interrupting and withstand, as appropriate.
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves average melt for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

C. Qualification Data: For qualified testing agency.
D. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
2. Time-current coordination curves average melt for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.5 QUALITY ASSURANCE
A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. Comply with NFPA 70.
E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
F. Arc-Flash Protection Markings:
 1. Panelboards that are likely to require examination, adjustment, servicing or maintenance while energized shall be marked, by the equipment manufacturer – based on the Fault Current Interrupting Capacity of the equipment, to warn qualified persons of potential electric arc flash hazard. The marking shall be located so as to be clearly visible to qualified persons before examination, adjustment, servicing or maintenance of the equipment.
 2. NFPA 70E-2004, STANDARD FOR ELECTRICAL SAFETY IN THE WORKPLACE, provides assistance in determining severity of potential exposure, planning save work practices, and selecting personal protective equipment (PPE)
 3. ANSI Z535.4-1998, PRODUCT SAFETY SIGN AND LABELS, provides guidelines for the design of safety signs and labels for application to products.

1.6 PROJECT CONDITIONS
A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F
 2. Altitude: Not exceeding 6600 feet
B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without owner’s written permission.
4. Comply with NFPA 70E.

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Auxiliary Contact Kit: Two NO/NC Form "C" auxiliary contacts, arranged to activate before switch blades open when auxiliary contacts are specified or shown on plans.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.
7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac when specified or shown on plans.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Auxiliary Contact Kit: Two NO/NC Form "C" auxiliary contacts, arranged to activate before switch blades open when specified or shown on plans.
4. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
1. Instantaneous trip.
2. Long- and short-time pickup levels.
3. Long- and short-time time adjustments.
4. Ground-fault pickup level, time delay, and I^2t response.

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection 6-mA trip.
I. Ground-Fault, Equipment-Protection GFEP Circuit Breakers: With Class B ground-fault protection 30-mA trip.

J. Features and Accessories:
1. Standard frame sizes, trip ratings, and number of poles.
2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
7. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
10. Accessory Control Power Voltage: Integrally mounted, self-powered 120-V ac.

2.4 MOLDED-CASE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
1. Standard frame sizes and number of poles.
2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One NO contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.
2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, type 1.
 2. Outdoor Locations: NEMA 250, type 3R.
 3. Other Wet or Damp, Indoor Locations: NEMA 250, type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Install fuses in fusible devices.

C. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

D. Tests and Inspections:
1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified.

END OF SECTION 26 2816
SECTION 26 5119
LED INTERIOR LIGHTING

PART 1 - PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Refer to Lighting Fixture Schedule on the plans for fixture types, manufacturer and catalog numbers.
B. Related Requirements:
 1. Section 26 0923"Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests.
a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 4. Structural members to which equipment and or luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.
 6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Ceiling-mounted projectors.
 7. Pipe Grid

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of luminaire.

F. Product Test Reports: For each luminaire, for tests performed by manufacturer.

G. Sample warranty.
1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 QUALITY ASSURANCE
 A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
 B. Provide luminaires from a single manufacturer for each luminaire type.
 C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.8 DELIVERY, STORAGE, AND HANDLING
 A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY
 A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to the IBC.
 B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. Standards:
1. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
2. UL Listing: Listed for damp location.
3. Recessed luminaires shall comply with NEMA LE 4.
4. User Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61 or IEC 60061-1.

C. CRI of minimum 80, CCT of 3000 K.

D. Rated lamp life of 50,000 hours to L70.

E. Lamps dimmable from 100 percent to 0 percent of maximum light output.

F. Internal driver.

G. Nominal Operating Voltage: Refer to Lighting Fixture Schedule.
 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

H. Housings: As scheduled on the plans.

2.3 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. As scheduled on the plans.
 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Glass: Annealed crystal glass unless otherwise indicated.
 4. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings: As scheduled on the plans.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
c. CCT and CRI for all luminaires.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT

A. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Provide support for luminaire without causing deflection of ceiling or wall.
4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- diameter aircraft cable supports adjustable to 120 inches in length
 2. Ceiling mount with pendant mount with 5/32-inch- diameter aircraft cable supports adjustable to 120 inches in length.
 3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 26 5119
SECTION 26 5219
EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.3 DEFINITIONS

A. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.

