The Club At Woodbridge
INDOOR ICE RINK

585 Main Street
Woodbridge, New Jersey 07095

TOWNSHIP OF WOODBRIDGE
DEPARTMENT OF PURCHASING
ONE MAIN STREET
WOODBRIDGE, MIDDLESEX COUNTY, NJ 07095

GENERAL DOCUMENTS AND SPECIFICATIONS

AS PREPARED BY
THE VAUGHN COLLABORATIVE
300 PHILLIPS BOULEVARD, SUITE 500
EWING, NJ 08618
609/530-7400

July 22, 2020

(Architects Signature and Seal appear on the inside cover)
The Club At Woodbridge
INDOOR ICE RINK

585 Main Street
Woodbridge, New Jersey 07095

TOWNSHIP OF WOODBRIDGE
DEPARTMENT OF PURCHASING
ONE MAIN STREET
WOODBRIDGE, MIDDLESEX COUNTY, NJ 07095

GENERAL DOCUMENTS AND SPECIFICATIONS

AS PREPARED BY
THE VAUGHN COLLABORATIVE
300 PHILLIPS BOULEVARD, SUITE 500
EWING, NJ 08618
609/530-7400

July 22, 2020

Michael Francis Foley, RA
NJ License No.: 21AI01537600
A. Specifications for this Project are arranged in accordance with the Construction Specifications Institute numbering system and format. Division and Section numbering is discontinuous and all numbers not appearing in the Table of Contents are not used for the portions of the Project described below.

B. The Construction Documents prepared by the Vaughn Collaborative address the Bidding, Contract, General Conditions and Architectural portions of this project. A separate set of Construction Documents, prepared by T&M Associates, address the Civil, Structural, Fire Protection, Plumbing, Mechanical and Electrical portions of this project. The Contractor must coordinate all of their work activities using both sets of Construction Documents.

C. DOCUMENTS BOUND HEREWITH

DIVISION 00 - BIDDING AND CONTRACT REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 0001</td>
<td>Table of Contents</td>
<td>1 - 4</td>
</tr>
<tr>
<td>00 0002</td>
<td>Notice to Bidders (Advertisement to Bid) Part I</td>
<td>1 - 1</td>
</tr>
<tr>
<td>00 1000</td>
<td>Woodbridge Instructions to Bidders II (Part A-S) and III Forms</td>
<td>1 - 25</td>
</tr>
<tr>
<td>00 1002</td>
<td>Woodbridge – Project Labor Agreement (PLA)</td>
<td>1 - 33</td>
</tr>
<tr>
<td>00 3101</td>
<td>Bid Document Checklist</td>
<td>1 - 1</td>
</tr>
<tr>
<td>00 3102</td>
<td>Bid Proposal Form</td>
<td>1 - 2</td>
</tr>
<tr>
<td>00 3132</td>
<td>Geotechnical Report</td>
<td>1 - 21</td>
</tr>
<tr>
<td>00 7000</td>
<td>General Conditions of the Contract for Construction AIA Document A201 – 2017</td>
<td>1 - 43</td>
</tr>
<tr>
<td>00 8000</td>
<td>Supplementary Conditions to the Contract</td>
<td>1 - 11</td>
</tr>
</tbody>
</table>

DIVISION 01 - GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 1000</td>
<td>Project Summary</td>
<td>1 – 5</td>
</tr>
<tr>
<td>01 2100</td>
<td>Allowances</td>
<td>1 – 3</td>
</tr>
<tr>
<td>01 2500</td>
<td>Substitution Procedures</td>
<td>1 – 3</td>
</tr>
<tr>
<td>01 2600</td>
<td>Contract Modification Procedures</td>
<td>1 – 2</td>
</tr>
<tr>
<td>01 2900</td>
<td>Payment Procedures</td>
<td>1 – 4</td>
</tr>
<tr>
<td>01 3100</td>
<td>Project Management and Coordination</td>
<td>1 – 6</td>
</tr>
<tr>
<td>01 3233</td>
<td>Photographic Documentation</td>
<td>1 – 3</td>
</tr>
<tr>
<td>01 3300</td>
<td>Submittal Procedures</td>
<td>1 – 5</td>
</tr>
<tr>
<td>01 4000</td>
<td>Quality Requirements</td>
<td>1 – 5</td>
</tr>
<tr>
<td>01 4200</td>
<td>References</td>
<td>1 – 5</td>
</tr>
<tr>
<td>01 5000</td>
<td>Temporary Facilities and Controls</td>
<td>1 – 4</td>
</tr>
<tr>
<td>01 6000</td>
<td>Product Requirements</td>
<td>1 – 6</td>
</tr>
<tr>
<td>01 7300</td>
<td>Execution</td>
<td>1 – 10</td>
</tr>
<tr>
<td>01 7419</td>
<td>Construction Waste Management and Disposal</td>
<td>1 – 5</td>
</tr>
<tr>
<td>01 7700</td>
<td>Closeout Procedures</td>
<td>1 – 5</td>
</tr>
<tr>
<td>01 7823</td>
<td>Operations and Maintenance Data</td>
<td>1 – 3</td>
</tr>
<tr>
<td>01 7839</td>
<td>Project Record Documents</td>
<td>1 – 4</td>
</tr>
<tr>
<td>01 7900</td>
<td>Demonstration and Training</td>
<td>1 – 6</td>
</tr>
</tbody>
</table>
DIVISION 02 – EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 4119</td>
<td>Selective Demolition</td>
<td>1 – 6</td>
</tr>
</tbody>
</table>

DIVISION 03 – CONCRETE

- **Concrete Forming and Accessories**: Included in T & M Assoc. Project Manual
- **Concrete Reinforcing**: Included in T & M Assoc. Project Manual
- **Cast-In-Place Concrete**: Included in T & M Assoc. Project Manual
- **Grouting**: Included in T & M Assoc. Project Manual

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 1000</td>
<td>Concrete Forming and Accessories</td>
<td></td>
</tr>
<tr>
<td>03 2000</td>
<td>Concrete Reinforcing</td>
<td></td>
</tr>
<tr>
<td>03 3000</td>
<td>Cast-In-Place Concrete</td>
<td></td>
</tr>
<tr>
<td>03 6000</td>
<td>Grouting</td>
<td></td>
</tr>
</tbody>
</table>

DIVISION 04 – MASONRY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>04 2200</td>
<td>Concrete Unit Masonry</td>
<td>1 – 14</td>
</tr>
<tr>
<td>04 7200</td>
<td>Cast Stone Masonry</td>
<td>1 – 4</td>
</tr>
</tbody>
</table>

DIVISION 05 – METALS

- **Steel Joist Framing**: Included in T & M Assoc. Project Manual
- **Steel Roof Decking**: Included in T & M Assoc. Project Manual
- **Cold Formed Metal Framing**: Included in T & M Assoc. Project Manual
- **Metal Fabrications**: 1 – 8
- **Pipe and Tube Railings**: 1 – 8
- **Decorative Metal Railings**: 1 – 10

DIVISION 06 – WOOD AND PLASTICS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 1053</td>
<td>Miscellaneous Rough Carpentry</td>
<td>1 – 5</td>
</tr>
</tbody>
</table>

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 0001</td>
<td>Minor Modifications to Existing Roof Covering Systems</td>
<td>1 – 2</td>
</tr>
<tr>
<td>07 1113</td>
<td>Bituminous Damp-Proofing</td>
<td>1 – 4</td>
</tr>
<tr>
<td>07 2100</td>
<td>Thermal Insulation</td>
<td>1 – 4</td>
</tr>
<tr>
<td>07 4113.13</td>
<td>Formed Metal Roof Panels</td>
<td>1 – 7</td>
</tr>
<tr>
<td>07 4113.16</td>
<td>Indoor Standing Seam Metal Roof Panels</td>
<td>1 – 5</td>
</tr>
<tr>
<td>07 4213</td>
<td>Insulated Metal Wall Panels</td>
<td>1 – 10</td>
</tr>
<tr>
<td>07 5323</td>
<td>Ethylene-Propylene-Diene-Monomer (EPDM) Roofing</td>
<td>1 – 10</td>
</tr>
<tr>
<td>07 6200</td>
<td>Sheet Metal Flashing and Trim</td>
<td>1 – 11</td>
</tr>
<tr>
<td>07 9200</td>
<td>Joint Sealants</td>
<td>1 – 8</td>
</tr>
</tbody>
</table>

DIVISION 08 – OPENINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 1113</td>
<td>Hollow Metal Doors and Frames</td>
<td>1 – 6</td>
</tr>
<tr>
<td>08 1743</td>
<td>FRP / Aluminum Hybrid Doors</td>
<td>1 – 3</td>
</tr>
<tr>
<td>08 3113</td>
<td>Access Doors and Frames</td>
<td>1 – 3</td>
</tr>
<tr>
<td>08 3313</td>
<td>Coiling Counter Doors</td>
<td>1 – 5</td>
</tr>
<tr>
<td>08 3323</td>
<td>Overhead Coiling Doors</td>
<td>1 – 7</td>
</tr>
</tbody>
</table>

The Club At Woodbridge
INDOOR ICE RINK
TABLE OF CONTENTS

TVC Project No.: 18-27905
00 0001 - 2
<table>
<thead>
<tr>
<th>Division</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 4313</td>
<td>Aluminum Framed Storefronts</td>
<td>1–7</td>
</tr>
<tr>
<td>08 7100</td>
<td>Door Hardware</td>
<td>1–10</td>
</tr>
<tr>
<td>08 8000</td>
<td>Glazing</td>
<td>1–9</td>
</tr>
</tbody>
</table>

DIVISION 09 – FINISHES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 2216</td>
<td>Non-Structural Metal Framing</td>
<td>1–4</td>
</tr>
<tr>
<td>09 2900</td>
<td>Gypsum Board</td>
<td>1–5</td>
</tr>
<tr>
<td>09 5113</td>
<td>Acoustical Panel Ceilings</td>
<td>1–5</td>
</tr>
<tr>
<td>09 6200</td>
<td>Skate Resistant Rubber Flooring</td>
<td>1–4</td>
</tr>
<tr>
<td>09 6513</td>
<td>Resilient Base and Accessories</td>
<td>1–4</td>
</tr>
<tr>
<td>09 6519</td>
<td>Resilient Tile Flooring</td>
<td>1–5</td>
</tr>
<tr>
<td>09 9113</td>
<td>Exterior Painting</td>
<td>1–4</td>
</tr>
<tr>
<td>09 9123</td>
<td>Interior Painting</td>
<td>1–6</td>
</tr>
</tbody>
</table>

DIVISION 10 – SPECIALTIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 2800</td>
<td>Toilet and Bath Accessories</td>
<td>1–6</td>
</tr>
<tr>
<td>10 4413</td>
<td>Fire Protection Cabinets</td>
<td>1–4</td>
</tr>
<tr>
<td>10 4416</td>
<td>Fire Extinguishers</td>
<td>1–3</td>
</tr>
<tr>
<td>10 5116</td>
<td>High Density Polyethylene (HDPE) Lockers</td>
<td>1–5</td>
</tr>
</tbody>
</table>

DIVISION 11 – EQUIPMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 4000</td>
<td>Foodservice Equipment</td>
<td>1–3</td>
</tr>
</tbody>
</table>

DIVISION 12 – FURNISHINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 3661.16</td>
<td>Solid Surfacing Window Stools</td>
<td>1–2</td>
</tr>
</tbody>
</table>

DIVISION 13 – SPECIAL CONSTRUCTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 0000</td>
<td>Refrigeration System</td>
<td>1–11</td>
</tr>
<tr>
<td>13 1000</td>
<td>Refrigerated Concrete Rink Floor</td>
<td>1–7</td>
</tr>
<tr>
<td>13 1816</td>
<td>Ice Rink Dasher Board System</td>
<td>1–8</td>
</tr>
<tr>
<td>13 3416</td>
<td>Indoor Metal Bleachers</td>
<td>1–6</td>
</tr>
</tbody>
</table>

DIVISIONS 21 thru 31 Included in T & M Assoc. Project Manual

DIVISION 32 – EXTERIOR IMPROVEMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 1123</td>
<td>Aggregate Base Courses</td>
<td>Included in T & M Assoc. Project Manual</td>
</tr>
<tr>
<td>32 1313</td>
<td>Concrete Paving</td>
<td>Included in T & M Assoc. Project Manual</td>
</tr>
<tr>
<td>32 1423</td>
<td>Asphalt Paving</td>
<td>Included in T & M Assoc. Project Manual</td>
</tr>
<tr>
<td>32 3113</td>
<td>Interior Chain Link Fences and Gates</td>
<td>1–5</td>
</tr>
</tbody>
</table>
D. DOCUMENTS BOUND SEPARATELY

SCHEDULE OF DRAWINGS

G1.1 Cover Sheet
G2.1 Lower Level Building Key Plan
G2.2 Partial Lower Level Life Safety Plan
A1.1 Partial Lower Level Demolition Plan
A1.2 Demolition Building Cross Sections
A2.1 Partial Lower Level Construction Floor Plan
A2.2 Partial Upper Level Construction Floor Plan
A2.3 Partial Lower Level Floor Plans at Locker Rooms and Public Restrooms
A2.4 Concession Stand Plans, Elevations and Details
A2.5 Electrical / Zamboni Room Plans, Elevations and Details
A3.1 Exterior Elevations and Partition Types
A3.2 Construction Building Cross Sections
A3.3 Wall Sections
A3.4 Wall Sections
A3.5 Wall Sections
A3.6 Wall Sections
A4.1 Interior Elevations and Restroom Accessory Schedule
A4.2 Freestanding Bleacher Plan and Elevation
A5.1 Door & Window Schedules, Door & Window Types and Details, Wall Access Door Schedule
A6.1 Room Finish Plan, Room Finish Schedule, Symbol Legend
A7.1 Reflected Ceiling Plan & Ceiling Details
A7.2 Reflected Ceiling Plans, Ceiling Access Door Schedule
A8.1 Ice Rink Line Marking Plan
R-1 Rink Refrigeration Plan
R-2 Rink Floor Details
R-3 Rink Floor Details
R-4 Refrigeration Process and Instrumentation Diagram

See T & M Associates Contract Drawings Cover Sheet for Schedule of Drawings

END OF SECTION 00 0001
I.

NOTICE TO BIDDERS
TOWNSHIP OF WOODBRIDGE
MIDDLESEX COUNTY NEW JERSEY

The Township of Woodbridge, Middlesex County, State of New Jersey, at the Purchasing Department, 3rd floor, 1 Main Street, Woodbridge, NJ 07095, will receive sealed bids on Thursday, September 10, 2020 at 11 AM at which time they will be publicly opened and read for:

The Club At Woodbridge
Indoor Ice Rink
585 Main Street
Woodbridge, NJ 07095
(Single Prime Contract)

Bid Forms, Specifications, Drawings and Instructions to Bidders on Disk may be obtained at the office of the Architect on July 30, 2020 for a non-refundable fee of $150.00. Checks shall be made payable to: The Vaughn Collaborative.

Bid Documents may be picked-up at The Vaughn Collaborative, 300 Phillips Boulevard, Suite 500, Ewing, NJ 08618 (609/530-7400) between the hours of 8:30 AM and 4:30 PM Monday through Friday, except Holidays. Bid Documents may be sent via Federal Express with Bidder’s FedEx Account number or UPS call tag. Bidders are required to comply with the requirements of (N.J.A.C. 17:27 & N.J.S.A. 10:5-31 et seq.). This is a prevailing wage project.

Pre-bid meeting is scheduled for Tuesday, August 18, 2020 at 10 AM at the site. Questions from prime contractors are to be in writing to the Architect & Engineer by 2 PM on Thursday, August 27, 2020.

Each Bid (in duplicate) must be enclosed in a sealed envelope bearing the name and address of the bid, bidder, endorsed and addressed to the Township of Woodbridge, PURCHASING DEPARTMENT, 3rd floor, 1 Main Street, Woodbridge, NJ 07095.

All proposals submitted by corporation or partnerships shall submit a list of those stockholders owning ten percent (10%) or more interest in the firm in accordance with P.L. 1977, c.33. The successful bidder shall be required to comply with the provisions of the New Jersey Prevailing Wage Act, chapter 150, Laws of 1963. This is a Project Labor Agreement. The Township of Woodbridge hereby reserves the right to reject any or all bids and to award the contract to any bidder whose proposal in its judgment best serves its interests.

Vito Cimilluca Jerry Volpe, Q.P.A.
Business Administrator Purchasing Agent
Table of Contents

II. Instructions to Bidders

III. Forms
 A. Bidder’s Affidavit
 B. Non-Collusion Affidavit
 C. Corporate Disclosure Certifications
 D. Mandatory Equal Employment Opportunity Language
 E. Affirmative Action Compliance Notice Language & Affirmative Action
 F. Americans With Disabilities Act Language
 G. NJ Business Registration Certificate - Registering a Business with the New Jersey, Department of the Treasury from Contractor & Sub-Contractors
 H. Acknowledgement of Receipt of Addenda
INSTRUCTIONS TO BIDDERS

PART A: PREPARATION OF BIDS

Each bidder must submit a bid for the entire amount of services called for in the specifications and contract documents, which form a part of this proposal or list exceptions. The failure to conform to this requirement will result in the classifications of a bid as "irregular" and will render the bid subject to rejection. The attachment of any conditions, limitations or ancillary provisions by a bidder to the proposal will cause a similar effect.

All bids must be submitted on the bid form in sealed envelopes, bearing on the outside the name and address of the bidder, addressed to the attention of the Purchasing Department, Township of Woodbridge, 1 Main Street Woodbridge, New Jersey, 07095. The outside of the envelope shall indicate the bid proposal contained therein. All documents, bid bond, affidavits and other information accompanying the bids, shall be contained in the bid envelope. NO BID SHALL BE ACCEPTED AFTER THE DATE AND TIME ANNOUNCED IN THE NOTICE TO BIDDERS, AND ANY BIDS RECEIVED AFTER SUCH TIME AND DATE WILL BE RETURNED UNOPENED TO THE BIDDER.

The Township of Woodbridge reserves the right, in the exercise of its solé discretion, to reject any and all bids. It likewise reserves the right to waive any non-conformity with respect to any bid or any error with respect to the same, which does not constitute a substantial departure from general or detailed specifications set forth herein. The determination of whether an error or departure is one of substance rests with the sole discretion of the Township of Woodbridge. All contracts are subject to the appropriation of sufficient funds. The Township also reserves the right to reject all bids in the event that they exceed the Township Estimate of Cost.

PART B: SIGNATURE OF BIDDERS

The firm, corporation, or individual name of a bidder must be manually signed in ink in the space provided on the bid form.

In the case of a corporation, the title of the office signing on behalf of the corporation must likewise be stated.
In the case of a partnership, the signature of at least one partner must follow the firm name together with an indication that the signature is that of a partner. In the event that some other agent of the partnership submits or executes Bidder's Affidavit, a bid for the firm, he shall attach thereto a notarized statement executed by the proprietor which designates him as an agent of the proprietorship to execute and submit the bid in question.

PART C: BIDDER'S AFFIDAVIT

Each Bidder shall duly execute and deliver to the Township of Woodbridge at the time of this submission of his bid, the Bidder's Affidavit on the form attached hereto.

PART D: AFFIRMATIVE ACTION AFFIDAVIT

Each Bidder will complete, sign and deliver, at the time of the submission of his bid an Affirmative Action Affidavit on the form included or a copy of Affirmative Action Certificate and made a part of this proposal.

PART E: AFFIDAVIT OF NON-COLLUSION

Each Bidder will complete, sign and deliver, at the time of the submission of his bid an Affidavit on Non-Collusion on the form included in and made a part of his proposal.

PART F: CORPORATION DISCLOSURE AFFIDAVIT

Each Bidder will complete, sign and deliver, at the time of submission of his bid, a Corporate Disclosure Affidavit on the form included and made a part of this proposal.

PART G: WITHDRAWAL OF BID

No proposal may be altered or otherwise modified after it has been duly deposited at the Office of the Purchasing Agent of the Township of Woodbridge.

PART H: EXECUTION OF CONTRACTS
The responsible bidder to whom the contract is awarded shall execute the contract and furnish the required bonds or security for the performance of such contract within ten (10) working days after receiving notice from the Township of Woodbridge, that such bidder has been so selected. In case the bidder to whom the contract is awarded shall fail to execute and deliver the contract and necessary bonds within ten (10) working days after said award, the awards to that bidder shall be vacated and such bidder’s deposit of Bid Bond shall be forfeited as liquidated damages. The Township may, at its option, recover from such bidder the difference between the price of his bid and the amount of the contract subsequently awarded, applying such deposit of Bid Bond on account thereof.

PART I: TAX EXEMPTION

The price or prices quoted shall include all charges and shall not include any taxation from which the Township of Woodbridge is exempt.

PART J: INSURANCE COVERAGE

Applicable insurance certificates must be furnished by the successful bidder upon request. A certificate of insurance, naming the Township on the policy, must be provided to the Township of Woodbridge prior to entering into a form contract, reflecting all required coverages, including a thirty (30) days notice of cancellation provision to advise the Township of any pending or threatened cancellation. FAILURE TO DO SO WILL RESULT IN THE CONTRACT NOT BEING AWARDED AND A FORFEITURE OF BIDDER’S BID BOND AS LIQUIDATED DAMAGES. In that event, the Township could, in its sole discretion, award the contract to the next lowest responsible bidder, or reject all bids.

PART K: ASSIGNMENT, TRANSFER, CONVEYANCE, SUBLET OR DISPOSAL OF CONTRACT
The Contractor shall not assign, transfer, convey, sublet or otherwise dispose of the contract or any part thereof to anyone without the prior written consent of the Township's Business Administrator of the Township of Woodbridge.

PART L: INDEMNIFICATION OF TOWNSHIP

The successful bidder shall indemnify and save the Township of Woodbridge harmless from and against all suits, claims, actions or judgments for any injury or damage sustained or alleged to have been sustained by any part of parties by reason of the use of defective material, furnished and delivered under the contract to be awarded hereunder, or by or on account of any act or omission of any bidder, his agents or employees. If any such action shall be brought against the Township of Woodbridge, the bidder shall immediately take charge of and defend same at his own cost and expense. The Township of Woodbridge may, if it so desires, defend such action and charge the expense of same to the bidder.

PART M: AFFIRMATIVE ACTION

All Township of Woodbridge contracts prohibit the successful bidder from discrimination in the hiring of persons who are qualified and available to perform work under the contract by reason of face, creed, color, national origin, ancestry, or sex, in accordance with N.J.S.A. 10:2-1 through 10:2-4, including all amendments to same. All bidders shall comply with the provisions of the Affirmative Action laws as amended per Chapter 127, P.L. 1975.

PART N: ADDITIONAL INSTRUCTIONS

The following provisions if indicated, shall be applicable to this bid and be made a part of the bidding documents:

BID GUARANTEE

Each bid must be accompanied by either a bid bond or a certified check in the amount of 10% of the total bid amount, not to exceed $20,000.00 or an amount as specified to be submitted as an unconditional guarantee that in
the event the bidder is accepted and the service contract awarded, such bidder will duly execute the same. **FAILURE TO SUBMIT THIS SHALL BE CAUSE FOR REJECTION OF THE BID.**

CONSENT OF SURETY

Each proposal shall be accompanied by a Consent of Surety from an approved Surety Company that is licensed to conduct business in the State of New Jersey; the Consent of Surety shall state that the surety therein mentioned agrees to furnish the required performance bond which is made a condition of the awarding of this contract. **FAILURE TO SUBMIT THIS SHALL BE CAUSE FOR REJECTION OF THE BID.**

PERFORMANCE BOND

Prior to the execution of the contract, the successful bidder will be required to furnish a bond for the faithful performance of the contract, effective for the full term of the contract, in an amount equal to the total contract price or an amount as specified. **FAILURE TO SUBMIT THIS SHALL BE CAUSE FOR REJECTION OF THE BID.**

NEW JERSEY CORPORATE STATUS

All bidders are advised that they are required to provide the Township of Woodbridge with verification of their corporate status. No contract will be awarded to any corporation whose charter or authorization to do business in the State of New Jersey has been suspended or revoked. **FAILURE TO SUBMIT THIS SHALL BE CAUSE FOR REJECTION OF THE BID.**

WORKERS AND COMMUNITY RIGHT TO KNOW ACT (N.J.S.A. 34:5A-1 ET SEQ.); MATERIAL SAFETY DATA SHEET

Per N.J.S.A. 34:5A-ET SEQ. (Workers and Community Right to Know Act) the State Department of Health has adopted a Workplace Hazardous Substance List (N.J.A.C. 8:59-9) which includes 2051 substances that pose a threat to the health and safety of employees. Therefore, under the provisions of N.J.S.A.C. 8:59-7, each bidder must furnish to the Township of Woodbridge, a "MATERIAL SAFETY DATA SHEET" for each product
they supply which contains a substance listed on the Hazardous Substance List (N.J.A.C. 8:59-9).

These material Safety Data Sheets must be submitted to the Township's Purchasing Agent along with the bid. The Township of Woodbridge reserves the right to request that a copy of the applicable Material Safety Data Sheet be forwarded with the delivery of a product to the appropriate department. Furthermore, under the provisions of N.J.A.C. 8:59-5, each product shall have a label affixed or stenciled onto any container that contains such substances and is going to be supplied to the Township of Woodbridge.

AMERICAN GOODS AND PRODUCTS

Each bidder is cautioned that Local Public Contract Law (N.J.S.A. 40:11-1 et seq) provides that only manufactured and farm products of the United States, wherever available, be used in all work contracted for by a county or municipalities in which public funds will pay any part or all of the costs.

SPECIFICATION

The bidder, vendor, or supplier must fill in all spaces showing specific information as required or the bid package will be rejected. The exceptions, major or minor, must be listed. The vendor must also include any manufacturer's literature and a list of present New Jersey users of this product. No information can be introduced into the bid package after the official receipt and opening of the bid. The price quoted in any proposal submitted shall include all items of labor, materials, tools, equipment and other costs necessary to fully complete the manufacturing and delivery of the product pursuant to these specifications.

All Exceptions to the specifications must be fully explained in writing, on the exception sheet to be included in the bid.

PART O: TERMINATION OF CONTRACT

If, through any cause, the successful bidder shall fail to fulfill in a timely and proper manner obligations under this contract or if the contractor shall violate any of the requirements of this contract, the OWNER shall
thereupon have the right to terminate this contract by giving written notice to the contractor of such termination and specifying the effective date of termination. Such termination shall relieve the owner of any obligation to the contractor for any sum or sums set forth in the contract.

A. Notwithstanding the above, the contractor shall not be relieved of liability to the OWNER by virtue of any breach of the contract by the contractor and the OWNER may withhold any payments to the contractor for the purpose of set off until such time as the exact amount of damage due to the OWNER from the contractor is determined.

B. The contractor agrees to indemnify and hold the OWNER harmless from any liability to subcontractors/supplies for payment for work performed or goods supplied arising out of the lawful termination of the contract by the OWNER under this provision.

C. In case of default by the successful bidder, the OWNER may procure the articles or services from other sources and hold the successful bidder responsible for any excess cost occasioned thereby.

Continuation of the terms of this contract beyond the fiscal year is contingent on the availability of funds in the following year’s budget. In the event of unavailability of such funds, the OWNER reserves the right to cancel this contract.

PART P: TIE BIDS

If the situation should occur that two bidders bid the same amount for the contract, the award would be granted to the contractor located closest to the Township of Woodbridge.

PART Q: BUSINESS REGISTRATION OF PUBLIC CONTRACTORS

All business organizations that do business with a local contracting agency are required to be registered with the State and provide proof of that registration to the other contracting agency before the contracting agency may enter into a contract with the business.
PART R: CONTRACTOR QUALIFICATION AND PERFORMANCE STANDARDS FOR SIGNIFICANT PUBLIC CONSTRUCTION AND MAINTENANCE CONTRACTS

All contractors and subcontractors who submit a bid to perform "significant work", defined as work or activity covered under the New Jersey Prevailing Wage Act, N.J.S.A. 34:11-56.25 et seq., in an amount in excess of $25,000, on any public works facility or public works project, including building construction, alteration, renovation, repair, service or maintenance work

PART S: ANNUAL DISCLOSURE

Contractor is advised of the responsibility to file and annual disclosure statement on political contribution with the State of New Jersey Enforcement Commission pursuant to N.J.A.A. 19:44a-20.30 (P.L>2005,c270 s3) if the contractor received contracts in excess of $50,000 from public entities in a calendar year. It is Contractor's responsibility to determine if filing is necessary. Additional information on this requirement is available from ELEC, Phone 888-313-3532 or at www.elect.state.NJ.us
FORM A
BIDDER'S AFFIDAVIT

I, __, being duly sworn, depose that he/she resides at:

__

__

And that he/she is the __ of ________________________

(Title) (Name of Bidder)

I am duly authorized to sign the bid and that bid is the true offer of the bidder, that the seal attached thereto is the seal of the bidder, and that each, every and all the declarations and statements contained in the bid and any and all affidavits, questionnaires and documents submitted pursuant to the proposal for bids are true to the best of my knowledge and belief.

__

(Affiant)

__

(Corporate Seal)

Subscribed and sworn before me this

________ day of ________, 20____

(Notary Public)

My commission expires:

SEAL
FORM B
NON-COLLUSION AFFIDAVIT

State of New Jersey
County of ________________________ SS: __________________________

I, _______________________________________, residing in ________________________
(Name of Affiant) (Name of Municipality)

In the County of ________________________ and State of ________________________ of full
age, being duly sworn according to law on my oath depose and say that:

I am ___ of the of _________________
(Title of Position) (Name of Firm)

___ the bidder making this Proposal for the bid

Entitled ___, and that I executed the said proposal with (Title of bid proposal)

Full authority to do so that said bidder has not, directly or indirectly entered into any agreement, participated in any collusion, or otherwise taken any action in restraint of free, competitive bidding in connection with the above name project; and that all statements contained in said proposal and in this affidavit are true and correct, and made with full knowledge that the _____________________________ relies upon the truth of the statements contained in said proposal. (Name of contracting unit)

I further warrant that no person or selling agency has been employed or retained to solicit or secure such contract upon an agreement or understanding for a commission, percentage, brokerage or contingent fee, except bona fide employees or bona fide established commercial or selling agencies maintained by _____________________________.

Subscribed and Sworn to: Signature: __

Type or Print Name of Affiant: ___

Before me this day ______________________, 20 __________

Notary Public of: ___

My commission expires: ___

(Seal)
STATEMENT OF OWNERSHIP
(OWNERSHIP DISCLOSURE CERTIFICATION)

This Statement Shall Be Included with
All Bid and Proposal Submissions

Name of Business:

Address of Business:

Name of person completing this form:

N.J.S.A. 52:25-24.2:

"No corporation, partnership, or limited liability company shall be awarded any
contract nor shall any agreement be entered into for the performance of any work or
the furnishing of any materials or supplies, unless prior to the receipt of the bid or
proposal, or accompanying the bid or proposal of said corporation, said partnership,
or said limited liability company there is submitted a statement setting forth the
names and addresses of all stockholders in the corporation who own 10 percent or
more of its stock, of any class, or of all individual partners in the partnership who
own a 10 percent or greater interest therein, or of all members in the limited liability
company who own a 10 percent or greater interest therein, as the case may be.

If one or more such stockholder or partner or member is itself a corporation or
partnership or limited liability company, the stockholders holding 10 percent or more
of that corporation's stock, or the individual partners owning 10 percent or greater
interest in that partnership, or the members owning 10 percent or greater interest in
that limited liability company, as the case may be, shall also be listed. The
disclosure shall be continued until names and addresses of every noncorporate
stockholder, and individual partner, and member, exceeding the 10 percent
ownership criteria established in this act, has been listed.

To comply with this section, a bidder with any direct or indirect parent entity which is
publicly traded may submit the name and address of each publicly traded entity and
the name and address of each person that holds a 10 percent or greater beneficial
interest in the publicly traded entity as of the last annual filing with the federal
Securities and Exchange Commission or the foreign equivalent, and, if there is any
person that holds a 10 percent or greater beneficial interest, also shall submit links to
the websites containing the last annual filings with the federal Securities and
Exchange Commission or the foreign equivalent and the relevant page numbers of
the filings that contain the information on each person that holds a 10 percent or
greater beneficial interest."
The Attorney General has advised that the provisions of N.J.S.A. 52:25-24.2, which refer to corporations and partnerships apply to limited partnerships, limited liability partnerships, and Subchapter S corporations.

This Ownership Disclosure Certification form shall be completed, signed and notarized.

Failure of the bidder/proposer to submit the required information is cause for automatic rejection of the bid or proposal

Part I

Check the box that represents the type of business organization:

☐ Sole Proprietorship (skip Parts II and III, sign and notarize at the end)
☐ Non-Profit Corporation (skip Parts II and III, sign and notarize at the end)
☐ Partnership ☐ Limited Partnership ☐ Limited Liability Partnership
☐ Limited Liability Company
☐ For-profit Corporation (including Subchapters C and S or Professional Corporation)
☐ Other (be specific): ________________________________

Part II

☐ I certify that the list below contains the names and addresses of all stockholders in the corporation who own 10 percent or more of its stock, of any class, or of all individual partners in the partnership who own a 10 percent or greater interest therein, or of all members in the limited liability company who own a 10 percent or greater interest therein, as the case may be.

OR

☐ I certify that no one stockholder in the corporation owns 10 percent or more of its stock, of any class, or no individual partner in the partnership owns a 10 percent or greater interest therein, or that no member in the limited liability company owns a 10 percent or greater interest therein, as the case may be.

Sign and notarize the form below, and, if necessary, complete the list below.
(Please attach additional sheets if more space is needed)
<table>
<thead>
<tr>
<th>Name: ___________________________</th>
<th>Name: ___________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: _________________________</td>
<td>Address: _________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Name: ___________________________</td>
<td>Name: ___________________________</td>
</tr>
<tr>
<td>Address: _________________________</td>
<td>Address: _________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Name: ___________________________</td>
<td>Name: ___________________________</td>
</tr>
<tr>
<td>Address: _________________________</td>
<td>Address: _________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Name: ___________________________</td>
<td>Name: ___________________________</td>
</tr>
<tr>
<td>Address: _________________________</td>
<td>Address: _________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Name: ___________________________</td>
<td>Name: ___________________________</td>
</tr>
<tr>
<td>Address: _________________________</td>
<td>Address: _________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Name: ___________________________</td>
<td>Name: ___________________________</td>
</tr>
<tr>
<td>Address: _________________________</td>
<td>Address: _________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part III - Any Direct or Indirect Parent Entity Which is Publicly Traded:

"To comply with this section, a bidder with any direct or indirect parent entity which is publicly traded may submit the name and address of each publicly traded entity and the name and address of each person that holds a 10 percent or greater beneficial interest in the publicly traded entity as of the last annual filing with the federal Securities and Exchange Commission or the foreign equivalent, and, if there is any person that holds a 10 percent or greater beneficial interest, also shall submit links to the websites containing the last annual filings with the federal Securities and Exchange Commission or the foreign equivalent and the relevant page numbers of the filings that contain the information on each person that holds a 10 percent or greater beneficial interest."

☐ Pages attached with name and address of each publicly traded entity as well as the name and address of each person that holds a 10 percent or greater beneficial interest.

OR

☐ Submit here the links to the Websites (URLs) containing the last annual filings with the federal Securities and Exchange Commission or the foreign equivalent.

AND

☐ Submit here the relevant page numbers of the filings containing the information on each person holding a 10 percent or greater beneficial interest.

Subscribed and sworn before me this ___ day of _________________________, 2________.

(Notary Public)

My Commission expires: _________________________

(Affiant)

(Print name of affiant and title if applicable)

(Corporate Seal if a Corporation)
EXHIBIT B

MANDATORY EQUAL EMPLOYMENT OPPORTUNITY LANGUAGE
N.J.A.C. 17:27

CONSTRUCTION CONTRACTS

During the performance of this contract, the contractor agrees as follows:

The contractor or subcontractor, where applicable, will not discriminate against any employee or applicant for employment because of age, race, creed, color, national origin, ancestry, marital status, affectional or sexual orientation, gender identity or expression, disability, nationality or sex. Except with respect to affectional or sexual orientation and gender identity or expression, the contractor will ensure that equal employment opportunity is afforded to all applicants in recruitment and employment, and that employees are treated during employment, without regard to their age, race, creed, color, national origin, ancestry, marital status, affectional or sexual orientation, gender identity or expression, disability, nationality or sex. Such equal employment opportunity shall include, but not be limited to, the following: employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship. The contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided by the Public Agency Compliance Officer to establish and enforce provisions of this nondiscrimination clause.

The contractor or subcontractor, where applicable will, in all solicitations or advertisements for employees placed by or on behalf of the contractor, state that all qualified applicants will receive consideration for employment without regard to age, race, creed, color, national origin, ancestry, marital status, affectional or sexual orientation, gender identity or expression, disability, nationality or sex.

The contractor or subcontractor will send to each labor union, with which it has a collective bargaining agreement, a notice, to be provided by the agency contracting officer, advising the labor union or workers’ representative of the contractor’s commitments under this act and shall post copies of the notice in conspicuous places available to employees and applicants for employment.

The contractor or subcontractor, where applicable, agrees to comply with any regulations promulgated by the Treasurer, pursuant to N.J.S.A. 10:5-31 et seq., as amended and supplemented from time to time and the Americans with Disabilities Act.

When hiring or scheduling workers in each construction trade, the contractor or subcontractor agrees to make good faith efforts to employ minority and women workers in each construction trade consistent with the targeted employment goal prescribed by N.J.A.C. 17:27-7.2; provided, however, that the Dept. of LWD, Construction EEO Monitoring Program may, in its discretion, exempt a contractor or subcontractor from compliance with the good faith procedures prescribed by the following provisions, A, B and C, as long as the Dept. of LWD, Construction EEO Monitoring Program is satisfied that the contractor or subcontractor is employing workers provided by a union which provides evidence, in accordance with standards prescribed by the Dept. of LWD, Construction EEO Monitoring Program, that its percentage of active “card carrying” members who are minority and women workers is equal to or greater than the targeted employment goal established in accordance with N.J.A.C. 17:27-7.2. The contractor or subcontractor agrees that a good faith effort shall include compliance with the following procedures:
EXHIBIT B (Cont)

(A) If the contractor or subcontractor has a referral agreement or arrangement with a union for a construction trade, the contractor or subcontractor shall, within three business days of the contract award, seek assurances from the union that it will cooperate with the contractor or subcontractor as it fulfills its affirmative action obligations under this contract and in accordance with the rules promulgated by the Treasurer pursuant to N.J.S.A. 10:5-31 et. seq., as supplemented and amended from time to time and the Americans with Disabilities Act. If the contractor or subcontractor is unable to obtain said assurances from the construction trade union at least five business days prior to the commencement of construction work, the contractor or subcontractor agrees to afford equal employment opportunities minority and women workers directly, consistent with this chapter. If the contractor's or subcontractor's prior experience with a construction trade union, regardless of whether the union has provided said assurances, indicates a significant possibility that the trade union will not refer sufficient minority and women workers consistent with affording equal employment opportunities as specified in this chapter, the contractor or subcontractor agrees to be prepared to provide such opportunities to minority and women workers directly, consistent with this chapter, by complying with the hiring or scheduling procedures prescribed under (B) below; and the contractor or subcontractor further agrees to take said action immediately if it determines that the union is not referring minority and women workers consistent with the equal employment opportunity goals set forth in this chapter.

(B) If good faith efforts to meet targeted employment goals have not or cannot be met for each construction trade by adhering to the procedures of (A) above, or if the contractor does not have a referral agreement or arrangement with a union for a construction trade, the contractor or subcontractor agrees to take the following actions:

(1) To notify the public agency compliance officer, the Dept. of LWD, Construction EEO Monitoring Program, and minority and women referral organizations listed by the Division pursuant to N.J.A.C. 17:27-5.3, of its workforce needs, and request referral of minority and women workers;

(2) To notify said minority and women workers who have been listed with it as awaiting available vacancies;

(3) Prior to commencement of work, to request that the local construction trade union refer minority and women workers to fill job openings, provided the contractor or subcontractor has a referral agreement or arrangement with a union for the construction trade;

(4) To leave standing requests for additional referral to minority and women workers with the local construction trade union, provided the contractor or subcontractor has a referral agreement or arrangement with a union for the construction trade, the State Training and Employment Service and other approved referral sources in the area;

(5) If it is necessary to lay off some of the workers in a given trade on the construction site, layoffs shall be conducted in compliance with the equal employment opportunity and non-discrimination standards set forth in this regulation, as well as with applicable Federal and State court decisions;

(6) To adhere to the following procedure when minority and women workers apply or are referred to the contractor or subcontractor:
(i) The contractor or subcontractor shall interview the referred minority or women worker.

(ii) If said individuals have never previously received any document or certification signifying a level of qualification lower than that required in order to perform the work of the construction trade, the contractor or subcontractor shall in good faith determine the qualifications of such individuals. The contractor or subcontractor shall hire or schedule those individuals who satisfy appropriate qualification standards in conformity with the equal employment opportunity and non-discrimination principles set forth in this chapter. However, a contractor or subcontractor shall determine that the individual at least possesses the requisite skills, and experience recognized by a union, apprentice program or a referral agency, provided the referral agency is acceptable to the Dept. of LWD, Construction EEO Monitoring Program. If necessary, the contractor or subcontractor shall hire or schedule minority and women workers who qualify as trainees pursuant to these rules. All of the requirements, however, are limited by the provisions of (C) below.

(iii) The name of any interested women or minority individual shall be maintained on a waiting list, and shall be considered for employment as described in (i) above, whenever vacancies occur. At the request of the Dept. of LWD, Construction EEO Monitoring Program, the contractor or subcontractor shall provide evidence of its good faith efforts to employ women and minorities from the list to fill vacancies.

(iv) If, for any reason, said contractor or subcontractor determines that a minority individual or a woman is not qualified or if the individual qualifies as an advanced trainee or apprentice, the contractor or subcontractor shall inform the individual in writing of the reasons for the determination, maintain a copy of the determination in its files, and send a copy to the public agency compliance officer and to the Dept. of LWD, Construction EEO Monitoring Program.

(7) To keep a complete and accurate record of all requests made for the referral of workers in any trade covered by the contract, on forms made available by the Dept. of LWD, Construction EEO Monitoring Program and submitted promptly to the Dept. of LWD, Construction EEO Monitoring Program upon request.

(C) The contractor or subcontractor agrees that nothing contained in (B) above shall preclude the contractor or subcontractor from complying with the union hiring hall or apprenticeship policies in any applicable collective bargaining agreement or union hiring hall arrangement, and, where required by custom or agreement, it shall send journeymen and trainees to the union for referral, or to the apprenticeship program for admission, pursuant to such agreement or arrangement. However, where the practices of a union or apprenticeship program will result in the exclusion of minorities and women or the failure to refer minorities and women consistent with the targeted county employment goal, the contractor or subcontractor shall consider for employment persons referred pursuant to (B) above without regard to such agreement or arrangement provided further, however, that the contractor or subcontractor shall not be required to employ women and minority advanced trainees and trainees in numbers which result in the employment of advanced trainees and trainees as a percentage of the total workforce for the construction trade, which percentage significantly exceeds the apprentice to journey worker ratio specified in the applicable collective bargaining agreement, or in the absence of a collective bargaining agreement, exceeds the ratio established by practice in the area for said construction trade. Also, the contractor or subcontractor agrees that, in implementing the procedures of (B) above, it shall, where applicable, employ minority and women workers residing within the geographical jurisdiction of the union.
EXHIBIT B (Cont)

After notification of award, but prior to signing a construction contract, the contractor shall submit to the public agency compliance officer and the Dept. of LWD, Construction EEO Monitoring Program an initial project workforce report (Form AA 201) electronically provided to the public agency by the Dept. of LWD, Construction EEO Monitoring Program, through its website, for distribution to and completion by the contractor, in accordance with NJ.A.C. 17:27-7. The contractor also agrees to submit a copy of the Monthly Project Workforce Report once a month thereafter for the duration of this contract to the Division and to the public agency compliance officer.

The contractor agrees to cooperate with the public agency in the payment of budgeted funds, as is necessary, for on-the-job and/or off-the-job programs for outreach and training of minorities and women.