B. Fixture: See "Luminaire" Paragraph.

C. Lumen: Measured output of lamp and luminaire, or both.

D. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Product Schedule:

1. For emergency lighting units. Use same designations indicated on Drawings.
2. For exit signs. Use same designations indicated on Drawings.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
2. Luminaire-mounted, emergency battery pack: One for every 20 emergency lighting units. Furnish at least one of each type.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
1. Warranty Period for Emergency Power Unit Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.
2. Warranty Period for Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

G. Bulb Shape: Complying with ANSI C79.1.

H. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast or LED fixture.

1. Emergency Connection: Operate two lamps continuously at an output of 1400 lumens or entire LED fixture upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.

 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

6. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

I. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

1. Emergency Connection: Operate LED fixture continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire battery pack.
2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
5. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the emergency power unit manufacturer, whichever is less.
6. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
7. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
8. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.2 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Luminaires:
 1. Emergency Luminaires: As indicated on Drawings.

C. Emergency Lighting Unit:
 1. Emergency Lighting Unit: As scheduled on the Drawings.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:
 1. As scheduled on the Drawings.
 2. Operating at nominal voltage of 120/277V.
 3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 4. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
1. Sized and rated for luminaire and emergency power unit weight.
2. Able to maintain luminaire position when testing emergency power unit.
3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.

E. Wall-Mounted Luminaire Support:

1. Attached to structural members in walls.
2. Do not attach luminaires directly to gypsum board.

F. Ceiling Grid Mounted Luminaires:

1. Secure to any required outlet box.
2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Perform startup service:

1. Charge emergency power units and batteries minimum of one hour and depress switch to conduct short-duration test.
2. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 ADJUSTING

A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 26 5219
SECTION 28 3111
DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 2. System smoke detectors.
 3. Heat detectors.
 5. Remote annunciator.
 6. Addressable interface device.

1.3 DEFINITIONS

A. LED: Light-emitting diode.
B. EMT: Electrical Metallic Tubing.
C. FACP: Fire Alarm Control Panel.
D. HLI: High Level Interface.
F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 SYSTEM DESCRIPTION

A. Noncoded, UL-certified addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only.

1.5 SUBMITTALS

A. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
b. NICET-certified fire-alarm technician, Level IV minimum.
c. Licensed or certified by authorities having jurisdiction.

B. Product Data: For each type of product indicated.

C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
 6. Include battery-size calculations.
 7. Include input/output matrix.
 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 9. Include performance parameters and installation details for each detector.
 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' control system.
 d. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' smoke-evacuation system.
 e. Locate detectors according to manufacturer's written recommendations.
 f. Show air-sampling detector pipe routing.
 13. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 14. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

D. Delegated-Design Submittal: For smoke and heat detectors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

E. Qualification Data: For qualified Installer.

F. Field quality-control reports.
G. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.
5. Manufacturer's required maintenance related to system warranty requirements.
6. Abbreviated operating instructions for mounting at fire-alarm control unit.
7. Copy of NFPA 25.

H. Software and Firmware Operational Documentation:
1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than five units of each type.
4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than five units of each type.
5. Keys and Tools: One extra set for access to locked or tamperproofed components.
6. Audible and Visual Notification Appliances: One of each type installed.
7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.
8. Filters for Air-Sampling Detectors: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
9. Air-Sampling Fan: Quantity equal to one for every five detectors, but no fewer than one unit of each type.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.
C. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL.

F. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

G. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FMG-approved alarm company.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of fire-alarm service.
 2. Do not proceed with interruption of fire-alarm service without written permission.

B. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.9 SEQUENCING AND SCHEDULING

A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.10 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.
1.11 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
 3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
 4. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
 5. Keys and Tools: One extra set for access to locked and tamperproofed components.
 6. Audible and Visual Notification Appliances: one of each type installed.