(D) The contractor and its subcontractors shall furnish such reports or other documents to the Dept. of LWD, Construction EEO Monitoring Program as may be requested by the Dept. of LWD, Construction EEO Monitoring Program from time to time in order to carry out the purposes of those regulations, and public agencies shall furnish such information as may be requested by the Dept. of LWD, Construction EEO Monitoring Program for conducting a compliance investigation pursuant to Subchapter 10 of the Administrative Code (NJAC 17:27).
PROPOSAL AND SCHEDULE OF BIDS

AFFIRMATIVE ACTION PROGRAM

IN COMPLAINCE WITH P.O. 1975, C. 127

N.J.S.A. 10:5-34 SUBMISSION OF BIDS; AFFIRMATIVE ACTION PROGRAM APPROVAL: EXEMPT SUBCONTRACTORS

Each prospective bidder on a public works contract or contracts and each subcontract bidder to a prime contract bidder shall formulate and submit to the State Treasurer his or its affirmative action program of equal opportunity whereby he or it guarantees minorities employment in all employment categories; the submission shall be accompanied by a fee in an amount to be fixed by the State Treasurer. The State Treasurer shall notify the bidder of approval or disapproval of his or its program within 60 days of its submission; failure of the State Treasurer to act within 60 days shall constitute approval of the program. Any existing federally approved or sanctioned affirmative action program shall be approved by the State Treasurer.

No subcontract bidder who has less than five employees need comply with the provisions of this section.

P.L. 1975, C. 127, S 4

THE FOLLOWING BIDDER,

NAME

Hereby affirms it will, if awarded the contract(s), will fully comply with the Equal Employment/Affirmative Action provisions of New Jersey P.L. 1975, c. 127.

______ YES: 5 or more employees.

______ Not required: less than 5 employees.

(Name of Company Or Corp)

BY: (Title)
Form F

APPENDIX A
AMERICAN WITH DISABILITIES ACT OF 1990
Equal Opportunity for Individuals with Disabilities

The contractor and the __________________________ of __________________________ (hereafter "owner") do hereby agree that the provisions of Title 11 of the American With Disabilities Act of 1990 (the "Act") (42 U.S.C. S121 01 et seq.), which prohibits discrimination on the basis of disability by public entities in all services, programs, and activities provided or made available by public entities, and the rules and regulations promulgated pursuant there unto, are made a part of this contract. In providing any aid, benefit, or service on behalf of the owner pursuant to this contract, the contractor agrees that the performance shall be in strict compliance with the Act. In the event that the contractor, its agents, servants, employees, or subcontractors violate or are alleged to have violated the Act during the performance of this contract, the contractor shall defend the owner in any action or administrative proceeding commenced pursuant to this Act. The contractor shall indemnify, protect, and save harmless the owner, its agents, servants, and employees from and against any and all suits, claims, losses, demands, or damages, of whatever kind or nature arising out of or claimed to arise out of the alleged violation. The contractor shall, at its own expense, appear, defend, and pay any and all charges for legal services and any and all costs and other expenses arising from such action or administrative proceeding or incurred in connection therewith. In any and all complaints brought pursuant to the owner’s grievance procedure, the contractor agrees to abide by any decision of the owner which is rendered pursuant to said grievance procedure. If any action or administrative proceeding results in an award of damages against the owner, or if the owner incurs any expense to cure a violation of the ADA which has been brought to its grievance procedure, the contractor shall satisfy and discharge the same at its own expense.

The owner shall, as soon as practicable after a claim has been made against it, give written notice thereof to the contractor along with full and complete particulars of the claim. If any action or administrative proceeding is brought against the owner or any of its agents, servants, and employees, the owner shall expeditiously forward or have forwarded to the contractor every demand, complaint, notice, summons, pleading, or other process received by the owner or its representatives.

It is expressly agreed and understood that any approval by the owner of the services provided by the contractor pursuant to this contract will not relieve the contractor of the obligation to comply with the Act and to defend, indemnify, protect, and save harmless the owner pursuant to this paragraph.

It is further agreed and understood that the owner assumes no obligation to indemnify or save harmless the contractor, its agents, servants, employees and subcontractors for any claim which may arise out of their performance of this Agreement. Furthermore, the contractor expressly understands and agrees that the provisions of this indemnification clause shall in no way limit the contractor’s obligations assumed in this Agreement, nor shall they be construed to relieve the contractor from any liability, nor preclude the owner from taking any other actions available to it under any other provisions of the Agreement or otherwise at law.
Registering a Business with the New Jersey Department of the Treasury

Business organizations or individuals doing business in New Jersey are required to register with the Department of the Treasury, Division of Revenue. Registration is free and is a one-time action - there are no fees to register. However, you should update your contact and tax eligibility information as needed. Registration is required to conduct most business with any state, county, municipal, local board of education, charter school, county college, authority, or state college or university. The contracting agency may be required to have a copy of the "proof of registration certificate" submitted as part of a public bid or prior to issuing a purchase order.

To Register: Businesses must complete Form NJ-REG and submit it to the Division of Revenue. The form can be filed online or by mailing a paper form to the Division. Online filing is strongly encouraged.

- Register online at www.nj.gov/treasury/revenue/taxreg.htm. Click the "online" link and then select "Register for Tax and Employer Purposes".

- Download the paper form and instructions at www.nj.gov/treasury/revenue/revprnt.htm.

- Call the Division at 609-292-1730 to have a form mailed to you.

- Write to the Division at: Client Registration Bureau, PO Box 252, Trenton, NJ 08646-0252

Note: If you operate a corporation, limited partnership, limited liability company or limited liability partnership, before registering, you must obtain legal authority to operate in the State of New Jersey. Generally, this is accomplished by filing an original business certificate with the Division of Revenue, such as a Certificate of Incorporation or Formation. For more information on this subject, visit www.nj.gov/treasury/revenue/filecerts.htm or call 609-292-9292.

Register as an individual: There is a simplified registration process for individuals doing business with any New Jersey government agency. The form (NJ-REG-A) can be downloaded from the web at www.nj.gov/treasury/revenue/pdforms/rega.pdf.

To obtain a copy by mail, call 609-292-1730, or write to the Division at Client Registration Bureau, PO Box 252, Trenton, NJ 08646-0252.
Question about registration process? Call 609-292-1730 or submit by e-mail at www.nj.gov/treasury/revenue/revcontact.html

How do I receive the proof of registration certificate?

➢ New registrants: When completing Form NJ-REG, make sure you answer "Yes" to the contractor/sub-contractor question (Online – item 17, Paper Form – item 18). The Division of Revenue will mail the certificate to the mailing address you supply on your registration form.

➢ Previously Registered Businesses: Call 609-292-1730 and select option 3. The Division of Revenue's service agents will take your order and mail you a certificate. Please allow 7 to 10 business days to receive your certificate. Alternately, you may visit the Division's Client Registration Bureau in person and request a certificate. The address is 847 Roebling Avenue, Trenton, NJ 08611. Service desk hours are 8:30am to 4pm, weekdays, excluding holidays.

What information does the proof of registration contain? The certificate displays the following information: Business Name, Trade Name (If Applicable), Tax Payer ID (Usually the Employer Identification Number), Business Address, Contractor Certification Number (State issued), Certification Issuance Date, Effective Date (Business Start Date Entered on Form NJ-REG).
STATE OF NEW JERSEY – DIVISION OF PURCHASE AND PROPERTY
DISCLOSURE OF INVESTMENT ACTIVITIES IN IRAN

<table>
<thead>
<tr>
<th>Quote Number:</th>
<th>Bidder/Offeror:</th>
</tr>
</thead>
</table>

PART 1: CERTIFICATION
BIDDERS MUST COMPLETE PART 1 BY CHECKING EITHER BOX.
FAILURE TO CHECK ONE OF THE BOXES WILL RENDER THE PROPOSAL NON-RESPONSIVE.

Pursuant to Public Law 2012, c. 25, any person or entity that submits a bid or proposal or otherwise proposes to enter into or renew a contract must complete the certification below to attest, under penalty of perjury, that neither the person or entity, nor any of its parents, subsidiaries, or affiliates, is identified on the Department of Treasury’s Chapter 25 list as a person or entity engaging in investment activities in Iran. The Chapter 25 list is found on the Division’s website at http://www.state.nj.us/treasury/purchase/pdf/Chapter25List.pdf. Bidders must review this list prior to completing the below certification. **Failure to complete the certification will render a bidder’s proposal non-responsive.** If the Director finds a person or entity to be in violation of law, s/he shall take action as may be appropriate and provided by law, rule or contract, including but not limited to, imposing sanctions, seeking compliance, recovering damages, declaring the party in default and seeking debarment or suspension of the party.

PLEASE CHECK THE APPROPRIATE BOX:

- [x] I certify, pursuant to Public Law 2012, c. 25, that neither the bidder listed above nor any of the bidder’s parents, subsidiaries, or affiliates is listed on the N.J. Department of the Treasury’s list of entities determined to be engaged in prohibited activities in Iran pursuant to P.L. 2012, c. 25 (“Chapter 25 List”). I further certify that I am the person listed above, or I am an officer or representative of the entity listed above and am authorized to make this certification on its behalf. **I will skip Part 2 and sign and complete the Certification below.**

- [] OR
 I am unable to certify as above because the bidder and/or one or more of its parents, subsidiaries, or affiliates is listed on the Department’s Chapter 25 list. I will provide a detailed, accurate and precise description of the activities in Part 2 below and sign and complete the Certification below. **Failure to provide such will result in the proposal being rendered as non-responsive and appropriate penalties, fines and/or sanctions will be assessed as provided by law.**

PART 2: PLEASE PROVIDE FURTHER INFORMATION RELATED TO INVESTMENT ACTIVITIES IN IRAN

You must provide a detailed, accurate and precise description of the activities of the bidding person/entity, or one of its parents, subsidiaries or affiliates, engaging in the investment activities in Iran outlined above by completing the boxes below.

EACH BOX WILL PROMPT YOU TO PROVIDE INFORMATION RELATIVE TO THE ABOVE QUESTIONS. PLEASE PROVIDE THOROUGH ANSWERS TO EACH QUESTION. IF YOU NEED TO MAKE ADDITIONAL ENTRIES, CLICK THE “ADD AN ADDITIONAL ACTIVITIES ENTRY” BUTTON.

<table>
<thead>
<tr>
<th>Name</th>
<th>Relationship to Bidder/Offeror</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of Engagement</th>
<th>Anticipated Cessation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bidder/Offeror Contact Name</th>
<th>Contact Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADD AN ADDITIONAL ACTIVITIES ENTRY

Certification: I, being duly sworn upon my oath, hereby represent that the foregoing information and any attachments thereto to the best of my knowledge are true and complete. I acknowledge: that I am authorized to execute this certification on behalf of the bidder; that the State of New Jersey is relying on the information contained herein and that I am under a continuing obligation from the date of this certification through the completion of any contracts with the State to notify the State in writing of any changes to the information contained herein; that I am aware that it is a criminal offense to make a false statement or misrepresentation in this certification, and if I do so, I am subject to criminal prosecution under the law and that it will constitute a material breach of my agreement(s) with the State, permitting the State to declare any contract(s) resulting from this certification void and unenforceable.

<table>
<thead>
<tr>
<th>Full Name (Print):</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do Not Enter PIN as a Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT OF REVISIONS OR ADDENDA

(Please provide Project or Bid Number)

Pursuant to N.J.S.A. 40A:11-23.1a, the undersigned bidder hereby acknowledges receipt of the following notices, revisions, or addenda to the bid advertisement, specifications or bid documents. By indicating date of receipt, bidder acknowledges the submitted bid takes into account the provisions of the notice, revision, or addendum. Note that the local unit's record of notice to bidders shall take precedence and that failure to include provisions of charges in a bid proposal may be subject for rejection of the bid.

I __________________________, acknowledge receipt of the following addenda and or revisions.

They are as follows:

<table>
<thead>
<tr>
<th>Local Unit Reference Number Or Title of Addendum/Revision</th>
<th>How Received (mail, fax, pick-up, etc)</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgement by bidder:

Name of Bidder: __

By Authorized Representative:

Print Name: __________________________ Signature: ______________

Title: __________________________ Date: _________________________
ARTICLE 1 - PREAMBLE

WHEREAS, Township of Woodbridge, on behalf of itself as Owner, and the General Contractor, on behalf of itself, and reflecting the objectives of Township of Woodbridge, as Owner, desire to provide for the efficient, safe, quality, and timely completion of the Club at Woodbridge Project, in a manner designed to afford lower reasonable costs to Township of Woodbridge, the Owner, and the Public it represents, and the advancement of public policy objectives;

WHEREAS, this Project Labor Agreement will foster the achievement of these goals, inter alia by:

(1) ensuring a reliable source of skilled and experienced labor;
(2) standardizing the terms and conditions governing the employment of labor on the Project;
(3) permitting wide flexibility in work scheduling and shift hours and times; from those which otherwise might obtain;
(4) receiving negotiated adjustments as to work rules and staffing requirements from those which otherwise might obtain;
(5) providing comprehensive and standardized mechanisms for the settlement of work disputes, including those relating to jurisdiction;
(6) avoiding the costly delays of potential strikes, slowdowns, walkouts, picketing and other disruptions arising from work disputes, and promote labor harmony and peace for the duration of the Project.
(7) furthering public policy objectives as to improved employment opportunities for minorities, women and the economically disadvantaged in the construction industry;
(8) expediting the construction process;

and

WHEREAS, the signatory Unions desire the stability, security and work opportunities afforded by a Project Labor Agreement; and

WHEREAS, the Parties desire to maximize Project safety conditions for both workers and the public,

NOW, THEREFORE, the Parties enter into this Agreement:
SECTION 1. PARTIES TO THE AGREEMENT

This is a Project Labor Agreement ("Agreement") entered into by and between the General Contractor, and their successors and assigns, for the construction work of the Township of Woodbridge at the Club of Woodbridge Project to be performed on the property of Township of Woodbridge in the State of New Jersey and by the Middlesex County Building and Construction Trades Council, AFL-CIO, on behalf of itself and its affiliates and members.

ARTICLE 2 - GENERAL CONDITIONS

SECTION 1. DEFINITIONS

Throughout this Agreement, the Union party and the Building Trades Council are referred to singularly and collectively as "the Union(s)" where specific reference is made to "Local Unions" that phrase is sometimes used; the term "Contractor(s)" shall include the General Contractor, _______(GC), and all signatory contractors, and their subcontractors of whatever tier, engaged in on-site Project construction work within the scope of this Agreement as defined in Article III; Township of Woodbridge is referenced as (Owner); the Middlesex County Building and Construction Trades Council, AFL-CIO is referenced as the BTC, and the work covered by this Agreement (as defined in Article III) is referred to as the "Project".

SECTION 2. CONDITIONS FOR AGREEMENT TO BECOME EFFECTIVE

The Agreement shall not become effective unless executed by the BTC and the GC and will remain in effect until the completion of the Project.

SECTION 3. ENTITIES BOUND & ADMINISTRATION OF AGREEMENT

This Agreement shall be binding on all signatory Unions and the General Contractor and all signatory Contractors performing on-site Project work, including site preparation and staging areas, as defined in Article 3. The Contractors shall include in any subcontract that they let, for performance during the term of this Agreement, a requirement that their subcontractors, of whatever tier, become signatory and bound by this Agreement with respect to subcontracted work performed within the scope of Article 3. This Agreement shall be administered by the GC on behalf of all Contractors.

SECTION 4. SUPREMACY CLAUSE

This Agreement, together with the local Collective Bargaining Agreements appended hereto as Schedule A represents the complete understanding of all signatories and supersedes any national agreement, local agreement or other collective bargaining agreement of any type which would otherwise apply to this Project, in whole or in part, except for all work performed under the NTD Articles of Agreement, the National Stack/Chimney Agreement, the National Cooling Tower Agreement, all instrument calibration work and loop checking shall be performed under the terms of the UA/IBEW Joint
National Agreement for Instrument and Control Systems Technicians, and the National Agreement of the International Union of Elevator Constructors, with the exception of Article VII, IX and X of this Project Agreement, which shall apply to such work. Where a subject covered by the provisions, explicit or implicit, of this Agreement is also covered by a Schedule A, the provisions of this Agreement shall prevail. It is further understood that neither the GC nor any Contractor shall be required to sign any other agreement as a condition of performing work on this Project. No practice, understanding or agreement between a Contractor and Local Union, which is not explicitly set forth in this Agreement shall be binding on this Project unless endorsed in writing by the GC.

SECTION 5. LIABILITY

The liability of any Contractor and the liability of any Union under this Agreement shall be several and not joint. The GC and any Contractor shall not be liable for any violations of this Agreement by any other Contractor and the BTC and Local Unions shall not be liable for any violations of this Agreement by any other Union.

SECTION 6. THE GENERAL CONTRACTOR

The Owner and the GC shall require in its bid specifications for all work within the scope of Article 3 that all successful bidders, and their subcontractors of whatever tier, become bound by, and signatory to, this Agreement. Township of Woodbridge is not a party to and shall not be liable in any manner under this Agreement. It is understood that nothing in this Agreement shall be construed as limiting the sole discretion of Township of Woodbridge in determining which Contractors shall be awarded contracts for Project work. It is further understood that Township of Woodbridge has sole discretion at any time to terminate, delay or suspend the work, in whole or part, on this Project.

SECTION 7. AVAILABILITY AND APPLICABILITY TO ALL SUCCESSFUL BIDDERS

The Unions agree that this Agreement will be made available to, and will fully apply to any successful bidder for Project work who becomes signatory thereto, without regard to whether that successful bidder performs work at other sites on either a union or non-union basis and without regard to whether employees of such successful bidder are, or are not, members of any unions. This Agreement shall not apply to the work of any Contractor or GC, which is performed at any location other than a Project site, as defined in Article 3, Section 1.

SECTION 8. SECURITY MONITORING

The parties agree and consent to the use of on-site cameras during the course of the Project, provided that 1) cameras will not be utilized to observe the work performance of individual employees, 2) the location of cameras will be disclosed to the County Council and 3) videos will be provided to the Union upon written request if available. The parties agree that all communication by the parties with any media sources regarding the Project must be done only by the Owner.
The parties agree and consent to the Contractors’ implementation and use of an electronic security badging system.

Finally, the parties agree and consent to the Contractors’ implementation of Security checkpoints at the entrances to and exits from the Project Site, at which Project Security personnel will randomly inspect the containers, apparel, vehicles and other personal belongings of employees who enter and exit the Project Site to deter theft. Employees who refuse to submit to an inspection of their containers, apparel, vehicles and other personal belongings will be prohibited from re-entering the Project Site. The parties agree and consent to implement and cooperate with any other Project Site security requirements imposed by the Owner, which shall be disclosed to the County Council in advance of the pre-job meeting.

ARTICLE 3 - SCOPE OF THE AGREEMENT

The Project work covered by this Agreement shall be as defined and limited by the following sections of this Article.

SECTION 1: THE WORK

This Agreement shall apply to all on-site public construction work for the Township of Woodbridge performed on the Club at Woodbridge Project in Woodbridge, New Jersey in the County of Middlesex, as is further delineated in Schedule "B".

The scope of work is confined to the on-site Project work contained in the scope of the final construction contract of the General Contractor.

SECTION 2. EXCLUDED EMPLOYEES

The following persons are not subject to the provisions of this Agreement, even though performing work on the Project:

a. Superintendents, supervisors (excluding superintendents and general supervisors and forepersons specifically covered by a craft’s Schedule A), engineers, inspectors and testers (excluding divers specifically covered by a craft’s Schedule A), quality control/assurance personnel, timekeepers, mail carriers, clerks, office workers, messengers, guards, non-manual employees, and all professional, engineering, administrative and management persons;

b. Employees of Owner or any State agency, authority or entity or employees of any municipality or other public employer;
c. Employees and entities engaged in off-site manufacture, modifications, repair, maintenance, assembly, painting, handling or fabrication of project components, materials, equipment or machinery, unless such offsite operations are covered by the New Jersey Prevailing Wage Act (for example, by being dedicated exclusively to the performance of the public works contract or building project and are adjacent to the site of work), or involved in deliveries to and from the Project site, excepting local deliveries of all major construction materials including fill, ready mix, concrete and cement, asphalt and other items which are covered by this Agreement.

d. Employees of the GC, excepting those performing manual, on-site construction labor who will be covered by this Agreement;

e. Employees engaged in on-site equipment warranty.

f. Employees engaged in geophysical testing (whether land or water) other than boring for core samples;

g. Employees engaged in laboratory or specialty testing or inspections;

h. Employees engaged in ancillary Project work performed by third parties such as electric utilities, gas utilities, telephone utility companies, and railroads.

SECTION 3. NON-APPLICATION TO CERTAIN ENTITIES

This Agreement shall not apply to the parents, affiliates, subsidiaries, or other joint or sole ventures of any Contractor or of GC, which do not perform work at this Project. It is agreed, for the purposes of this Agreement only, that this Agreement does not have the effect of creating any joint employment, single employer or alter ego status among the Owner, the GC and/or any Contractor. The Agreement shall further not apply to the Owner or any other state or county agency, authority, or other municipal or public entity and nothing contained herein shall be construed to prohibit or restrict the Owner or its employees of any other state authority, agency or entity and its employees from performing on or off-site work related to the Project. As the contracts which comprise the Project work are completed and accepted, the Agreement shall not have further force or effect on such items or areas except where inspections, additions, repairs, modifications, check-out and/or warranty work are assigned in writing (copy to Local Union involved) by the General Contractor for performance under the terms of this Agreement.

ARTICLE 4 - UNION RECOGNITION AND EMPLOYMENT

SECTION 1. PRE-HIRE RECOGNITION

The Contractors recognize the signatory Unions as the sole and exclusive bargaining representatives of all craft employees who are performing on-site Project work within the scope of this Agreement as defined in Article 3.
SECTION 2. UNION REFERRAL

A. The Contractors agree to hire Project, craft employees covered by this Agreement through the job referral systems and hiring halls (where the referrals meet the qualifications set forth in items 1, 2, and 4 subparagraph B) established in the Local Unions' area collective bargaining agreements (attached as Schedule A to this Agreement). Notwithstanding this, the Contractors shall have sole rights to determine the competency of all referrals; the number of employees required (except with regard to piledriving and cranes); the selection of employees to be laid-off (subject to the applicable procedures in Schedule A for permanent and/or temporary layoffs and except as provided in Article 5, Section 3); and the sole right to reject any applicant referred by a Local Union, subject to the show-up payments required in the applicable Schedule A. In the event that a Local Union is unable to fill any request for qualified employees within a 48-hour period after such requisition is made by the Contractor (Saturdays, Sundays, and holidays excepted), the Contractor may employ qualified applicants from another competent source. In the event that the Local Union does not have a job referral system, the Contractor shall give the Local Union first preference to refer applicants, subject to the other provisions of this Article. The Contractor shall notify the Local Union of the Project, craft employees hired within its jurisdiction from any source other than referral by the Union.

B. A Contractor may request by name, and the Local will honor, referral of persons who have applied to the Local for Project work and who meet the following qualifications as determined by a Committee of three designated, respectively, by the applicable Local Union, the GC and a mutually selected third party or, in the absence of agreement, the permanent arbitrator (or designee) designated in Article 7:

 (1) possess any license required by NJ law for the Project work to be performed;
 (2) have worked a total of at least 1,000 hours in the Construction craft during the prior 3 years;
 (3) were on the Contractor's active payroll for at least 60 out of the 180 calendar days prior to the contract award;
 (4) have demonstrated ability to safely perform the basic function of the applicable trade.

Following the employment of the first employee in each craft under Schedule A or the procedure set forth above in paragraph A, no more than 12 per centum of the employees covered by this Agreement, per Contractor by craft, shall be hired through the special provisions above (any fraction shall be rounded to the next highest whole number).

C. A certified MBE/WBE contractor may request from the Workforce Coordinator, through the GC, an exception to, and waiver of, the above per centum limitation upon the number of its employees to be hired through the special provision of Section 2.B above. This exception is based upon hardship and demonstration by the contractor that the Project work would be the contractor's only job and that it would be obliged to lay off qualified minority and female employees in its current workforce
moving from the last job. The exception and waiver are also conditioned upon the employees meeting the qualifications as set forth in Section 2.B above.

SECTION 3. NON-DISCRIMINATION IN REFERRALS

The Unions represent that their hiring halls and referral systems will be operated in a non-discriminatory manner and in full compliance with all applicable federal, state and local laws and regulations, which require equal employment opportunities. Referrals shall not be affected in any way by the rules, regulations, bylaws, constitutional provisions or any other aspects or obligations of union membership, policies or requirements and shall be subject to such other conditions as are established in this Article. No employment applicant shall be discriminated against by any referral system or hiring hall because of the applicant’s union membership, or lack thereof.

SECTION 4. REQUEST RESIDENTS, MINORITY AND FEMALE REFERRALS

The Local Unions will cooperate with Contractor requests for Woodbridge residents, minority, or women referrals to meet Developer’s commitments and will, within five (5) business days at a request for a Woodbridge resident, minority or female apprentice or journey person by the GC or subcontractor, use its best efforts to supply a qualified Woodbridge resident, minority or female worker and will document its efforts. To the extent any provision of a local collective bargaining agreement or local union referral procedure are inconsistent with this Article, the provisions of this Article will prevail to permit the referral of Woodbridge residents, minority or women referrals.

The GC and the Local Unions shall cooperate to use best efforts to attain the goal that Woodbridge residents, Minorities as defined in N.J.A.C.17:27-2.1, and women perform at least twenty percent (20%) of the total Labor-Person Hours on the Project.

In the event a Union either fails, or is unable, to refer qualified minority or female applicants in percentages equaling Project affirmative action goals as set forth in the Owners bid specifications, the Contractor may employ qualified minority or female applicants from any other available source as Apprentice Equivalents. Apprentice Equivalents will have completed a DOL approved training program, applied to take a construction Apprenticeship test, and will be paid at not less than the applicable equivalent Apprentice rate. With the approval of the Local Administrative Committee (LAC), experience in construction related areas may be accepted as meeting the above requirements.

SECTION 5. CROSS AND QUALIFIED REFERRALS

The Unions shall not knowingly refer to a Contractor an employee then employed by another Contractor working under this Agreement. The Local Unions will exert their utmost efforts to recruit sufficient numbers of skilled and qualified craft employees to fulfill the requirements of the Contractor.
SECTION 6. UNION DUES/ WORKING ASSESSMENTS

All employees covered by this Agreement shall be subject to the union security provisions contained in the applicable Schedule A local agreements, as amended from time to time, but only for the period of time during which they are performing on-site Project work and only to the extent of rendering payment of the applicable union dues and assessments uniformly required for union membership in the Local Union, signatory to this Agreement, which represents the craft in which the employee is performing Project work. No employee shall be discriminated against at the Project site because of the employee’s union membership or lack thereof. In the case of unaffiliated employees, the dues payment can be received by the Unions as a working assessment fee.

SECTION 7. CRAFT FOREPERSONS AND GENERAL FOREPERSONS

The selection of craft forepersons and/or general forepersons and the number of forepersons required shall be solely the responsibility of the Contractor except where otherwise provided by specific provisions of an applicable Schedule A. All forepersons shall take orders exclusively from the designated Contractor representatives. Craft foreperson shall be designated as working forepersons at the request of the Contractor, except when an existing local Collective Bargaining Agreement prohibits a foreperson from working when the craftsperson he is leading exceed a specified number.

ARTICLE 5 - UNION REPRESENTATION

SECTION 1. LOCAL UNION REPRESENTATIVE

Each Local Union representing on-site Project employees shall be entitled to designate in writing (copy to General Contractor involved) representatives, including the Business Manager, who shall be afforded access to the Project.

SECTION 2. STEWARDS

a) Each Local Union shall have the right to designate a working journey person as a Steward and an alternate, and shall notify the Contractor and GC of the identity of the designated Steward (and alternate) prior to the assumption of such duties. Stewards shall not exercise supervisory functions and will receive the regular rate of pay for their craft classifications. There will be no non-working Stewards on the Project.

b) In addition to their work as an employee, the Steward shall have the right to receive complaints or grievances and to discuss and assist in their adjustment with the Contractor’s appropriate supervisor. Each Steward shall be concerned with the employees of the Steward’s Contractor and, if applicable, subcontractors of that Contractor, but not with the employees of any other Contractor. The Contractor will not discriminate against the Steward in the proper performance of Union duties.
(c) The Stewards shall not have the right to determine when overtime shall be worked, or who shall work overtime, except pursuant to a Schedule A provision providing procedures for the equitable distribution of overtime.

SECTION 3. LAYOFF OF A STEWARD

Contractors agree to notify the appropriate Union 24 hours prior to the layoff of a Steward, except in cases of discipline or discharge for just cause. If a Steward is protected against layoff by a Schedule A, such provisions shall be recognized to the extent the Steward possesses the necessary qualifications to perform the work required. In any case in which a Steward is discharged or disciplined for just cause, the Local Union involved shall be notified immediately by the Contractor.

ARTICLE 6 - MANAGEMENT'S RIGHTS

SECTION 1. RESERVATION OF RIGHTS

Except as expressly limited by a specific provision of this Agreement, Contractors retain full and exclusive authority for the management of their Project operations including, but not limited to: the right to direct the work force, including determination as to the number to be hired and the qualifications therefore; the promotion, transfer, layoff of its employees; or the discipline or discharge for just cause of its employees; the assignment and schedule of work; the promulgation of reasonable Project work rules; and, the requirement, timing and number of employees to be utilized for overtime work. No rules, customs, or practices, which limit or restrict productivity or efficiency of the individual, as determined by the Contractor, GC, and/or joint working efforts with other employees shall be permitted or observed.

SECTION 2. MATERIALS, METHODS & EQUIPMENT

There shall be no limitations or restriction upon the contractors' choice of materials, techniques, methods, technology or design, or, regardless of source or location, upon the use and installation of equipment, machinery, package units, pre-cast, pre-fabricated, pre-finished, or pre-assembled materials, tool, or other labor-saving devices. Contractors may, without restriction, install or use materials, supplies or equipment regardless of their source. The on-site installation or application of such items shall be performed by the craft having jurisdiction over such work; provided, however, it is recognized that other personnel having special qualifications may participate, in a supervisory capacity, in the installation, check-out or testing of specialized or unusual equipment or facilities as designated by the Contractor. Notwithstanding the foregoing statement of contractor rights, prefabrication issues relating to work traditionally performed at the job site shall be governed pursuant to the terms of the applicable Schedule A. There shall be no restrictions as to work, which is performed off-site for the Project, except for offsite operations work 1) covered under the New Jersey Prevailing Wage Act or 2) done in a fabrication center, tool yard, or batch plant dedicated exclusively to the performance of work.
on the Project, and located adjacent to the "site of work". Where available locally, offsite operations work covered under the New Jersey Prevailing Wage Act shall be performed within the territorial jurisdiction of the local unions signatory to this Agreement.

ARTICLE 7 - WORK STOPPAGES AND LOCKOUTS

SECTION 1. NO STRIKES-NO LOCKOUT

There shall not be strikes, sympathy strikes, picketing, work stoppages, slowdowns, hand billing, demonstrations or other disruptive activity at the Project for any reason by any Union or employee against any Contractor or employer while performing work at the Project. There shall be no other Union, or concerted or employee activity which disrupts or interferes with the operation of the existing free flow of traffic in the project area. Failure of any Union or employee to cross any picket line established by any union, signatory or non-signatory to this Agreement, or the picket or demonstration line of any other organization, at or in proximity to the Project site is a violation of this Article. There shall be no lockout at the Project by any signatory Contractor. Contractors and Unions shall take all steps necessary to ensure compliance with this Section 1 and to ensure uninterrupted construction and the free flow of traffic in the project area for the duration of this Agreement.

SECTION 2. DISCHARGE FOR VIOLATION

A Contractor may discharge any employee violating Section 1, above, and any such employee will not be eligible thereafter for referral under this Agreement for a period of 100 days.

SECTION 3. NOTIFICATION

If a Contractor contends that any Union has violated this Article, it will notify the appropriate district or area council of the Local Union involved advising of such fact, with copies of the notification to the Local Union and the BTC. The district or area council, and the BTC shall each instruct, order and otherwise use their best efforts to cause the employees, and/or the Local Unions to immediately cease and desist from any violation of this Article. A district or area council, or the BTC complying with these obligations shall not be liable for the unauthorized acts of a Local Union or its members.

SECTION 4. EXPEDITED ARBITRATION

Any Contractor or Union alleging a violation of Section 1 of this Article may utilize the expedited procedure set forth below (in lieu of, or in addition to, any actions at law or equity) that may be brought.

a. A party invoking this procedure shall notify ____________ Esq., at ______________________________, telephone number ___________________, who shall serve as Arbitrator under this expedited arbitration procedure. In the event that ________________ is unable to serve, a
party invoking this procedure shall notify _____________, who shall serve as arbitrator under this expedited procedure. Copies of such notification will be simultaneously sent to the alleged violator and, if a Local Union is alleged to be in violation, its International, the Owner, the GC, and the BTC.

b. The Arbitrator shall thereupon, after notice as to time and place to the Contractor, the GC, the Local Union involved, and the BTC, hold a hearing within 48 hours of receipt of the notice invoking the procedure if it is contended that the violation still exists. The hearing will not, however, be scheduled for less than 24 hours after the notice to the district or area council required by Section 3 above. Hearings shall be held at the jobsite or at the Newark office of the New Jersey State Board of Mediation, as directed by the Arbitrator.

c. All notices pursuant to this Article may be by telephone, telegraph, hand delivery, or fax, confirmed by overnight delivery, to the arbitrator, Contractor or Union involved. The hearing may be held on any day including Saturdays or Sundays. The hearing shall be completed in one session, which shall not exceed 8 hours duration (no more than 4 hours being allowed to either side to present their case, and conduct their cross examination) unless otherwise agreed. A failure of any Union or Contractor to attend the hearing shall not delay the hearing of evidence by those present or the issuance of an award by the Arbitrator.

d. The sole issue at the hearing shall be whether a violation of Section 1, above, occurred. If a violation is found to have occurred, the Arbitrator shall issue a Cease and Desist Award restraining such violation and serve copies on the Contractor and Union involved. The Arbitrator shall have no authority to consider any matter in justification, explanation or mitigation of such violation or to award damages, which issue is reserved solely for court proceedings, if any. The Award shall be issued in writing within 3 hours after the close of the hearing, and may be issued without an Opinion. If any involved party desires an Opinion, one shall be issued within 15 calendar days, but its issuance shall not delay compliance with, or enforcement of, the Award.

e. An Award issued under this procedure may be enforced by any court of competent jurisdiction upon the filing of the Agreement together with the Award. Notice of the filing of such enforcement proceedings shall be given to the Union or Contractor involved. In any court proceeding to obtain a temporary or preliminary order enforcing the arbitrator’s Award as issued under this expedited procedure, the involved Union and Contractor waive their right to a hearing and agree that such proceedings may be ex-parte, provided notice is given to opposing counsel. Such agreement does not waive any party’s right to participate in a hearing for a final court order of enforcement or in any contempt proceeding.

f. Any rights created by statute or law governing arbitration proceedings which are inconsistent with the procedure set forth in this Article, or which interfere with compliance thereto, are hereby waived by the Contractors and Unions to whom they accrue.

g. The fees and expenses of the Arbitrator shall be equally divided between the involved Contractor and Union.

SECTION 5. ARBITRATION OF DISCHARGES FOR VIOLATION
Procedures contained in Article 9 shall not be applicable to any alleged violation of this Article, with the single exception that an employee discharged for violation of Section 1, above, may have recourse to the procedures of Article 9 to determine only if the employee did, in fact, violate the provisions of Section 1 of this Article; but not for the purpose of modifying the discipline imposed where a violation is found to have occurred.

ARTICLE 8. - LOCAL ADMINISTRATIVE COMMITTEE (LAC)

SECTION 1. MEETINGS

The Local Administrative Committee (LAC) will meet on a regular basis to 1) implement and oversee the Agreement procedures and initiatives; 2) monitor the effectiveness of the Agreement; and 3) identify opportunities to improve efficiency and work execution.

SECTION 2. COMPOSITION

The LAC will be co-chaired by the President of the Middlesex County Building and Construction Trades Council or his designee, and designated official of the GC. It will be comprised of representatives of the local unions signatory to the project labor agreement (PLA) and representatives of the GC and other contractors on the project.

ARTICLE 9 - GRIEVANCE & ARBITRATION PROCEDURE

SECTION 1. PROCEDURE FOR RESOLUTION OF GRIEVANCES

Any question, dispute or claim arising out of, or involving the interpretation or application of this Agreement (other than jurisdictional disputes or alleged violations of Article 7, Section 1) shall be considered a grievance and shall be resolved pursuant to the exclusive procedure of the steps described below; provided, in all cases, that the question, dispute or claim arose during the term of this Agreement.

Step 1:

(a) When any employee covered by this Agreement feels aggrieved by a claimed violation of this Agreement, the employee shall, through the Local Union business representative or job steward give notice of the claimed violation to the work site representative of the involved Contractor. To be timely, such notice of the grievance must be given within seven calendar days after the act, occurrence, or event giving rise to the grievance, or after the act, occurrence or event became known or should have become known to the Union. The business representative of the Local Union or the job steward and the
work site representative of the involved Contractor shall meet and endeavor to adjust the matter within seven calendar days after timely notice has been given. If they fail to resolve the matter within the prescribed period, the grieving party, may, within 7 calendar days thereafter, pursue Step 2 of the grievance procedure by serving the involved Contractor and the General Contractor with written copies of the grievance setting forth a description of the claimed violation, the date on which the grievance occurred, the provisions of the Agreement alleged to have been violated. Grievances and disputes settled at Step 1 are non-precedential except as to the specific Local Union, employee and Contractor directly involved, unless the settlement is accepted in writing, by the General Contractor, as creating a precedent.

(b) Should any signatory to this Agreement have a dispute (excepting jurisdictional disputes or alleged violations of Article 7, Section 1) with any other signatory to this Agreement and, if after conferring, a settlement is not reached within seven calendar days, the dispute shall be reduced to writing and proceed to Step 2 in the same manner as outlined in subparagraph (a) for the adjustment of employee grievances.

Step 2:

The Business Manager or designee of the involved Local Union, together with representatives of the BTC, the involved Contractor, and the General Contractor shall meet in Step 2 within 5 calendar days of the written grievance to arrive at a satisfactory settlement.

Step 3:

(a) If the grievance shall have been submitted but not resolved in Step 2, any of the participating Step 2 entities may, within 14 calendar days after the initial Step 2 meeting, submit the grievance in writing (copies to other participants) to the next available arbitrator of the panel of arbitrators consisting of __________ Esq., __________ and __________, who shall serve as arbitrator under this expedited procedure. The Labor Arbitration Rules of the American Arbitration Association shall govern the conduct of the arbitration hearing, at which all Step 2 participants shall be parties. Hearings shall be held at the jobsite or at the Newark office of the New Jersey State Board of Mediation, as directed by the Arbitrator.

The decision of the Arbitrator shall be final and binding on the involved Contractor Local Union and employees and the fees and expenses of such arbitration's shall be borne equally by the involved Contractor and Local Union.
(b) Failure of the grieving party to adhere to the time limits set forth in this Article shall render the grievance null and void. These time limits may be extended only by written consent of the GC, involved Contractor and involved Local Union at the particular step where the extension is agreed upon. The Arbitrator shall have authority to make decisions only on the issues presented to him and shall not have the authority to change, add to, delete or modify any provision of this Agreement.

SECTION 2. LIMITATION AS TO RETROACTIVITY

No arbitration decision or award may provide retroactivity of any kind exceeding 30 calendar days prior to the date of service of the written grievance on the construction Project Manager and the involved Contractor or Local Union.

SECTION 3. PARTICIPATION BY GENERAL CONTRACTOR

The General Contractor shall be notified by the involved Contractor of all actions at Steps 2 and 3 and, at its election, may participate in full in all proceedings at these Steps, including Step 3 arbitration.

ARTICLE 10 - JURISDICTIONAL DISPUTES

SECTION 1. NO DISRUPTIONS

There will be no strikes, sympathy strikes, work stoppages, slowdowns, picketing or other disruptive activity of any kind arising out of any jurisdictional dispute. Pending the resolution of the dispute, the work shall continue uninterrupted and as assigned by the Contractor. No jurisdictional dispute shall excuse a violation of Article 7.

SECTION 2. ASSIGNMENT

A. There shall be a mandatory pre-job markup/assignment meeting prior to the commencement of any work. Attending such meeting shall be designated representatives of the Union signatories to this Agreement, the GC, and the involved Contractors. Best efforts will be made to schedule the pre-job meeting in a timely manner after Notice to Proceed is issued but not later than 30 days prior to the start of the Project.

B. All Project construction work assignments shall be made by the Contractor according to criteria set forth in Section 3, Subsection D 1-3.

C. When a Contractor has made an assignment of work, he shall continue the assignment without alteration unless otherwise directed by an arbitrator or there is agreement between the
National or International Unions involved. Claims of a change of original assignment shall be processed in accordance with Article I of the Procedural Rules of the Plan for the Settlement of Jurisdictional Disputes in the Construction Industry ("the Plan").

D. In the event that a Union involved in the change of original assignment dispute is an affiliate of a National or International Union that is not affiliated with the Building and Construction Trades Department and does not wish to process a case through the Plan, the parties shall mutually select one of the following Arbitrators: Arbitrator _____________, Arbitrator _____________ or Arbitrator _______________ and submit the dispute directly to the Arbitrator. The selected Arbitrator shall determine whether the case requires a hearing or may be decided upon written submissions. In rendering his determination on whether there has been a change of original assignment, the Arbitrator shall be governed by the following:

1. The contractor who has the responsibility for the performance and installation shall make a specific assignment of the work which is included in his contract to a particular union(s). For instance, if contractor A subcontracts certain work to contractor B, then contractor B shall have the responsibility for making the specific assignments for the work included in his contract. If contractor B, in turn shall subcontract certain work to contractor C, then contractor C shall have the responsibility for making the specific assignment for the work included in his contract. After work has been so assigned, such assignment will be maintained even though the assigning contractor is replaced and such work is subcontracted to another contractor. It is a violation of the Agreement for the contractor to hold up disputed work or shut down a project because of a jurisdictional dispute.

2. When a contractor has made an assignment of work, he shall continue the assignment without alteration unless otherwise directed by an arbitrator or there is agreement between the National or International Unions involved.

 a. Unloading and/or handling of materials to stockpile or storage by a trade for the convenience of the responsible contractor when his employees are not on the job site, or in an emergency situation, shall not be considered to be an original assignment to that trade.

 b. Starting of work by a trade without a specific assignment by an authorized representative of the responsible contractor shall not be considered an original assignment to that trade, provided that the responsible contractor, or his authorized representative, promptly, and, in any event, within eight working hours following the start of work, takes positive steps to stop further unauthorized performance of the work by that trade.

SECTION 3. PROCEDURE FOR SETTLEMENT OF DISPUTES

A. Any Union having a jurisdictional dispute with respect to Project work assigned to another Union will submit through its International the dispute in writing to the Administrator of the Plan within 72 hours and send a copy of the letter to the other Union involved, the Contractor involved, the General Contractor, the BTC, and the district or area councils of the unions involved. Upon receipt of
a dispute letter from any Union, the Administrator will invoke the procedures set forth in the Plan to resolve the jurisdictional dispute. The jurisdictional dispute letter shall contain the information described in Article IV of the Procedural Rules of the Plan.

B. Within 5 calendar days of receipt of the dispute letter, there shall be a meeting of the General Contractor, the Contractor involved, the Local Unions involved and designees of the BTC and the district or area councils of the Local Unions involved for the purpose of resolving the jurisdictional dispute.

C. In order to expedite the resolution of jurisdictional disputes, the parties have agreed in advance to mutually select one of the following designated Arbitrators: Arbitrator __________, Arbitrator ________________ or Arbitrator ________________ to hear all unresolved jurisdictional disputes arising under this Agreement. All other rules and procedures of the Plan shall be followed. If none of the three Arbitrators is available to hear the dispute within the time limits of the Plan, the Plan's arbitrator selection process shall be utilized to select another arbitrator.

D. In the event that a Union involved in the dispute is an affiliate of a National or International Union that is not affiliated with the Building and Construction Trades Department and does not wish to process a case through the Plan as described in paragraphs A-C above, the parties to the dispute shall mutually select one of the following Arbitrators: Arbitrator __________, Arbitrator ________________ or Arbitrator ________________ to hear the dispute and shall submit the dispute directly to the selected arbitrator. The time limits for submission and processing disputes shall be the same as provided elsewhere in this Section. The selected Arbitrator shall schedule the hearing within seven business days from the date of submission. If he cannot hear the case within the required timeframe, one of the other Arbitrators will be selected to hear the case unless all parties to the dispute agree to waive the seven day time limit. In rendering his decision, the Arbitrator shall determine:

1. First whether a previous agreement of record or applicable agreement, including a disclaimer agreement, between the National and International Unions to the dispute governs;

2. Only if the Arbitrator finds that the dispute is not covered by an appropriate or applicable agreement of record or agreement between the crafts to the dispute, he shall then consider the established trade practice in the industry and prevailing practice in the locality. Where there is a previous decision of record governing the case, the Arbitrator shall give equal weight to such decision of record, unless the prevailing practice in the locality in the past ten years favors one craft. In that case, the Arbitrator shall base his decision on the prevailing practice in the locality. Except, that if the Arbitrator finds that a craft has improperly obtained the prevailing practice in the locality through raiding, the undercutting of wages or by the use of vertical agreements, the Arbitrator shall rely on the decision of record and established trade practice in the industry rather than the prevailing practice in the locality.