1.12 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 2. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ansul Incorporated; Tyco International Ltd.
 2. Fenwal Protection Systems; A UTC Fire & Security Company.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices:
 2. Heat detectors.
 3. Smoke detectors.
 4. Verified automatic alarm operation of smoke detectors.

B. Fire-alarm signal shall initiate the following actions:
 1. Continuously operate alarm notification appliances.
 2. Identify alarm at fire-alarm control unit and remote annunciators.
 3. Transmit an alarm signal to the remote alarm receiving station.
 4. Unlock electric door locks in designated egress paths.
 5. Release fire and smoke doors held open by magnetic door holders.
 6. Activate voice/alarm communication system.
 7. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 8. Close smoke dampers in air ducts of designated air-conditioning duct systems.
10. Record events in the system memory.
11. Record events by the system printer.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 1. User disabling of zones or individual devices.
 2. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating
text devices.
 3. Loss of communication with any addressable sensor, input module, relay, control module,
 remote annunciator, printer interface, or Ethernet module.
 4. Loss of primary power at fire-alarm control unit.
 5. Ground or a single break in internal circuits of fire-alarm control unit.
 6. Abnormal ac voltage at fire-alarm control unit.
 7. Break in standby battery circuitry.
 8. Failure of battery charging.
 9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:
 1. Initiate notification appliances.
 2. Identify specific device initiating the event at fire-alarm control unit and remote
 annunciators.
 3. Record the event on system printer.
 4. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote
 alarm receiving station.
 5. Transmit system status to building management system.
 6. Display system status on graphic annunciator.

2.3 FIRE-ALARM CONTROL UNIT

A. Manufacturers: Subject to compliance with requirements, provide products by the following
 provide products by one of the following:

B. 1. Ansul Incorporated; Tyco International Ltd.
 2. Fenwal Protection Systems; A UTC Fire & Security Company.

C. General Requirements for Fire-Alarm Control Unit:
 1. Field-programmable, microprocessor-based, modular, power-limited design with
electronic modules, complying with UL 864.
a. System software and programs shall be held in nonvolatile flash, electrically
 erasable, programmable, read-only memory, retaining the information through
 failure of primary and secondary power supplies.
b. Include a real-time clock for time annotation of events on the event recorder and
 printer.
c. Provide communication between the FACP and remote circuit interface panels,
 annunciators, and displays.
d. The FACP shall be listed for connection to a central-station signaling system service.

e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.

3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

D. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, three line(s) of 40 characters, minimum.

2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

E. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:

1. Pathway Class Designations: NFPA 72, Class B.

2. Install no more than 50 addressable devices on each signaling-line circuit.

3. Serial Interfaces:
 a. One dedicated RS 485 port for central-station operation using point ID DACT.
 b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 c. One USB port for PC configuration.
 d. One RS 232 port for VESDA HLI connection.
 e. One RS 232 port for voice evacuation interface.

F. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.

2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.

3. Record events by the system printer.

4. Sound general alarm if the alarm is verified.

5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

G. Notification-Appliance Circuit:

1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.

2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.

3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

H. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls shall be connected to fire-alarm system.

I. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and
sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

J. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

K. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.

L. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

M. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

N. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 2. Station Reset: Key- or wrench-operated switch.
 3. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
 4. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:
 1. Comply with UL 268; operating at 24-V dc, nominal.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 3. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
4. **Self-Restoring:** Detectors do not require resetting or readjustment after actuation to restore them to normal operation.

5. **Integral Visual-Indicating Light:** LED type indicating detector has operated and power-on status.

6. **Remote Control:** Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F.
 c. Provide multiple levels of detection sensitivity for each sensor.