3. Only if none of the above criteria is found to exist, the Arbitrator shall then consider that because efficiency, cost or continuity and good management are essential to the well being of the industry, the interests of the consumer or the past practices of the employer shall not be ignored.

The Arbitrator shall set forth the basis for his decision and shall explain his findings regarding the applicability of the above criteria. If lower-ranked criteria are relied upon, the Arbitrator shall explain
why the higher-ranked criteria were not deemed applicable. The Arbitrator’s decision shall only apply to the job in dispute.

Each party to the arbitration shall bear its own expense for the arbitration and agrees that the fees and expenses of the Arbitrator shall be borne by the losing party or parties as determined by the Arbitrator.

E. The Arbitrator shall render a short-form decision within 5 days of the hearing based upon the evidence submitted at the hearing, with a written decision to follow within 30 days of the close of hearing.

F. This Jurisdictional Dispute Resolution Procedure will only apply to work performed by Local Unions that represent workers employed on the Project.

G. Any Local Union involved in a jurisdictional dispute on this Project shall continue working in accordance with Section 2 above and without disruption of any kind.

SECTION 4. AWARD

Any award rendered pursuant to this Article and the Plan shall be final and binding on the disputing Local Unions and the involved Constructor on this Project only and may be enforced in accordance with the provisions of Article VII of the Plan. Any award rendered pursuant to the alternate procedures of this Article shall be final and binding on the disputing Local Unions and the involved Contractor on this Project only, and may be enforced in any court of competent jurisdiction. Such award or resolution shall not establish a precedent on any other construction work not covered by this Agreement. In all disputes under this Article, the General Contractor and the involved Contractors shall be considered parties in interest.

SECTION 5. LIMITATIONS

The Arbitrator shall have no authority to assign work to a double crew, that is, to more employees than the minimum required by the Contractor to perform the work involved; nor to assign work to employees who are not qualified to perform the work involved; nor to assign work being performed by non-union employees to union employees. This does not prohibit the establishment, with the agreement of the involved Contractor, of composite crews where more than one employee is needed for the job. The aforesaid determinations shall decide only to whom the disputed work belongs.

SECTION 6. NO INTERFERENCE WITH WORK

A. There shall be no interference or interruption of any kind with the work of the Project while any jurisdictional dispute is being resolved. The work shall proceed as assigned by the Contractor until finally resolved under the applicable procedure of this Article. The award shall be confirmed in writing to the involved parties. There shall be no strike, work stoppage or interruption in protest of any
such award. Any claims of a violation of this section shall be submitted and processed in accordance with the impediment to job progress provisions of the Plan.

B. In the event a Union alleged to have engaged in an impediment to job progress is an affiliate of a National or International Union that is not affiliated with the Building and Construction Trades Department and does not wish to have the impediment to job progress charge processed through the Plan, the parties to the dispute shall mutually select one of the three Arbitrators designated in this Article to hear the dispute. The selected Arbitrator shall schedule the hearing within two business days from the date of submission. If he cannot hear the case within the required timeframe, one of the other Arbitrators shall be selected by the parties to hear the case unless all parties to the dispute agree to waive the two day time limit. The sole issue at the hearing shall be whether or not a violation of this Section has in fact occurred, and the Arbitrator shall have no authority to consider any matter in justification, explanation or mitigation of such violation or to award damages. The Arbitrator's decision shall be issued in writing within 3 hours after the close of the hearing, and may be issued without an opinion. If any party desires an opinion, one shall be issued within 15 days, but its issuance shall not delay compliance with, or enforcement of, the decision. The Arbitrator may order cessation of the violation of this Section and other appropriate relief, and such decision shall be served on all parties by facsimile upon issuance. Each party to the arbitration shall bear its own expense for the arbitration and agrees that the fees and expenses of the Arbitrator shall be borne by the losing party or parties as determined by the Arbitrator.

ARTICLE 11 - WAGES AND BENEFITS

SECTION 1. CLASSIFICATION AND BASE HOURLY RATE

All employees covered by this Agreement shall be classified in accordance with the work performed and paid the base hourly wage rates for those classifications as specified in the attached Schedule A, as amended during this Agreement. Recognizing, however, that special conditions may exist or occur on the Project, the parties, by mutual agreement may establish rates and/or hours for one or more classifications, which may differ from Schedule A. Parties to such agreements shall be the General Contractor, the Contractor involved, the involved Local Unions and the BTC.

SECTION 2. EMPLOYEE BENEFIT FUNDS

A. The Contractors agree to pay contributions on behalf of all employees covered by this Agreement to the established employee benefit funds in the amounts designated in the appropriate Schedule A. Bona fide jointly trusted fringe benefit plans established or negotiated through collective bargaining during the life of this Agreement may be added.

B. The Contractor agrees to be bound by the written terms of the legally established Trust Agreements specifying the detailed basis on which payments are to be paid into, and benefits paid out of, such Trust Funds but only with regard to work done on this Project and only for those employees to whom this Agreement requires such benefit Payments.
C. Should any contractor or sub-contractor become delinquent in the payment of contributions to the fringe benefit funds, then the subcontractor at the next higher tier, or upon notice of the delinquency claim from the Union or the Funds, agrees to withhold from the subcontractor such disputed amount from the next advance, or installment payment for work performed and the amount claimed and owed will be paid within thirty (30) days after receipt of the notification by the General Contractor, if not paid prior to said date by the delinquent contractor/subcontractor.

ARTICLE 12 - HOURS OF WORK, PREMIUM PAYMENTS, SHIFTS AND HOLIDAYS

SECTION 1. WORK WEEK AND WORK DAY

A. The standard work week shall consist of 40 hours of work at straight time rates per one of the following schedule:

1) Five-Day Work Week: Monday-Friday, 5 days, 8 hours plus 1/2 hour unpaid lunch period each day.

B. The Day Shift shall commence between the hours of 6:00 a.m. and 9:00 a.m. and shall end between the hours of 2:30 p.m. and 5:30 p.m. Starting and quitting times shall occur at the employees' place of work as may be designated by the Contractor in accordance with area practice. The Contractor is not required to schedule a Day shift.

C. Second/Shift - The second shift (starting at 5:00 p.m. and ending at 1:30 a.m.) shall consist of 8 hours work for an equal number of hours pay at the straight time rate plus 15% in lieu of overtime and exclusive of a 1/2 hour unpaid lunch period. It is not necessary to work a day shift in order to schedule a second shift.

D. Notice - Contractors shall provide not less than 5 days prior notice to the Local Union involved as to the work week and work hours schedules to be worked or such lesser notice as may be mutually agreed upon.

SECTION 2. OVERTIME

Overtime pay for hours outside of the standard work week and work day, described in paragraph A above, shall be paid in accordance with the applicable Schedule A. There will be no restriction upon the Contractor's scheduling of overtime or the non-discriminatory designation of employees who shall be worked, except as noted in Article 5, Section 2. There shall be no pyramiding of overtime pay under any circumstances. The Contractor shall have the right to schedule work so as to minimize overtime.

SECTION 3. SHIFTS
A. Flexible Schedules - Scheduling of shift work shall remain flexible in order to meet Project schedules and existing Project conditions including the minimization of interference with traffic. Shifts must be worked a minimum of five consecutive work days, must have prior approval of the Owner and GC and must be scheduled with not less than five work days notice to the Local Union.

B. Flexible Starting Times - Shift starting times will be adjusted by the Contractor as necessary to fulfill Project requirements subject to the notice requirements of Paragraph A.

D. It is agreed that when project circumstances require a deviation from the above shifts, the involved unions, contractors and the General Contractor shall adjust the starting times of the above shifts or establish shifts which meet the project requirements. It is agreed that neither party will unreasonably withhold their agreement.

SECTION 4. HOLIDAYS

A. Schedule - There shall be 8 recognized holidays on the Project:

New Years Day
Presidents Day
Memorial Day
Fourth of July
Labor Day
Veterans Day
Thanksgiving Day
Christmas Day

* Presidential Election Day shall be observed as a holiday in a general election year. Work shall be scheduled on Good Friday pursuant to the craft’s Schedule A. All said holidays shall be observed on the dates designated by New Jersey State Law. In the absence of such designations, they shall be observed on the calendar date except those holidays which occur on Sunday shall be observed on the following Monday. Holidays falling on Saturday are to be observed on the preceding Friday.

B. Payment - Regular holiday pay, if any, and/or premium pay for work performed on such a recognized holiday shall be in accordance with the applicable Schedule A.

C. Exclusivity - No holidays other than those listed in Section 4-A above shall be recognized nor observed.

SECTION 5. REPORTING PAY

A. Employees who report to the work location pursuant to regular schedule and who are not provided with work or whose work is terminated early by a Contractor, for whatever reason, shall receive minimum reporting pay in accordance with the applicable Schedule A.

B. When an employee, who has completed their scheduled shift and left the Project site, is "called back" to perform special work of a casual, incidental or irregular nature, the employee shall receive pay for actual hours worked with a minimum guarantee, as may be required by the applicable Schedule A.
C. When an employee leaves the job or work location of their own volition or is discharged for cause or is not working as a result of the Contractor's invocation of Section 7 below, they shall be paid only for the actual time worked.

D. Except as specifically set forth in this Article there shall be no premiums, bonuses, hazardous duty, high time or other special payments of any kind.

E. There shall be no pay for time not actually worked except as specifically set forth in this Agreement or except where specifically provided in an applicable Schedule A.

SECTION 6. PAYMENT OF WAGES

A. Payday - Payment shall be made by check, drawn on a New Jersey bank with branches located within commuting distance of the job site. Paychecks shall be issued by the Contractor at the job site by 10 a.m. on Thursdays. In the event that the following Friday is a bank holiday, paychecks shall be issued on Wednesday of that week. Not more than 3 days wages shall be held back in any pay period. Paycheck stubs shall contain the name and business address of the Contractor, together with an itemization of deductions from gross wages.

B. Termination-Employees who are laid-off or discharged for cause shall be paid in full for that which is due them at the time of termination. The Contractors shall also provide the employee with a written statement setting forth the date of lay off or discharge.

SECTION 7. EMERGENCY WORK SUSPENSION

A Contractor or GC may, if considered necessary for the protection of life and/or safety of employees or others, suspend all or a portion of Project Work. In such instances, employees will be paid for actual time worked; provided, however, that when a Contractor request that employees remain at the job site available for work, employees will be paid for "stand-by" time at their hourly rate of pay.

SECTION 8. INJURY/DISABILITY

An employee who, after commencing work, suffers a work-related injury or disability while performing work duties, shall receive no less than 8 hours wages for that day. Further, the employee shall be rehired at such time as able to return to duties provided there is still work available on the Project for which the employee is qualified and able to perform.

SECTION 9. TIME KEEPING
A Contractor may utilize brassing or other systems to check employees in and out. Each employee must check in and out. The Contractor will provide adequate facilities for checking in and out in an expeditious manner.

SECTION 10. MEAL PERIOD

A Contractor shall schedule an unpaid period of not more than 1/2 hour duration at the work location between the 3rd and 5th hour of the scheduled shift. A Contractor may, for efficiency of operation, establish a schedule which coordinates the meal periods of two or more crafts. If an employee is required to work through the meal period, the employee shall be compensated in a manner established in the applicable Schedule A.

SECTION 11. BREAK PERIODS

There will be no rest periods, organized coffee breaks or other non-working time established during working hours. Individual coffee containers will be permitted at the employee’s work location. Local area practice will prevail for coffee breaks that are not organized.

ARTICLE 13 - APPRENTICES

SECTION 1. RATIOS

Recognizing the need to maintain continuing supportive programs designed to develop adequate numbers of competent workers in the construction industry and to provide craft entry opportunities for minorities, women and economically disadvantaged non-minority males, Contractors will employ apprentices in their respective crafts to perform such work as is within their capabilities and which is customarily performed by the craft in which they are indentured. Contractors may utilize apprentices and such other appropriate classifications as are contained in the applicable Schedule A in a ratio not to exceed the ratio provided in the applicable Schedule A providing prevailing wage and fringe benefits as defined in N.J.S.A. 34:11-56.26(9) for the classification in Middlesex County, New Jersey. Apprentices and such other classifications as are appropriate shall be employed in a manner consistent with the provisions of the appropriate collective bargaining agreement listed in Schedule A.

SECTION 2. DEPARTMENT OF LABOR

To assist the Contractors in attaining a maximum effort on this Project, the Unions agree to work in close cooperation with, and accept monitoring by, the New Jersey State and Federal Departments of Labor to ensure that minorities, women, or economically disadvantaged are afforded opportunities to participate in apprenticeship programs which result in the placement of apprentices on this Project. To further ensure that this Contractor effort is attained, up to 50% of the apprentices placed on this Project should be first year, minority, women or economically disadvantaged apprentices.
The Local Unions will cooperate with Contractor request for minority, women or economically disadvantaged referrals to meet this Contractor effort.

SECTION 3. HELMETS TO HARDHATS

The Employers and the Unions recognize a desire to facilitate the entry into the building and construction trades of veterans who are interested in careers in the building and construction industry. The Employers and Unions agree to utilize the services of the Center for Military recruitment, Assessment and Veterans Employment (hereinafter “Center”) and the Center’s "Helmets to Hardhats" program to serve as a resource for preliminary orientation, assessment of construction aptitude, referral to apprenticeship programs or hiring halls, counseling and mentoring, support network, employment opportunities and other needs as identified by the parties.

The Unions and Employers agree to coordinate with the Center to create and maintain an integrated database of veterans interested in working on the Project and of apprenticeship and employment opportunities for the Project. To the extent permitted by law, the Unions will give credit to such veterans for bona fide, provable past experience.

ARTICLE 14 - SAFETY PROTECTION OF PERSON AND PROPERTY

SECTION 1. SAFETY REQUIREMENTS

Each Contractor will ensure that applicable OSHA requirements and other requirements set forth in the contract documents are at all times maintained on the Project and the employees and Unions agree to cooperate fully with these efforts. Employees must perform their work at all times in a safe manner and protect themselves and the property of the Contractor and the Owner from injury or harm. Failure to do so will be grounds for discipline, including discharge.

SECTION 2. CONTRACTOR RULES

Employees covered by this Agreement shall at all times be bound by the reasonable safety, security, and visitor rules as established by the Contractors and the GC for this Project. Such rules will be published and posted in conspicuous places throughout the Project.

SECTION 3. INSPECTIONS

The Contractors and GC retain the right to inspect incoming shipments of equipment, apparatus, machinery and construction materials of every kind.

ARTICLE 15 - NO DISCRIMINATION
SECTION 1. COOPERATIVE EFFORTS

The Contractors and Unions agree that they will not discriminate against any employee or applicant for employment because of race, color, religion, sex, national origin or age in any manner prohibited by law or regulation. It is recognized that special procedures maybe established by Contractors and Local Unions and the New Jersey State Department of Labor for the training and employment of persons who have not previously qualified to be employed on construction projects of the type covered by this Agreement. The parties to this Agreement will assist in such programs and agree to use their best efforts to ensure that the goals for female and minority employment are met on this Project.

SECTION 2. LANGUAGE OF AGREEMENT

The use of the masculine or feminine gender in this Agreement shall be construed as including both genders.

ARTICLE 16 - GENERAL TERMS

SECTION 1. PROJECT RULES

The GC and the Contractors shall establish such reasonable Project rules as are appropriate for the good order of the Project, provided they do not violate the terms of this agreement. These rules will be explained at the pre-job conference and posted at the Project site and may be amended thereafter as necessary. Failure of an employee to observe these rules and regulations shall be grounds for discipline, including discharge. The fact that no order was posted prohibiting a certain type of misconduct shall not be a defense to an employee disciplined or discharged for such misconduct when the action taken is for cause.

SECTION 2. TOOLS OF THE TRADES

The welding/cutting torch and chain fall, are tools of the trade having jurisdiction over the work performed. Employees using these tools shall perform any of the work of the trade. There shall be no restrictions on the emergency use of any tools or equipment by any qualified employee or on the use of any tools or equipment for the performance of work within the employee's jurisdiction.

SECTION 3. SUPERVISION

Employees shall work under the supervision of the craft foreperson or general foreperson.
SECTION 4. TRAVEL ALLOWANCES

There shall be no payments for travel expenses, travel time, subsistence allowance or other such reimbursements or special pay except as expressly set forth in this Agreement and in Schedule A.

SECTION 5. FULL WORK DAY

Employees shall be at their staging area at the starting time established by the Contractor and shall be returned to their staging area by quitting time after performing their assigned functions under the supervision of the Contractor. The signatories reaffirm their policy of a fair day's work for a fair day's wage.

SECTION 6. COOPERATION

The General Contractor and the Unions will cooperate in seeking any NJ State Department of Labor approvals that may be required for implementation of any terms of this Agreement.

ARTICLE 17 - SAVINGS AND SEPARABILITY

SECTION 1. THIS AGREEMENT

In the event that the application of any provision of this Agreement is enjoined, on either an interlocutory or permanent basis, or otherwise found in violation of law, the provision involved shall be rendered, temporarily or permanently, null and void but the remainder of the Agreement shall remain in full force and effect. In such event, the Agreement shall remain in effect for contracts already bid and awarded or in construction where the Contractor voluntarily accepts the Agreement. The parties to this Agreement will enter into negotiations for a substitute provision in conformity with the law and the intent of the parties for contracts to be let in the future.

SECTION 2. THE BID SPECIFICATIONS

In the event that the General Contractor's bid specifications, or other action, requiring that a successful bidder become signatory to this Agreement is enjoined, on either an interlocutory or permanent basis, or otherwise found in violation of law such requirement shall be rendered, temporarily or permanently, null and void but the Agreement shall remain in full force and effect to the extent allowed by law. In such event, the Agreement shall remain in effect for contracts already bid and awarded or in constructions where the Contractor voluntarily accepts the Agreement. The parties will
enter into negotiations as to modifications to the Agreement to reflect the court action taken and the intent of the parties for contracts to be let in the future.

SECTION 3. NON-LIABILITY

In the event of an occurrence referenced in Section 1 or Section 2 of this Article, neither the Owner, the Architect, the Construction Manager, the GC, or any Contractor, or any signatory Union shall be liable, directly or indirectly, for any action taken, or not taken, to comply with any court order, injunction or determination. Project bid specifications will be issued in conformance with court orders in effect and no retroactive payments or other action will be required if the original court determination is ultimately reversed.

SECTION 4. NON-WAIVER

Nothing in this Article shall be construed as waiving the prohibitions of Article 7 as to signatory Contractors and signatory Unions.

ARTICLE 18 - FUTURE CHANGES IN SCHEDULE A AREA CONTRACTS

SECTION 1. CHANGES TO AREA CONTRACTS

A. Schedule A to this Agreement shall continue in full force and effect until the Contractor and/or Union parties to the Area Collective Bargaining Agreements which are the basis for Schedule A notify the General Contractor in writing of the mutually agreed upon changes in provisions of such agreements which are applicable to the Project, and their effective dates.

B. It is agreed that any provisions negotiated into Schedule A collective bargaining agreements will not apply to work on this Project if such provisions are less favorable to this Project than those uniformly required of contractors for construction work normally covered by those agreements; nor shall any provisions be recognized or applied on this Project if it may be construed to apply exclusively, or predominantly, to work covered by this Project Agreement.

C. Any disagreement between signatories to this Agreement over the incorporation into Schedule "A" of provisions agreed upon in the renegotiations of Area Collective Bargaining Agreements shall be resolved in accordance with the procedure set forth in Article 9 of this Agreement.

SECTION 2. LABOR DISPUTES DURING AREA CONTRACT NEGOTIATIONS

The Unions agree that there will be no strikes, work stoppages, sympathy actions, picketing, slowdowns or other disruptive activity or other violations of Article 7 affecting the Project by any Local
Union involved in the renegotiations of Area Local Collective Bargaining Agreements nor shall there by any lock-out on the Project affective a Local Union during the course of such renegotiations.

IN WITNESS WHEREOF the parties have caused this Agreement to be executed and effective as of the day of 2020

Township of Woodbridge

Middlesex County Building and Construction Trades Council, AFL-CIO

General Contractor

UNION AFFILIATES:

Asbestos Workers, Local 32

Boilermaker, Local 28

Bricklayers and Allied Crafts, Local 5

Bricklayers and Allied Crafts, Local 2

Carpenters, Locals 254
Dockbuilders, Local 1456
Electrical Workers, Local 456
Elevator Constructors, Local 1
Glaziers, Local 1009
Ironworkers, Local 11
Laborers, Local 77
Heavy Construction Laborers, Local 472
Laborers, Local 78
Operating Engineers, Local 825
Operative Plasterers, Local 8
Painters District Council 7
Plumbers, Local 9
Roofers, Local 4
Sheet Metal Workers, Local 27
Sprinkler Fitters, Local 696
Tapers, Local 1976
Tile/Marbleferrazo Workers, Local 7
Teamsters, Local 469
SCHEDULE A

A COPY OF EACH UNION’S CURRENT COLLECTIVE BARGAINING AGREEMENT IS INCLUDED AS PART OF SCHEDULE A BY REFERENCE, UPON EXECUTION BY THE SIGNATORY LOCAL.
SCHEDULE B

SCOPE OF WORK
PROJECT LABOR AGREEMENT
COVERING CONSTRUCTION OF THE TOWNSHIP OF WOODBRIDGE
CLUB AT WOODBRIDGE PROJECT IN WOODBRIDGE, NEW JERSEY

The parties hereby agree that all Tele-data work and associated electrical work performed on any of the sites during construction shall be done by employees represented by the signatory unions. For the purpose of this Agreement, Tele-data work shall include, but not limited to, the following: All receiving, placement, installation, operation, testing, inspection, maintenance, repair and service of radio, television, video, data, voice, sound, emergency call, microwave and visual production and reproduction apparatus, equipment and appliances used for domestic, commercial, education and entertainment purposes; all installation and erection of equipment, apparatus or appliance, cables and/or wire, emergency power (batteries) and all directly related work which becomes an integral part of the telecommunication and/or telecommunications related systems repair and service maintenance work of telecommunications systems and devices including, but not limited to, Private Branch Exchanges (PBX-PABX), Key equipment-owned, CCTV, CATV, card access, Systems RS 232 ethernet and/or any local area network system associated with computer installation.

____________________________________ SIGNATORY UNIONS
By: __________________________________ By: __________________________
PROJECT LABOR AGREEMENT

COVERING CONSTRUCTION OF THE TOWNSHIP OF WOODBRIDGE CLUB AT WOODBRIDGE PROJECT IN WOODBRIDGE, NEW JERSEY

Owner, General Contractor and all signatory contractors and their subcontractors of whatever tier agree that when subcontracting for prefabrication of H.V.A.C. duct and other related sheet metal, such prefabrication shall be subcontracted to fabricators who pay their employees engaged in such fabrication not less than the prevailing wage for comparable sheet metal fabrication as established under agreements between local affiliates of Sheet Metal Workers' International Association and local sheet metal fabricators.

Owner, General Contractor and all signatory contractors and their subcontractors of whatever tier and the Sheet Metal Workers' International Association agree to work with fabrication shops referenced in the Addendum. This joint effort will be directed at improving fabricators' competitiveness through the application of continuous improvement principles.

_______________________________ ________________________________
General Contractor Sheet Metal Workers'
 International Assoc. Local #27
PROJECT LABOR AGREEMENT
COVERING CONSTRUCTION OF THE TOWNSHIP OF WOODBRIDGE
CLUB AT WOODBRIDGE PROJECT IN WOODBRIDGE, NEW JERSEY

LETTER OF ASSENT

Re: Project Labor Agreement
Middlesex County Building & Trades Council, AFL-CIO
and County of Middlesex (the "Agreement")

The undersigned, as a General Contractor, Contractor(s) or Subcontractor(s) on a Contract which is part of the construction on the Club at Woodbridge Project for the Township of Woodbridge, for and in consideration of the award of a Contract to perform work on said Project, and in further consideration of the mutual promises made in the Project Labor Agreement, a copy of which was received and is acknowledged, hereby:

(1) On behalf of itself and all its employees, accepts and agrees to be bound by the terms and conditions of the Project Labor Agreement, together with any and all amendments and supplements now existing or which are later made thereto, and understands that any act of non-compliance with all such terms and conditions will subject the non-complying Contractor or employee(s) to being prohibited from the Project Site until full compliance is obtained.

(2) Certifies that it has no commitments or agreements that would preclude its full compliance with the terms and conditions of said Project Labor Agreement.

(3) Agrees to secure from any Contractor(s) (as defined in said Project Labor Agreement) which is or becomes a Subcontractor(s) (of any tier), a duly executed Letter of Assent in form identical to this document prior to commencement of any work.

Company Name

By: ___________________________ Contract Number: ___________________________

Title: ___________________________ General Contractor: ___________________________

Date: ___________________________

cc: (Unions employed by Contractor)
SECTION 00 3101 - BID DOCUMENT CHECKLIST

These instructions are to be considered an integral part of the proposal; to be included with the proposal and submitted with Bidders proposal in a sealed envelope.

BID FOR: __

Please find attached our proposal. Also enclosed with the proposal are:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bid Proposal Form w/attachments</td>
<td>YES</td>
</tr>
<tr>
<td>2.</td>
<td>Proposed Security: Cashier’s Check, Certified Check, Bid Bond</td>
<td>YES</td>
</tr>
<tr>
<td>3.</td>
<td>“Consent of Surety” Statement</td>
<td>YES</td>
</tr>
<tr>
<td>4.</td>
<td>Bidder’s Affidavit</td>
<td>YES</td>
</tr>
<tr>
<td>5.</td>
<td>Non-Collusion Affidavit</td>
<td>YES</td>
</tr>
<tr>
<td>6.</td>
<td>Corporate Disclosure Certification</td>
<td>YES</td>
</tr>
<tr>
<td>7.</td>
<td>Mandatory Equal Employment Opportunity Language</td>
<td>YES</td>
</tr>
<tr>
<td>8.</td>
<td>Affirmative Action Compliance Notice & Affirmative Action Language</td>
<td>YES</td>
</tr>
<tr>
<td>9.</td>
<td>Americans with Disability Act Language</td>
<td>YES</td>
</tr>
<tr>
<td>10.</td>
<td>New Jersey Business Registration Certificate from all</td>
<td>YES</td>
</tr>
<tr>
<td>11.</td>
<td>Public Works Contractor Registration Certification</td>
<td>YES</td>
</tr>
<tr>
<td>12.</td>
<td>Acknowledgement of Receipt of Addenda</td>
<td>YES</td>
</tr>
<tr>
<td>13.</td>
<td>Project Labor Agreement</td>
<td>YES</td>
</tr>
<tr>
<td>14.</td>
<td>Bid Document Checklist (This form)</td>
<td>YES</td>
</tr>
</tbody>
</table>

The undersigned hereby certifies that the attached proposal is genuine and is made without collusion with any person, firm, or corporation making a proposal for the same material, equipment or service.

COMPANY __

ADDRESS __

PHONE # __

FAX # __

DATE __

SIGNATURE __

TITLE __

END OF SECTION 00 3101
THE CLUB AT WOODBRIDGE
INDOOR ICE RINK
WOODBRIDGE, NJ
(Single Prime Contract)
for the
Township of Woodbridge
Woodbridge, Middlesex County, New Jersey 07095

Date ________________________________

A. CHECK LIST FOR BIDDERS

See “Bid Document Checklist” form for list of required enclosures. The listed enclosures, properly completed in duplicate (one original and one copy), and (where required) signed and sealed, are required to be submitted with this bid.

B. BASE BID:

1. We, ___, the Undersigned, will furnish all labor, material, equipment and services including $150,000 contingency allowance necessary for the complete construction, as defined in the Contract Documents for the Contract indicated below for The Club at Woodbridge, Indoor Ice Rink, 585 Main Street, Woodbridge, NJ in strict accordance with the Contract Documents and Addenda (if any) thereto as furnished by Woodbridge Township for the total sum of:

__ Dollars ($___________)

C. AGREEMENT: We, the Undersigned, agree, if awarded the Contract, to execute an agreement for the above stated work and compensation on the Woodbridge Township Contract form; and Waiver of Liens in such form as the Owner will direct.

D. SURETY: We, the Undersigned, agree, if awarded the Contract, to execute and deliver to the Owner, prior to the signing of the Contract, the Bonds as required by the Instructions to Bidders.

E. COMPLETION TIME: We, the Undersigned, agree, if awarded the Contract, to begin work within ten (10) days after Notice to Proceed and substantially complete the entire work to the satisfaction of the Owner and the Architect within the time stated below, as applicable.

Contract Completion: Three Hundred Sixty (360) calendar days after Notice To Proceed.

F. LIQUIDATED DAMAGES: We, the Undersigned, agree, if awarded the Contract, to the Liquidated Damages of $1,000.00 per calendar day if project completed beyond completion date.

H. SUBCONTRACTORS: List major subcontractors by trade with name, address, license number, if applicable, and submit a copy of their NJ license and NJ Business Registration with this bid. Site, Structural, Fire Protection, Plumbing, Mechanical, Electrical, Rink Refrigeration, and Ice Rink Dasher Board System.

Site: __

__
Structural:

__

Fire Protection:

__

Mechanical:

__

Electrical:

__

Ice Rink Refrigeration System (including floor):

__

Ice Rink Dasher Board:

__

I. STATEMENT:

1. We, the Undersigned, acting through its authorized officers and intending to be legally bound, agree that this bid proposal shall constitute an offer by the Undersigned to enter into a Contract with the acts and things therein provided, which offer shall be irrevocable for sixty (60) calendar days with additional thirty (30) day extension, pursuant to N.J.S.A. 42A:11-24 from the date of opening hereof and that the Owner may accept this offer at any time during said period by notifying the Undersigned of the acceptance of said offer.

2. We, the Undersigned, a sole proprietor/partnership/corporation (circle one) created and existing under the laws of the State of __________________, has its business address at

__

__

Telephone (___) ____________________

Dated ______________________________

Signed by ______________________________

Title ______________________________

Attested by ______________________________

Title ______________________________ (SEAL)

END OF SECTION 00 3102
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes Geotechnical Report for this project.
 2. Publish Date: March 21, 2019.

B. Report begins on next page, and consists of twenty (20) pages, not including this cover page.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 00 3132
REPORT OF SUBSURFACE EXPLORATION & GEOTECHNICAL ENGINEERING EVALUATION

The Club at Woodbridge
Woodbridge, Middlesex County, New Jersey

Submitted to:

Mr. Michael Thomas
T&M Associates
11 Tindall Road
Middletown, NJ 07748

March 21, 2019
FPA Job No. 14547.001R1
March 21, 2019

Mr. Michael Thomas, PE
T&M Associates
11 Tindall Road
Middletown, NJ 07748

Re: Report of Subsurface Exploration
& Geotechnical Engineering Assessment
THE CLUB AT WOODBRIDGE
Woodbridge Township, Middlesex County, New Jersey
FPA No. 14547.001R1

Dear Mr. Thomas:

INTRODUCTION

This report presents the results of our Subsurface Exploration and Geotechnical Engineering Assessment performed in connection with the proposed improvements to The Club at Woodbridge located at 585 Main Street, Woodbridge, New Jersey. The project site is designated as Block 191, Lot 10.02 on the Woodbridge Township Tax Map. The regional location of the project site is presented on Drawing No. 1, “Regional Location Plan.”

Based on our review of the plans provided by T&M, the proposed improvements will include converting the existing indoor tennis courts within the club building to an ice-skating rink. Bleachers are proposed around the new ice-skating rink. It is our understanding the proposed ice rink floor will be approximately 2 feet lower than the existing tennis court playing surface elevation. An addition to the existing club building is also proposed at the southeast corner of the property. The one-story steel framed structure will house a Zamboni and a compressor.

The purpose for our participation on the project at this time was to perform a subsurface exploration and geotechnical engineering assessment to facilitate the planning, design and construction of the proposed improvements. Our scope of work consisted of the subcontracting and technical observation of test borings, a geotechnical engineering assessment of the subsurface conditions encountered and the preparation of this geotechnical assessment report. Our services have been performed in accordance with our proposal dated January 22, 2019.
SUBSURFACE EXPLORATION

A subsurface exploration program consisting of 6 test borings was performed on March 20, 2019 to characterize the subsurface soil and groundwater conditions at the project site. The field work was performed by a subcontractor while under the full-time technical observation by a representative of French and Parrello Associates. The borings were field located based on correlations with existing site features.

The test borings, designated as B-1 through B-6, were advanced to depths ranging from approximately 18 feet to 24 feet below the existing ground surface using mud rotary drilling procedures. Soil samples were obtained from within the boreholes by advancing a standard 2-inch diameter split-spoon sampler. The sampler was driven in accordance with ASTM Test Method D-1586, The Standard Penetration Test. All soil samples were classified in the field using the Burmister Soil Classification System. The soil samples were returned to our in-house soils laboratory for further review. The approximate as-drilled test boring locations are presented on Drawing No. 2, “Test Boring Plan.”

The depth to groundwater was estimated based on the observed moisture content of the retrieved soil samples. Details of the drilling procedures, soil classifications, groundwater depths and Standard Penetration Test results are presented on the test boring logs in Appendix A.

SITE CONDITIONS

Regional Geology

Based on our review of published geologic literature pertaining to the project region, and our prior experience in the area, the native soils at the project site consist of glacial terminal moraine. The glacial soils typically consist of silt, sandy silt and silty sand with varying amounts of gravel and varying amounts of clay. The rock formation in this area is identified as Red Shale of Triassic Age on the Geologic Map of New Jersey and is generally encountered at depths in excess of 80 feet.

Encountered Subsurface Conditions

The soils encountered within the test borings were generally consistent with those reported in the published geologic literature. The test borings encountered glacial deposits composed of interbedded layers of granular and cohesive material. The granular glacial soils were composed of coarse to fine sand intermixed with varying amounts of coarse to fine gravel, silt and clay. The cohesive glacial soils were composed of silt and clay intermixed with varying amounts of coarse to fine sand and gravel.
Based on the results of the Standard Penetration Testing, the relative density of the granular glacial soils generally ranged from loose to medium dense. We note that very loose granular soils were encountered within borings B-5 and B-6 from 10 feet below the existing ground surface to 17 feet below the existing ground surface. The consistency of the cohesive glacial soils ranged from firm to stiff.

The static groundwater level was not encountered within the test borings; however, relatively high moisture of the soils was observed within test borings B-1, B-3 and B-4 at depths ranging from 8 feet to 14 feet below the existing ground surface. The observed moisture is likely a result of perched storm water. Seasonal and storm related fluctuations in the groundwater level, as well as the potential presence of perched groundwater, should be anticipated. For a more detailed description of the subsurface conditions encountered, please refer to the boring logs in Appendix A.

Seismicity

We have reviewed the guidelines presented in the New Jersey Edition of the 2015 International Building Code (IBC) regarding seismic design. Based upon subsurface data, we offer the following site characterization parameters:

- Short Period Spectral Acceleration (S_s)0.262g
- Spectral Acceleration @ 1 Second (S_1)0.069g
- Site Class ...D

DISCUSSIONS & RECOMMENDATIONS

General

Based on the results of our subsurface exploration and geotechnical engineering evaluation, it is our opinion that adequate ground support will be provided for the ice rink. The building addition that will house the Zamboni and compressor may be founded on conventional shallow foundations, provided that the estimated settlements are within tolerable limits. Discussions on shallow foundations and estimated settlements are provided herein.

The static groundwater level was not encountered within the test borings; however, relatively high moisture of the soils was observed within test borings B-1, B-3 and B-4 at depths ranging from 8 feet to 14 feet below the existing ground surface. The observed moisture is likely a result of perched storm water. If perched groundwater is encountered, we anticipate that dewatering may be performed using sump pumps placed within crushed stone.
Shallow Foundations

Shallow foundations may be designed utilizing an allowable bearing pressure of 2,000 psf. We recommend that continuous wall footings be a minimum of 24 inches in width and isolated column footings be a minimum of 36-inches square. In accordance with IBC regulations, the bottom of all reinforced concrete foundations exposed to outside ambient temperatures should extend to a minimum depth of 42 inches below the proposed grade for frost protection.

Our analyses indicate that footings loaded to the recommended allowable static bearing pressures will undergo total settlements on the order of 1.25-inches or less. We estimate that differential settlements will be approximately 1/2 inch or less over a horizontal distance of 40 feet.

Concrete Floor Slabs

Provided that the earthwork recommendations described herein are implemented, it is our opinion that a modulus of subgrade reaction equal to 150 pci should be utilized in the structural design of concrete slabs.

Foundation Excavations & Subgrade Preparation

We anticipate that the Contractor may utilize conventional earth excavating equipment for performing excavations for foundations. We recommend that all excavations for foundations be hand trimmed, in a workmanlike manner, and that the foundation subgrades be compacted using a walk-behind, smooth-drum, vibratory roller to further densify the subsoils and to delineate soft regions. Any areas exhibiting excessive yielding should be over-excavated and backfilled using compacted Type “G” fill or No. 57 Coarse Graded Aggregate. Fills should be placed in maximum 12 inch lifts and compacted to a minimum of 95 percent of their maximum dry density as determined by ASTM Test Method D-1557, The Modified Proctor Test. Additionally, we recommend that the foundation subgrade be over-excavated to allow for the placement of 6 inches of No. 57 Coarse Graded Aggregate. The crushed stone will serve as a work mat to preclude disturbance of the subgrade due to construction and inclement weather and will facilitate in-trench dewatering, if necessary. The gradational requirements for No. 57 Coarse Graded Aggregate and Type “G” fill are presented in Appendix B.

Site Preparation and Earthwork

Subsequent to the demolition of the existing tennis courts, the site should be proof-rolled using a minimum 20-ton, smooth drum vibratory roller. A minimum of 4 passes should be made across the ice rink subgrade. Any areas exhibiting excessive yielding should be over-excavated and backfilled using either compacted Type “G” fill or NJDOT No 57 Coarse Graded Aggregate. Fills should be placed in maximum 12-inch lifts and compacted to a minimum of 95 percent of their maximum dry density as determined by ASTM Test Method D-1557, The Modified Proctor Test.
The gradational requirements for NJDOT No. 57 Coarse Graded Aggregate and Type “G” fill are presented in Appendix C.

Fills

We anticipate that the in-situ granular soils may be suitable for re-use as backfill material in structural areas provided they are placed and compacted at a moisture content that is within approximately 2 percent of the optimum moisture content. However, it should be noted that these materials contain moderate to significant amounts of silt and clay which make them moisture sensitive and are therefore easily softened and disturbed when exposed to precipitation. It should be expected that the on-site soils will require careful moisture conditioning, including reworking to aerate and dry these materials, to obtain the optimal moisture content for proper compaction to the minimum densities specified above. Imported well graded granular fill material (Type “G” Fill) may also be used for compacted structural fill and general grading fill placement and earthwork. The surface of all compacted fill subgrades should be graded or sloped to provide drainage of surface run-off. In addition, the surface of all prepared subgrades should be thoroughly compacted at the end of each day to seal the surface and minimize softening that may result from precipitation. The gradational requirements for Type “G” fill are presented in Appendix B.

Soil Properties & Lateral Earth Pressures

To facilitate the design of any below grade walls and retaining walls, we offer the following soil parameters for the in-situ soils and Type “G” fill:

In-Situ Soils

- Total Unit Weight of Soil (γ) .. 120 pcf
- Angle of Soil Internal Friction (ϕ) ... 30°
- Active Earth Pressure Coefficient (K_a) .. 0.33
- At-Rest Earth Pressure Coefficient (K_o) .. 0.50
- Passive Earth Pressure Coefficient (K_p) .. 3.00

Coefficient of Base Friction

- In-Situ Soils & Type “G” Fill (μ).. .0.40
- NJDOT No. 57 Coarse Aggregate (μ)... 0.60

In the event that concentrated loads are located in the vicinity of the walls, we recommend that the potential for additional lateral pressures on the walls be evaluated. The magnitude of any lateral stress increases may be calculated using published solutions based on elastic theory. We recommend that any walls located adjacent to roadways or parking lots be designed for a uniform surcharge of 250 psf at the ground surface. The use of heavy compaction equipment within 5 feet of the walls is prohibited.
CLOSING & LIMITATIONS

The recommendations contained herein are contingent upon subsurface conditions remaining consistent with those encountered during our subsurface exploration. They are also contingent upon the basis that all foundation related aspects of construction, including stripping, controlled fill operation, foundation excavation and subgrade preparation, be observed by a representative of FPA. This is to observe compliance with the design concepts and specifications and to allow design changes in the event that subsurface conditions differ from those anticipated prior to construction.

The scope of our services did not include any environmental assessment or investigation for the presence or absence of wetlands, chemically hazardous, or biologically toxic materials in the soil, surface water, groundwater or air, on or below or around the site.

Services performed by FPA during this project have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation, expressed or implied, and no warranty, guarantee, or fiduciary responsibility is included or intended in the services provided.

Should you have any questions or if we can be of service to you in the future, please feel free to contact us.

Sincerely,

FRENCH & PARRELLO ASSOCIATES

Robert D. Knotz, PE
Senior Project Manager
Appendix A
Test Boring Logs
A. Cohesionless Soils: Particle Size Definitions

<table>
<thead>
<tr>
<th>Soil</th>
<th>Fraction</th>
<th>U.S. Standard Sieve</th>
<th>Actual Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>coarse</td>
<td>3 in. to 1 in.</td>
<td>76 mm to 25 mm</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1 in. to 3/8 in.</td>
<td>25 mm to 9.5 mm</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>3/8 in. to No. 10</td>
<td>9.5 mm to 2.0 mm</td>
</tr>
<tr>
<td>Sand</td>
<td>coarse</td>
<td>No. 10 to No. 30</td>
<td>2.0 mm to 0.6 mm</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>No. 30 to No. 60</td>
<td>0.6 mm to 0.25 mm</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>No. 60 to No. 200</td>
<td>0.25 mm to 0.75 mm</td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td>< No. 200</td>
<td>< 0.075 mm</td>
</tr>
</tbody>
</table>

B. Terms Describing Gradation of Cohesionless Soils

<table>
<thead>
<tr>
<th>Written Description</th>
<th>Symbol/Designation</th>
<th>Defining Proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarse, medium to fine</td>
<td>cmf</td>
<td>all fractions > 10%</td>
</tr>
<tr>
<td>coarse to medium</td>
<td>cm</td>
<td>< 10% fine</td>
</tr>
<tr>
<td>medium to fine</td>
<td>mf</td>
<td>< 10% coarse</td>
</tr>
<tr>
<td>coarse</td>
<td>c</td>
<td>< 10% medium and fine</td>
</tr>
<tr>
<td>medium</td>
<td>m</td>
<td>< 10% coarse and fine</td>
</tr>
<tr>
<td>fine</td>
<td>f</td>
<td>< 10% coarse and medium</td>
</tr>
</tbody>
</table>

Note: Use (+) for upper limit and (-) for lower limit.