B. **Photoelectric Smoke Detectors:**
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. **Ionization Smoke Detector:**
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

2.6 **HEAT DETECTORS**

A. **General Requirements for Heat Detectors:** Comply with UL 521.

B. **Heat Detector, Combination Type:** Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Adapter plate for outlet box mounting.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. **Heat Detector, Fixed-Temperature Type:** Actuated by temperature that exceeds a fixed temperature of 190 deg F.
 1. Mounting: Adapter plate for outlet box mounting.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

D. **Continuous Linear Heat-Detector System:**
 1. Detector Cable: Rated detection temperature 155 deg F. NRTL listed for “regular” service and a standard environment. Cable includes two steel actuator wires twisted together with spring pressure, wrapped with protective tape, and finished with PVC outer
sheath. Each actuator wire is insulated with heat-sensitive material that reacts with heat to allow the cable twist pressure to short-circuit wires at the location of elevated temperature.

2. Control Unit: Two-zone or multizone unit as indicated. Provide same system power supply, supervision, and alarm features as specified for fire-alarm control unit.

3. Signals to Fire-Alarm Control Unit: Any type of local system trouble shall be reported to fire-alarm control unit as a composite “trouble” signal. Alarms on each detection zone shall be individually reported to central fire-alarm control unit as separately identified zones.

4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling line circuit, equipped for mounting as indicated and with screw terminals for system connections.

B. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.

1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.

C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

D. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.

1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.

E. Voice/Tone Notification Appliances:

1. Comply with UL 1480.

2. Speakers for Voice Notification: Locate speakers for voice notification to provide the intelligibility requirements of the "Notification Appliances" and "Emergency Communications Systems" chapters in NFPA 72.

3. High-Range Units: Rated 2 to 15 W.

4. Low-Range Units: Rated 1 to 2 W.

6. Matching Transformers: Tap range matched to acoustical environment of speaker location.
2.8 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.9 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.

B. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall or to circuit-breaker shunt trip for power shutdown.

2.10 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply.
 5. Loss of power.
 6. Low battery.
 7. Abnormal test signal.

E. Secondary Power: Integral rechargeable battery and automatic charger.
F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.11 NETWORK COMMUNICATIONS
A. Provide network communications for fire-alarm system according to fire-alarm manufacturer's written requirements.
B. Provide network communications pathway per manufacturer's written requirements and requirements in NFPA 72 and NFPA 70.

2.12 SYSTEM PRINTER
A. Printer shall be listed and labeled as an integral part of fire-alarm system.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION
A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 1. Connect new equipment to existing control panel in existing part of the building.
 2. Connect new equipment to existing monitoring equipment at the supervising station.
C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Section 26 0548.16 "Seismic Controls for Electrical Systems."
D. Manual Fire-Alarm Boxes:
 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit
 doorway.
 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches
 above floor level. All devices shall be mounted at the same height unless otherwise
 indicated.

E. Smoke- or Heat-Detector Spacing:
 1. Comply with NFPA 72, "Smoke-Sensing Fire Detectors" Section in the "Initiating Devices"
 Chapter, for smoke-detector spacing.
 2. Comply with NFPA 72, "Heat-Sensing Fire Detectors" Section in the "Initiating Devices"
 Chapter, for heat-detector spacing.
 3. Smooth ceiling spacing shall not exceed 30 feet
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high
 ceiling areas shall be determined according to Appendix A in NFPA 72.
 5. HVAC: Locate detectors not closer than 5 feet from air-supply diffuser or return-air
 opening.
 6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting
 fixture.

F. Install a cover on each smoke detector that is not placed in service during construction. Cover
 shall remain in place except during system testing. Remove cover prior to system turnover.

G. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a
 dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the
 alarm in all smoke alarms to sound.

H. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler
 water-flow switch and valve-tamper switch that is not readily visible from normal viewing
 position.

I. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells
 and horns on flush-mounted back boxes with the device-operating mechanism concealed
 behind a grille.

J. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6
 inches below the ceiling.

K. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.3 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

B. Pathways shall be installed in EMT.

C. Exposed EMT shall be painted red enamel.
3.4 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Division 08 Section "Door Hardware." Connect hardware and devices to fire-alarm system.
 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system in this Section before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 1.
 2. Smoke dampers in air ducts of designated air-conditioning duct systems.
 3. Magnetically held-open doors.
 4. Electronically locked doors and access gates.
 5. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 7. Data communication circuits for connection to building management system.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by Architect and Engineer or titles of witnesses.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 28 3111