C. Cohesive Soils: Terms Describing Plasticity

<table>
<thead>
<tr>
<th>Soil</th>
<th>Plasticity Index</th>
<th>Workability</th>
<th>Plasticity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT</td>
<td>0</td>
<td>--</td>
<td>Non-Plastic</td>
</tr>
<tr>
<td>Clayey SILT</td>
<td>1 to 5</td>
<td>1/4 in. thread</td>
<td>Slightly Plastic</td>
</tr>
<tr>
<td>SILT & CLAY</td>
<td>5 to 10</td>
<td>1/8 in. thread</td>
<td>Low Plasticity</td>
</tr>
<tr>
<td>CLAY & SILT</td>
<td>10 to 20</td>
<td>1/16 in. thread</td>
<td>Medium Plasticity</td>
</tr>
<tr>
<td>Silty CLAY</td>
<td>20 to 40</td>
<td>1/32 in. thread</td>
<td>High Plasticity</td>
</tr>
<tr>
<td>CLAY</td>
<td>>40</td>
<td>1/64 in. thread</td>
<td>Very High Plasticity</td>
</tr>
</tbody>
</table>

D. Terms Describing Overall Composition of Soil

<table>
<thead>
<tr>
<th>Written Proportion</th>
<th>Proportion Symbol</th>
<th>Proportion Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>a</td>
<td>35 to 50</td>
</tr>
<tr>
<td>some</td>
<td>s</td>
<td>20 to 35</td>
</tr>
<tr>
<td>little</td>
<td>l</td>
<td>10 to 20</td>
</tr>
<tr>
<td>trace</td>
<td>t</td>
<td>1 to 10</td>
</tr>
</tbody>
</table>

Note: Use (+) for upper limit and (-) for lower limit.
Test Boring Log

The Club at Woodbridge, Township of Woodbridge, Middlesex County, New Jersey
(FPA Project No. 14547.001)

Boring No.: B-1
Sheet: 1 of 1

Date Started: 3/20/2019
Date Finished: 3/20/2019
Depth of Water: N/A
Location: See Plan
Ground Elevation: +110'±
Ground Water Elev.: N/A

Drilling Technique: Mud Rotary
Hammer Type: 140 lb. Automatic Trip Hammer, 30 Inch Drop

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Sample Depth</th>
<th>SPT Blow Counts (Per 6")</th>
<th>Strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2'</td>
<td>S-1</td>
<td>15 – 13 – 13 – 8</td>
<td>S-1</td>
</tr>
<tr>
<td>2-4'</td>
<td>S-2</td>
<td>8 – 8 – 10 – 7</td>
<td>S-2</td>
</tr>
<tr>
<td>5'</td>
<td>S-3</td>
<td>13 – 8 – 7 – 5</td>
<td>S-3</td>
</tr>
<tr>
<td>4-6'</td>
<td>S-4</td>
<td>8 – 5 – 5 – 8</td>
<td>S-4</td>
</tr>
<tr>
<td>6-8'</td>
<td>S-5</td>
<td>7 – 4 – 4 – 3</td>
<td>S-5</td>
</tr>
<tr>
<td>8-10'</td>
<td>S-6</td>
<td>3 – 4 – 5 – 3</td>
<td>S-6</td>
</tr>
<tr>
<td>10-12'</td>
<td>S-7</td>
<td>3 – 3 – 2 – 2</td>
<td>S-7</td>
</tr>
<tr>
<td>12-14'</td>
<td>S-8</td>
<td>3 – 2 – 2 – 2</td>
<td>S-8</td>
</tr>
<tr>
<td>15'</td>
<td>S-9</td>
<td>3 – 3 – 5 – 6</td>
<td>S-9</td>
</tr>
<tr>
<td>14-16'</td>
<td>S-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-18'</td>
<td>S-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20'</td>
<td>S-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25'</td>
<td>S-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30'</td>
<td>S-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35'</td>
<td>S-15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of Soil

- **S-1**: Brown m’f **SAND**, little’ cm Gravel, little Silt.
- **S-3**: Grey-Red-Brown mf **SAND**, and Clayey Silt, little’ cm Gravel.
- **S-4**: Grey-Brown **Clayey SILT**, and mf Sand, little mf Gravel.
- **S-5**: Same as **S-4**.
- **S-6**: Grey-Brown **Clayey SILT**, and’ mf Sand, trace mf Gravel.
- **S-7**: Red-Brown **Clayey SILT**, and’ mf Sand, trace mf Gravel.
- **S-8**: Red-Brown & Grey **Clayey SILT**, trace mf Gravel.

End of Boring at 18’

Note: 4”± of asphalt measured. Encountered perched water at 12’.

Soils Engineer: R. Knotz, PE
Drilling Inspector: A. Larusso
Contractor: Craig Test Boring
Driller: M. Tarter

The information shown hereon indicates the subsurface conditions encountered at the specific boring location on the date(s) of drilling. Subsurface conditions are likely to vary across the project site. Interpretation of the subsurface data shall be at the discretion of the user.
THE CLUB AT WOODBRIDGE
TOWNSHIP OF WOODBRIDGE, MIDDLESEX COUNTY, NEW JERSEY
(FPA PROJECT NO. 14547.001)

BORING NO.: B-2
SHEET 1 OF 1

DATE STARTED: 3/20/2019
DATE FINISHED: 3/20/2019
DEPTH OF WATER: N/A
GROUND ELEVATION: +110’±

LOCATION: See Plan
GROUND WATER ELEV.: N/A

DRILLING TECHNIQUE: Mud Rotary
HAMMER TYPE: 140 lb. Automatic Trip Hammer, 30 Inch Drop

<table>
<thead>
<tr>
<th>DEPTH (FEET)</th>
<th>SAMPLE DEPTH</th>
<th>SPT BLOW COUNTS (PER 6")</th>
<th>STRATA</th>
<th>DESCRIPTION OF SOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S-1</td>
<td>5 – 4 – 6 – 6</td>
<td></td>
<td>S-1 Red-Brown mf SAND, and Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>--- 5’---</td>
<td>S-4</td>
<td>2 – 2 – 2 – 2</td>
<td></td>
<td>S-4 Same as S-3.</td>
</tr>
<tr>
<td>4-6’</td>
<td>S-5</td>
<td>4 – 4 – 6 – 7</td>
<td></td>
<td>S-5 Same as S-4.</td>
</tr>
<tr>
<td>S-6</td>
<td>10-12’</td>
<td>10 – 7 – 18 – 18</td>
<td></td>
<td>S-7 Top 12”: Same as S-6.</td>
</tr>
<tr>
<td>14-16’</td>
<td>S-9</td>
<td></td>
<td></td>
<td>S-9 Same as S-8.</td>
</tr>
<tr>
<td>16-18’</td>
<td></td>
<td></td>
<td></td>
<td>End of Boring at 18’</td>
</tr>
</tbody>
</table>

Note: 4”± of asphalt measured.
Test Boring Log

The Club at Woodbridge
Township of Woodbridge, Middlesex County, New Jersey
(FPA Project No. 14547.001)

Boring No.: B-3
Sheet: 1 of 1

Date Started: 3/20/2019
Date Finished: 3/20/2019

Depth of Water: N/A
Location: See Plan

Ground Elevation: +110'±
Ground Water Elev.: N/A

Drilling Technique: Mud Rotary
Hammer Type: 140 lb. Automatic Trip Hammer, 30 Inch Drop

<table>
<thead>
<tr>
<th>Depth Feet</th>
<th>Sample Depth</th>
<th>SPT Blow Counts (Per 6")</th>
<th>Strata</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td></td>
<td></td>
<td>S-1</td>
<td>Red-Brown m'f SAND, and Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>0-2'</td>
<td>S-1</td>
<td>12 – 4 – 4 – 3</td>
<td>S-2</td>
<td>Brown m'f SAND, little Silt, trace m'f Gravel.</td>
</tr>
<tr>
<td>2-4'</td>
<td>S-2</td>
<td>3 – 10 – 8 – 6</td>
<td>S-3</td>
<td>Red-Brown m'f SAND, and Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>--- 5'---</td>
<td>S-3</td>
<td>5 – 6 – 7 – 9</td>
<td>S-4</td>
<td>Same as S-3.</td>
</tr>
<tr>
<td>4-6'</td>
<td>S-4</td>
<td>6 – 6 – 8 – 8</td>
<td>S-5</td>
<td>Red-Brown Clayey SILT, some m'f Sand, little m'f Gravel.</td>
</tr>
<tr>
<td>6-8'</td>
<td>S-5</td>
<td>9 – 8 – 9 – 10</td>
<td>S-6</td>
<td>Red-Brown m'f SILT & CLAY, little m'f Gravel.</td>
</tr>
<tr>
<td>--- 10'---</td>
<td>8-10'</td>
<td>10 – 8 – 9 – 11</td>
<td>S-7</td>
<td>Top 12': Grey Clayey SILT, trace f Sand.</td>
</tr>
<tr>
<td>10-12'</td>
<td>S-6</td>
<td>8 – 12 – 12 – 13</td>
<td>Bot. 12": Red-Brown m'f SAND, and Clayey Silt, little m'f Gravel.</td>
<td></td>
</tr>
<tr>
<td>12-14'</td>
<td>S-7</td>
<td>5 – 6 – 6 – 11</td>
<td>S-8</td>
<td>Brown cmf SAND, little cmf Gravel, little Silt.</td>
</tr>
<tr>
<td>--- 15'---</td>
<td>14-16'</td>
<td>5 – 6 – 6 – 6</td>
<td>S-9</td>
<td>Same as S-8.</td>
</tr>
<tr>
<td>16-18'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- 20'---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- 25'---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- 30'---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- 35'---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Boring at 18'

Note: 4"± of asphalt measured. Encountered perched water at 12'.

Soils Engineer: R. Knotz, PE
Drilling Inspector: A. Larusso
Contractor: Craig Test Boring
Driller: M. Tarter

The information shown hereon indicates the subsurface conditions encountered at the specific boring location on the date(s) of drilling. Subsurface conditions are likely to vary across the project site. Interpretation of the subsurface data shall be at the discretion of the user.
Test Boring Log

Test Boring Log Details

The Club at Woodbridge
Township of Woodbridge, Middlesex County, New Jersey
(FPA Project No. 14547.001)
BORING NO.: B-4
SHEET 1 OF 1

Date Started: 3/20/2019
Date Finished: 3/20/2019
Depth of Water: N/A
Ground Elevation: +110'±
Ground Water Elev.: N/A

Drilling Technique: Mud Rotary
Hammer Type: 140 lb. Automatic Trip Hammer, 30 Inch Drop

Depth of Soil

<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>Sample Depth</th>
<th>SPT Blow Counts (Per 6")</th>
<th>Strata</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>S-1</td>
<td>7 – 7 – 6 – 6</td>
<td>S-1</td>
<td>Red-Brown m‘f SAND, little Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>2-4’</td>
<td>S-3</td>
<td>10 – 8 – 8 – 8</td>
<td>S-3</td>
<td>Same as S-2.</td>
</tr>
<tr>
<td>4-6’</td>
<td>S-4</td>
<td>6 – 7 – 8 – 10</td>
<td>S-4</td>
<td>Same as S-3.</td>
</tr>
<tr>
<td>6-8’</td>
<td>S-5</td>
<td>5 – 7 – 7 – 10</td>
<td>S-5</td>
<td>Red-Brown cmf SAND, and Clayey Silt, little’ mf Gravel</td>
</tr>
<tr>
<td>---10’---</td>
<td>8-10’</td>
<td>6 – 4 – 5 – 7</td>
<td>S-6</td>
<td>Same as S-5.</td>
</tr>
<tr>
<td>12-14’</td>
<td>S-8</td>
<td>7 – 7 – 8 – 8</td>
<td>S-8</td>
<td>Yellow-Brown Clayey SILT, trace f Sand.</td>
</tr>
<tr>
<td>16-18’</td>
<td></td>
<td></td>
<td></td>
<td>End of Boring at 18’</td>
</tr>
<tr>
<td>---20’---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---25’---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---30’---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---35’---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 4”± of asphalt measured. Encountered perched water at 8’.

Soils Engineer

R. KNOTZ, PE

Contracting

CRAIG TEST BORING

Drilling Inspector

A. LARUSSO

Contractor

CRAIG TEST BORING

Driller

M. TARTER

The information shown hereon indicates the subsurface conditions encountered at the specific boring location on the date(s) of drilling. Subsurface conditions are likely to vary across the project site. Interpretation of the subsurface data shall be at the discretion of the user.
TEST BORING LOG

THE CLUB AT WOODBRIDGE
TOWNSHIP OF WOODBRIDGE, MIDDLESEX COUNTY, NEW JERSEY
(FPA PROJECT NO. 14547.001)

BORING NO.: B-5
DATE STARTED: 3/20/2019
DATE FINISHED: 3/20/2019
DEPTH OF WATER: N/A
LOCATION: See Plan
GROUND ELEVATION: N/A
GROUND WATER ELEV.: N/A

DRILLING TECHNIQUE: Mud Rotary
HAMMER TYPE: 140 lb. Automatic Trip Hammer, 30 Inch Drop

<table>
<thead>
<tr>
<th>DEPTH FEET</th>
<th>SAMPLE DEPTH</th>
<th>SPT BLOW COUNTS (PER 6")</th>
<th>STRATA</th>
<th>DESCRIPTION OF SOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>S-1</td>
<td>1 – 2 – 2 – 6</td>
<td>S-1</td>
<td>Red-Brown cmf SAND, and Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>--- 5’</td>
<td>S-3</td>
<td>4 – 6 – 3 – 4</td>
<td>S-3</td>
<td>Red-Brown cmf SAND, and Clayey SILT, little mf Gravel.</td>
</tr>
<tr>
<td></td>
<td>4-6’</td>
<td>3 – 2 – 3 – 3</td>
<td>S-4</td>
<td>Same as S3.</td>
</tr>
<tr>
<td></td>
<td>8-10’</td>
<td>1 – 1 – 1 – 1</td>
<td>S-6</td>
<td>No Recovery.</td>
</tr>
<tr>
<td></td>
<td>S-6</td>
<td>1 – 1 – 1 – 1</td>
<td>S-7</td>
<td>Red-Brown cmf SAND, some Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>--- 15’</td>
<td>S-8</td>
<td>2 – 1 – 1 – 2</td>
<td>S-8</td>
<td>Grey SILT & CLAY, little mf Sand, trace f Gravel.</td>
</tr>
<tr>
<td></td>
<td>15-17’</td>
<td></td>
<td></td>
<td>End of Boring at 24’</td>
</tr>
<tr>
<td></td>
<td>20-22’</td>
<td>7 – 6 – 9 – 9</td>
<td>S-10</td>
<td>Grey SILT & CLAY, trace f Sand.</td>
</tr>
<tr>
<td>--- 25’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- 30’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- 35’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOILS ENGINEER: R. KNOTZ, PE
DRILLING INSPECTOR: A. LARUSO
CONTRACTOR: CRAIG TEST BORING
DRILLER: M. TARTER

The information shown hereon indicates the subsurface conditions encountered at the specific boring location on the date(s) of drilling. Subsurface conditions are likely to vary across the project site. Interpretation of the subsurface data shall be at the discretion of the user.
Test Boring Log

The Club at Woodbridge
Township of Woodbridge, Middlesex County, New Jersey
(FPA Project No. 14547.001)

Boring No.: B-6
Sheet: 1 of 1

Date Started: 3/20/2019
Date Finished: 3/20/2019
Location: See Plan
Depth of Water: N/A
Ground Elevation: N/A
Ground Water Elev.: N/A

Drilling Technique: Mud Rotary
Hammer Type: 140 lb. Automatic Trip Hammer, 30 Inch Drop

Depth Chart

<table>
<thead>
<tr>
<th>Feet</th>
<th>Sample Depth</th>
<th>SPT Blow Counts (Per 6")</th>
<th>Strata</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'</td>
<td>S-1</td>
<td>1 – 1 – 7 – 5</td>
<td>S-1</td>
<td>Red-Brown cmf SAND, and Clayey Silt, little cmf Gravel.</td>
</tr>
<tr>
<td>0-2'</td>
<td>S-2</td>
<td>7 – 8 – 7 – 5</td>
<td>S-2</td>
<td>Brown mf SAND, some Silt, little mf Gravel.</td>
</tr>
<tr>
<td>2-4'</td>
<td>S-3</td>
<td>3 – 4 – 6 – 6</td>
<td>S-3</td>
<td>No Recovery.</td>
</tr>
<tr>
<td>4-6'</td>
<td>S-4</td>
<td>3 – 3 – 2 – 3</td>
<td>S-4</td>
<td>Red-Brown mf SAND, and Clayey Silt, little mf Gravel.</td>
</tr>
<tr>
<td>6-8'</td>
<td>S-5</td>
<td>2 – 1 – 1 – 1</td>
<td>S-5</td>
<td>Red-Brown cmf SAND, and Clayey Silt, little mf Gravel.</td>
</tr>
<tr>
<td>10-12'</td>
<td>S-6</td>
<td>3 – 3 – 2 – 3</td>
<td>S-6</td>
<td>No Recovery.</td>
</tr>
</tbody>
</table>

End of Boring at 22’

Soils Engineer: R. Knotz, PE
Drilling Inspector: A. Larusso
Contractor: Craig Test Boring
Driller: M. Tarter

The information shown hereon indicates the subsurface conditions encountered at the specific boring location on the date(s) of drilling. Subsurface conditions are likely to vary across the project site. Interpretation of the subsurface data shall be at the discretion of the user.
Allowable Gradational Envelope

Type “G” Fill

GRANULAR FILL

<table>
<thead>
<tr>
<th>U.S. Standard Sieve Size</th>
<th>Percent Finer By Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>80 – 100</td>
</tr>
<tr>
<td>3/8”</td>
<td>70 – 100</td>
</tr>
<tr>
<td>No. 10</td>
<td>50 – 100</td>
</tr>
<tr>
<td>No. 30</td>
<td>30 – 85</td>
</tr>
<tr>
<td>No. 60</td>
<td>15 – 65</td>
</tr>
<tr>
<td>No. 200</td>
<td>5 - 15</td>
</tr>
</tbody>
</table>
Allowable Gradational Envelope

AASHTO M43

Standard Sizes of Coarse Aggregate Size No. 57

<table>
<thead>
<tr>
<th>U.S. Standard Sieve Size</th>
<th>Percent Finer by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½”</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>95 - 100</td>
</tr>
<tr>
<td>½”</td>
<td>25 - 60</td>
</tr>
<tr>
<td>No. 4</td>
<td>0 - 10</td>
</tr>
<tr>
<td>No. 8</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>
The A.I.A. Document number A201, titled "GENERAL CONDITIONS OF THE CONTRACT FOR CONSTRUCTION", 2017 edition, is a part of this specification and is included in its entirety for that purpose.
for the following PROJECT:
(Name and location or address)
INDOOR ICE RINK
The Club
585 Main Street
Woodbridge, NJ 07095

THE OWNER:
(Name, legal status and address)
Township of Woodbridge
One Main Street
Woodbridge, NJ 07095

THE ARCHITECT:
(Name, legal status and address)
The Vaughn Collaborative
300 Phillips Boulevard, Suite 500
Ewing, NJ 08618

THE ENGINEER
(Name, legal status and address)
T & M Associates
11 Tindal Road
Middletown, NJ 07748

TABLE OF ARTICLES
1 GENERAL PROVISIONS
2 OWNER
3 CONTRACTOR
4 ARCHITECT
5 SUBCONTRACTORS
6 CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS
7 CHANGES IN THE WORK
8 TIME
9 PAYMENTS AND COMPLETION
10 PROTECTION OF PERSONS AND PROPERTY
11 INSURANCE AND BONDS
12 UNCOVERING AND CORRECTION OF WORK
13 MISCELLANEOUS PROVISIONS
14 TERMINATION OR SUSPENSION OF THE CONTRACT
15 CLAIMS AND DISPUTES

ADDITIONS AND DELETIONS:
The author of this document has added information needed for its completion. The author may also have revised the text of the original AIA standard form. An Additions and Deletions Report that notes added information as well as revisions to the standard form text is available from the author and should be reviewed. A vertical line in the left margin of this document indicates where the author has added necessary information and where the author has added to or deleted from the original AIA text.

This document has important legal consequences. Consultation with an attorney is encouraged with respect to its completion or modification.

For guidance in modifying this document to include supplementary conditions, see AIA Document A503™, Guide for Supplementary Conditions.
INDEX
(Topics and numbers in bold are Section headings.)

Acceptance of Nonconforming Work
9.6.6, 9.9.3, 12.3
Acceptance of Work
9.6.6, 9.8.2, 9.9.3, 9.10.1, 9.10.3, 12.3
Access to Work
3.16, 6.2.1, 12.1
Accident Prevention
10
Acts and Omissions
3.2, 3.3.2, 3.12.8, 3.18, 4.2.3, 8.3.1, 9.5.1, 10.2.5,
10.2.8, 13.3.2, 14.1, 15.1.2, 15.2
Addenda
1.1.1
Additional Costs, Claims for
3.7.4, 3.7.5, 10.3.2, 15.1.5
Additional Inspections and Testing
9.4.2, 9.8.3, 12.2.1, 13.4
Additional Time, Claims for
3.2.4, 3.7.4, 3.7.5, 3.10.2, 8.3.2, 15.1.6
Administration of the Contract
3.1.3, 4.2, 9.4, 9.5
Advertisement or Invitation to Bid
1.1.1
Aesthetic Effect
4.2.13
Allowances
3.8
Applications for Payment
4.2.5, 7.3.9, 9.2, 9.3, 9.4, 9.5.1, 9.5.4, 9.6.3, 9.7, 9.10
Approvals
2.1.1, 2.3.1, 2.5, 3.1.3, 3.10.2, 3.12.8, 3.12.9,
3.12.10.1, 4.2.7, 9.3.2, 13.4.1
Arbitration
8.3.1, 15.3.2, 15.4
ARCHITECT
4
Architect, Definition of
4.1.1
Architect, Extent of Authority
2.5, 3.12.7, 4.1.2, 4.2, 5.2, 6.3, 7.1.2, 7.3.4, 7.4, 9.2,
9.3.1, 9.4, 9.5, 9.6.3, 9.8, 9.10.1, 9.10.3, 12.1, 12.2.1,
13.4.1, 13.4.2, 14.2.2, 14.2.4, 15.1.4, 15.2.1
Architect, Limitations of Authority and Responsibility
2.1.1, 3.12.4, 3.12.8, 3.12.10, 4.1.2, 4.2.1, 4.2.2, 4.2.3,
4.2.6, 4.2.7, 4.2.10, 4.2.12, 4.2.13, 5.2.1, 7.4, 9.4.2,
9.5.4, 9.6.4, 15.1.4, 15.2
Architect’s Additional Services and Expenses
2.5, 12.2.1, 13.4.2, 13.4.3, 13.4.4
Architect’s Administration of the Contract
3.1.3, 3.7.4, 15.2, 9.4.1, 9.5
Architect’s Approvals
2.5, 3.1.3, 3.5, 3.10.2, 4.2.7
Architect’s Authority to Reject Work
3.5, 4.2.6, 12.1.2, 12.2.1
Architect’s Copyright
1.1.7, 1.5
Architect’s Decisions
3.7.4, 4.2.6, 4.2.7, 4.2.11, 4.2.12, 4.2.13, 4.2.14, 6.3,
7.3.4, 7.3.9, 8.1.3, 9.3.1, 9.2, 9.4.1, 9.5, 9.8.4, 9.9.1,
13.4.2, 15.2
Architect’s Inspections
3.7.4, 4.2.2, 4.2.9, 4.2.14, 6.3, 9.8.3, 9.9.2, 10.1.1, 13.4
Architect’s Instructions
3.2.4, 3.3.1, 4.2.6, 4.2.7, 13.4.2
Architect’s Interpretations
4.2.11, 4.2.12
Architect’s Project Representative
4.2.10
Architect’s Relationship with Contractor
1.1.2, 1.5, 2.3.3, 3.1.3, 3.2.2, 3.2.3, 3.2.4, 3.3.1, 3.4.2,
3.5, 3.7.4, 3.7.5, 3.9.2, 3.9.3, 3.10, 3.11, 3.12, 3.16,
3.18, 4.1.2, 4.2, 5.2, 6.2.2, 7, 8.3.1, 9.2, 9.3, 9.4, 9.5,
9.7, 9.8, 9.9, 10.2.6, 10.3, 11.3, 12, 13.3.2, 13.4, 15.2
Architect’s Relationship with Subcontractors
1.1.2, 4.2.3, 4.2.4, 4.2.6, 9.6.3, 9.6.4, 11.3
Architect’s Representations
9.4.2, 9.5.1, 9.10.1
Architect’s Site Visits
3.7.4, 4.2.2, 4.2.9, 4.2.14, 9.5.1, 9.9.2, 9.10.1, 13.4
Asbestos
10.3.1
Attorneys’ Fees
3.18.1, 9.6.8, 9.10.2, 10.3.3
Award of Separate Contracts
6.1.1, 6.1.2
Award of Subcontracts and Other Contracts for
Portions of the Work
5.2
Basic Definitions
1.1
Bidding Requirements
1.1.1
Binding Dispute Resolution
8.3.1, 9.7, 11.5, 13.1, 15.1.2, 15.1.3, 15.2.1, 15.2.5,
15.2.6, 15.3.1, 15.3.2, 15.3.3, 15.4.1
Bonds, Lien
7.3.4.4, 9.6.8, 9.10.2, 9.10.3
Bonds, Performance, and Payment
7.3.4.4, 9.6.7, 9.10.3, 11.1.2, 11.1.3, 11.5
Building Information Models Use and Reliance
1.8
Building Permit
3.7.1
Capitalization
1.3
Certificate of Substantial Completion
9.8.3, 9.8.4, 9.8.5

User Notes:
Damage to Construction of Owner or Separate Contractors
3.14.2, 6.2.4, 10.2.1, 10.2.2, 10.2.4, 12.2.4
Damage to the Work
3.14.2, 9.9.1, 10.2.1, 10.2.2, 10.4, 12.2.4
Damages, Claims for
3.2.4, 3.18, 6.1.1, 8.3.3, 9.5.1, 9.6.7, 10.3.3, 11.3.2, 11.3, 14.2.4, 15.1.7
Damages for Delay
6.2.3, 8.3.3, 9.1.5.6, 9.7, 10.3.2, 14.3.2
Date of Commencement of the Work, Definition of 8.1.2
Date of Substantial Completion, Definition of 8.1.3
Day, Definition of 8.1.4
Decisions of the Architect
3.7.4, 4.2.6, 4.2.7, 4.2.11, 4.2.12, 4.2.13, 6.3, 7.3.4, 7.3.9, 8.1.3, 8.3.1, 9.2, 9.4, 9.5.1, 9.8.4, 9.9.1, 13.4.2, 14.2.2, 14.2.4, 15.1, 15.2
Decisions to Withhold Certification
9.4.1, 9.5, 9.7, 14.1.1.3
Defective or Nonconforming Work, Acceptance, Rejection and Correction of
2.5, 3.5, 4.2.6, 6.2.3, 9.5.1, 9.5.3, 9.6.6, 9.8.2, 9.9.3, 9.10.4, 12.2.1
Definitions
1.1, 2.1.1, 3.1.1, 3.1.2, 3.1.2.2, 3.1.2.3, 3.1.2.4, 4.1.1, 5.1, 6.1.2, 7.2.1, 7.3.1, 8.1, 9.1, 9.8.1, 15.1.1
Delays and Extensions of Time
3.2, 3.7.4, 5.2.3, 7.2.1, 7.3.1, 7.4, 8.3, 9.5.1, 9.7, 10.3.2, 10.4, 14.3.2, 15.1.6, 15.2.5
Digital Data Use and Transmission
1.7
Disputes
6.3, 7.3.9, 15.1, 15.2
Documents and Samples at the Site
3.11
Drawings, Definition of 1.1.5
Drawings and Specifications, Use and Ownership of 3.11
Effective Date of Insurance
8.2.2
Emergencies
10.4, 14.1.1.2, 15.1.5
Employees, Contractor's
3.3.2, 3.8.1, 3.9, 3.18.2, 4.2.3, 4.2.6, 10.2, 10.3.3, 11.3, 14.1, 14.2.1
Equipment, Labor, or Materials
1.1.3, 1.1.6, 3.4, 3.5, 3.8.2, 3.8.3, 3.12, 3.13, 3.15.1, 4.2.6, 4.2.7, 5.2.1, 6.2.1, 7.3.4, 9.3.2, 9.3.3, 9.5.1.3, 9.10.2, 10.2.1, 10.2.4, 14.2.1.1, 14.2.1.2
Execution and Progress of the Work
1.1.3, 1.2.1, 1.2.2, 2.3.4, 2.3.6, 3.1, 3.3.1, 3.4.1, 3.7.1, 3.10.1, 3.12.3, 3.14.4, 4.2, 6.2.2, 7.1.3, 7.3.6, 8.2, 9.5.1, 9.9.1, 10.2.3, 12.1, 12.2, 14.2, 14.3.1, 15.1.4

Init. I
Notes: AIA Document A201®—2017. Copyright © 1911, 1915, 1918, 1925, 1927, 1937, 1951, 1958, 1961, 1963, 1970, 1976, 1987, 1997, 2007 and 2017 by The American Institute of Architects. All rights reserved. The "American Institute of Architects," "AIA," the AIA Logo, "A201," and "AIA Contract Documents" are registered trademarks and may not be used without permission. This document was produced by AIA software at 11:39:09 ET on 07/28/2020 under Order No.9490964409 which expires on 12/30/2022, is not for resale, is licensed for one-time use only, and may only be used in accordance with the AIA Contract Documents® Terms of Service. To report copyright violations, e-mail copyright@aia.org.

(1648679051)
Extensions of Time
3.2.4, 3.7.4, 5.2.3, 7.2.1, 7.3, 7.4, 9.5.1, 9.7, 10.3.2, 10.4, 14.3, 15.1.6, 15.2.5
Failure of Payment
9.5.1.3, 9.7, 9.10.2, 13.5, 14.1.1.3, 14.2.1.2
Faulty Work
(See Defective or Nonconforming Work)
Final Completion and Final Payment
4.2.1, 4.2.9, 9.8.2, 9.10, 12.3, 14.2.4, 14.4.3
Financial Arrangements, Owner’s
2.2.1, 13.2.2, 14.1.1.4
GENERAL PROVISIONS
1
Governing Law
13.1
Guarantees (See Warranty)
Hazardous Materials and Substances
10.2.4, 10.3
Identification of Subcontractors and Suppliers
5.2.1
Indemnification
3.17, 3.18, 9.6.8, 9.10.2, 10.3.3, 11.3
Information and Services Required of the Owner
2.1.2, 2.2.2, 3.2.2, 3.12.10.1, 6.1.3, 6.1.4, 6.2.5, 9.6.1, 9.9.2, 9.10.3, 10.3.3, 11.2, 13.4.1, 13.4.2, 14.1.1.4, 14.1.4, 15.1.4
Initial Decision
15.2
Initial Decision Maker, Definition of
1.1.8
Initial Decision Maker, Decisions
14.2.4, 15.1.4.2, 15.2.1, 15.2.2, 15.2.3, 15.2.4, 15.2.5
Initial Decision Maker, Extent of Authority
14.2.4, 15.1.4.2, 15.2.1, 15.2.2, 15.2.3, 15.2.4, 15.2.5
Injury or Damage to Person or Property
10.2.8, 10.4
Inspections
3.1.3, 3.3.3, 3.7.1, 4.2.2, 4.2.6, 4.2.9, 9.4.2, 9.8.3, 9.9.2, 9.10.1, 12.2.1, 13.4
Instructions to Bidders
1.1.1
Instructions to the Contractor
3.2.4, 3.3.1, 3.8.1, 5.2.1, 7, 8.2.2, 12, 13.4.2
Instruments of Service, Definition of
1.1.7
Insurance
6.1.1, 7.3.4, 8.2.2, 9.3.2, 9.8.4, 9.9.1, 9.10.2, 10.2.5, 11
Insurance, Notice of Cancellation or Expiration
11.1.4, 11.2.3
Insurance, Contractor’s Liability
11.1
Insurance, Effective Date of
8.2.2, 14.4.2
Insurance, Owner’s Liability
11.2
Insurance, Property
10.2.5, 11.2.2, 11.4, 11.5

Init. Insurance, Stored Materials
9.3.2
INSURANCE AND BONDS
11
Insurance Companies, Consent to Partial Occupancy
9.9.1
Insured loss, Adjustment and Settlement of
11.5
Intent of the Contract Documents
1.2.1, 4.2.7, 4.2.12, 4.2.13
Interest
13.5
Interpretation
1.1.8, 1.2.3, 1.4, 4.1.1, 5.1, 6.1.2, 15.1.1
Interpretations, Written
4.2.11, 4.2.12
Judgment on Final Award
15.4.2
Labor and Materials, Equipment
1.1.3, 1.1.6, 3.4, 3.5, 3.8.2, 3.8.3, 3.12, 3.13, 3.15.1, 5.2.1, 6.2.1, 7.3.4, 9.3.2, 9.3.3, 9.5.1.3, 9.10.2, 10.2.1, 10.2.4, 14.2.1.1, 14.2.1.2
Labor Disputes
8.3.1
Laws and Regulations
1.5, 2.3.2, 3.2.3, 3.2.4, 3.6, 3.7, 3.12.10, 3.13, 9.6.4, 9.9.1, 10.2.2, 13.1, 13.3.1, 13.4.2, 13.5, 14, 15, 15.2.8, 15.4
Liens
2.1.2, 9.3.1, 9.3.3, 9.6.8, 9.10.2, 9.10.4, 15.2.8
Limitations, Statutes of
12.2.5, 15.1.2, 15.4.1.1
Limitations of Liability
3.2.2, 3.5, 3.12.10, 3.12.10.1, 3.17, 3.18.1, 4.2.6, 4.2.7, 6.2.2, 9.4.2, 9.6.4, 9.6.7, 9.6.8, 10.2.5, 10.3.3, 11.3, 12.2.5, 13.3.1
Limitations of Time
2.1.2, 2.2.5, 3.2.2, 3.10, 3.11, 3.12.5, 3.15.1, 4.2.7, 5.2.3, 5.4.1, 6.2.4, 7.3, 7.4, 8.2.5, 9.2.2, 9.3.1, 9.3.3, 9.4.1, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 12.2, 13.4, 14, 15, 15.1.2, 15.1.3, 15.1.5
Materials, Hazardous
10.2.4, 10.3
Materials, Labor, Equipment and
1.1.3, 1.1.6, 3.4.1, 3.5, 3.8.2, 3.8.3, 3.12, 3.13, 3.15.1, 5.2.1, 6.2.1, 7.3.4, 9.3.2, 9.3.3, 9.5.1.3, 9.10.2, 10.2.1.2, 10.2.4, 14.2.1.1, 14.2.1.2
Means, Methods, Techniques, Sequences and Procedures of Construction
3.3.1, 3.12.10, 4.2.2, 4.2.7, 9.4.2
Mechanic’s Lien
2.1.2, 9.3.1, 9.3.3, 9.6.8, 9.10.2, 9.10.4, 15.2.8
Mediation
8.3.1, 15.1.3.2, 15.2.1, 15.2.5, 15.2.6, 15.3, 15.4.1, 15.4.1.1
Minor Changes in the Work
1.1.1, 3.4.2, 3.12.8, 4.2.8, 7.1.4, 7.4
MISCELLANEOUS PROVISIONS

13
Modifications, Definition of
1.1.1
Modifications to the Contract
1.1.1, 1.1.2, 2.5, 3.11, 4.1.2, 4.2.1, 5.2.3, 7, 8.3.1, 9.7, 10.3.2

Mutual Responsibility
6.2
Nonconforming Work, Acceptance of
9.6.6, 9.9.3, 12.3
Nonconforming Work, Rejection and Correction of
2.4, 2.5, 3.5, 4.2.6, 6.2.4, 9.5.1, 9.8.2, 9.9.3, 9.10.4, 12.2

Notice
1.6, 1.6.1, 1.6.2, 2.1.2, 2.2.2, 2.2.3, 2.2.4, 2.5, 3.2.4, 3.3.1, 3.7.4, 3.7.5, 3.3.2, 3.12.9, 3.12.10, 5.2.1, 7.4,
8.2.9, 9.6.8, 9.7, 9.10.1, 10.2.8, 10.3.2, 11.5, 12.2.2.1, 13.4.1, 13.4.2, 14.1, 14.2.2, 14.4.2, 15.1.3, 15.1.5,
15.1.6, 15.4.1

Notice of Cancellation or Expiration of Insurance
11.1.4, 11.2.3

Notice of Claims
1.6.2, 2.1.2, 3.7.4, 9.6.8, 10.2.8, 15.1.3, 15.1.5, 15.1.6, 15.2.8, 15.3.2, 15.4.1

Notice of Testing and Inspections
13.4.1, 13.4.2

Observations, Contractor's
3.2, 3.7.4

Occupancy
2.3.1, 9.6.6, 9.8

Orders, Written
1.1.1, 2.4, 3.9.2, 7, 8.2.2, 11.5, 12.1, 12.2.2.1, 13.4.2, 14.3.1

OWNER
2

Owner, Definition of
2.1.1

Owner, Evidence of Financial Arrangements
2.2, 13.2.2, 14.1.1.4

Owner, Information and Services Required of the
2.1.2, 2.2, 2.3, 3.2.2, 3.12.10, 6.1.3, 6.1.4, 6.2.5, 9.3.2, 9.6.1.1, 9.6.4, 9.9.2, 9.10.3, 10.3.3, 11.2, 13.4.1, 13.4.2,
14.1.1.4, 14.1.4, 15.1.4

Owner's Authority
1.5, 2.1.1, 2.3.3.2.4, 2.5, 3.4.2, 3.8.1, 3.12.10, 3.14.2, 4.1.2, 4.2.4, 4.2.9, 5.2.1, 5.2.4, 5.4.1, 6.1, 6.3, 7.2.1,
7.3.1, 8.2.2, 8.3.1, 9.3.2, 9.5.1, 9.6.4, 9.9.1, 9.10.2, 10.3.2, 11.4, 11.5, 12.2.2, 12.3, 13.2.2, 14.3, 14.4,
15.2.7

Owner's Insurance
11.2

Owner's Relationship with Subcontractors
1.1.2, 5.2, 5.3, 5.4, 9.6.4, 9.10.2, 14.2.2

Owner's Right to Carry Out the Work
2.5, 14.2.2

Owner's Right to Clean Up
6.3

Owner's Right to Perform Construction and to Award Separate Contracts
6.1

Owner's Right to Stop the Work
2.4

Owner's Right to Suspend the Work
14.3

Owner's Right to Terminate the Contract
14.2, 14.4

Ownership and Use of Drawings, Specifications and Other Instruments of Service
1.1.1, 1.1.6, 1.1.7, 1.5, 2.3.6, 3.2.2, 3.11, 3.17, 4.2.12, 5.3

Partial Occupancy or Use
9.6.6, 9.9

Patching, Cutting and
3.14, 6.2.5

Patents
3.17

Payment, Applications for
4.2.5, 7.3.9, 9.2.3, 9.4, 9.5, 9.6.3, 9.7, 9.8.5, 9.10.1, 14.2.3, 14.2.4, 14.4.3

Payment, Certificates for
4.2.5, 4.2.9, 9.3.3, 9.4, 9.5, 9.6.1, 9.6.6, 9.7, 9.10.1, 9.10.3, 14.1.1.3, 14.2.4

Payment, Failure of
9.5.1.3, 9.7, 9.10.2, 13.5, 14.1.1.3, 14.2.1.2

Payment, Final
4.2.1, 4.2.9, 9.10, 12.3, 14.2.4, 14.4.3

Payment Bond, Performance Bond and
7.3.4.4, 9.6.7, 9.10.3, 11.1.2

Payments, Progress
9.3, 9.6, 9.8.5, 9.10.3, 14.2.3, 15.1.4

PAYMENTS AND COMPLETION
9

Payments to Subcontractors
5.4.2, 9.5.1.3, 9.6.2, 9.6.3, 9.6.4, 9.6.7, 14.2.1.2

PCB
10.3.1

Performance Bond and Payment Bond
7.3.4.4, 9.6.7, 9.10.3, 11.1.2

Permits, Fees, Notices and Compliance with Laws
2.3.1, 3.7, 3.13, 7.3.4.4, 10.2.2

PERSONS AND PROPERTY, PROTECTION OF
10

Polychlorinated Biphenyl
10.3.1

Product Data, Definition of
3.12.2

Product Data and Samples, Shop Drawings
3.11, 3.12, 4.2.7

Progress and Completion
4.2.2, 8.2, 9.8, 9.9.1, 14.1.4, 15.1.4

Progress Payments
9.3, 9.6, 9.8.5, 9.10.3, 14.2.3, 15.1.4
Project, Definition of
1.1.4
Project Representatives
4.2.10
Property Insurance
10.2.5, 11.2
Proposal Requirements
1.1.1

PROTECTION OF PERSONS AND PROPERTY
10

Regulations and Laws
1.5, 2.3.2, 3.2.3, 3.6, 3.7, 3.12.10, 3.13, 9.6.4, 9.9.1, 10.2.2, 13.1, 13.3, 13.4.1, 13.4.2, 13.5, 14, 15.2.8, 15.4

Rejection of Work
4.2.6, 12.2.1

Releases and Waivers of Liens
9.3.1, 9.10.2

Representations
3.2.1, 3.5, 3.12.6, 8.2.1, 9.3.3, 9.4.2, 9.5.1, 9.10.1

Review of Contract Documents and Field Conditions by Contractor
3.2, 3.12.7, 6.1.3

Rights and Remedies
1.1.2, 2.4, 2.5, 3.5, 3.7.4, 3.15.2, 4.2.6, 5.3, 5.4, 6.1, 6.3, 7.3.1, 8.3, 9.5.1, 9.7, 10.2.5, 10.3, 12.2.1, 12.2.2, 12.2.4, 13.3, 14, 15.4

Royalties, Patents and Copyrights
3.17

Rules and Notices for Arbitration
15.4.1

Safety of Persons and Property
10.2, 10.4

Safety Precautions and Programs
3.3.1, 4.2.2, 4.2.7, 5.3, 10.1, 10.2, 10.4

Samples, Definition of
3.12.3

Samples, Shop Drawings, Product Data and
3.11, 3.12, 4.2.7

Samples at the Site, Documents and
3.11

Schedule of Values
9.2, 9.3.1

Schedules, Construction
3.10, 3.12.1, 3.12.2, 6.1.3, 15.1.6.2

Separate Contracts and Contractors
1.1.4, 3.12.5, 3.14.2, 4.2.4, 4.2.7, 6, 8.3.1, 12.1.2

Separate Contractors, Definition of
6.1.1

Shop Drawings, Definition of
3.12.1

Shop Drawings, Product Data and Samples
3.11, 3.12, 4.2.7

Site, Use of
3.13, 6.1.1, 6.2.1

Site Inspections
3.2.2, 3.3.3, 3.7.1, 3.7.4, 4.2, 9.9.2, 9.4.2, 9.10.1, 13.4

Site Visits, Architect’s
3.7.4, 4.2.2, 4.2.9, 9.4.2, 9.5.1, 9.9.2, 9.10.1, 13.4

Special Inspections and Testing
4.2.6, 12.2.1, 13.4

Specifications, Definition of
1.1.6

Specifications
1.1.1, 1.1.6, 1.2.2, 1.5, 3.12.10, 3.17, 4.2.14

Statute of Limitations
15.1.2, 15.4.1.1

Stopping the Work
2.2.2, 2.4, 9.7, 10.3, 14.1

Stored Materials
6.2.1, 9.3.2, 10.2.1.2, 10.2.4

Subcontractor, Definition of
5.1.1

Subcontractors
5

Subcontractors, Work by
1.2.2, 3.3.2, 3.12.1, 3.18, 4.2.3, 5.2.3, 5.3, 5.4, 9.3.1.2, 9.6.7

Subcontractual Relations
5.3, 5.4, 9.3.1.2, 9.6, 9.10, 10.2.1, 14.1, 14.2.1

Submittals
3.10, 3.11, 3.12, 4.2.7, 5.2.1, 5.2.3, 7.3.4, 9.2, 9.3, 9.8, 9.9.1, 9.10.2, 9.10.3

Submittal Schedule
3.10.2, 3.12.5, 4.2.7

Subrogation, Waivers of
6.1.1, 11.3

Substances, Hazardous
10.3

Substantial Completion
4.2.9, 8.1.1, 8.1.3, 8.2.3, 9.4.2, 9.8, 9.9.1, 9.10.3, 12.2, 15.1.2

Substantial Completion, Definition of
9.8.1

Substitution of Subcontractors
5.2.3, 5.2.4

Substitution of Architect
2.3.3

Substitutions of Materials
3.4.2, 3.5, 7.3.8

Sub-subcontractor, Definition of
5.1.2
Subsurface Conditions
3.7.4
Successors and Assigns
13.2
Superintendent
3.9, 10.2.6
Supervision and Construction Procedures
1.2.2, 3.3, 3.4, 3.12.10, 4.2.2, 4.2.7, 6.1.3, 6.2.4, 7.1.3, 7.3.4, 8.2, 8.3.1, 9.4.2, 10, 12, 14, 15.1.4
Suppliers
1.5, 3.12.1, 4.2.4, 4.2.6, 5.2.1, 9.3, 9.4.2, 9.5.4, 9.6, 9.10.5, 14.2.1
Surety
5.4.1.2, 9.6.8, 9.8.5, 9.10.2, 9.10.3, 11.1.2, 14.2.2, 15.2.7
Surety, Consent of
9.8.5, 9.10.2, 9.10.3
Surveys
1.1.7, 2.3.4
Suspension by the Owner for Convenience
14.3
Suspension of the Work
3.7.5, 5.4.2, 14.3
Suspension or Termination of the Contract
5.4.1.1, 14
Taxes
3.6, 3.8.2.1, 7.3.4.4
Termination by the Contractor
14.1, 15.1.7
Termination by the Owner for Cause
5.4.1.1, 14.2, 15.1.7
Termination by the Owner for Convenience
14.4
Termination of the Architect
2.3.3
Termination of the Contractor Employment
14.2.2
TERMINATION OR SUSPENSION OF THE CONTRACT
14
Tests and Inspections
3.1.3, 3.3.3, 3.7.1, 4.2.2, 4.2.6, 4.2.9, 9.4.2, 9.8.3, 9.9.2, 9.10.1, 10.3.2, 12.2.1, 13.4
TIME
8
Time, Delays and Extensions of
3.2.4, 3.7.4, 5.2.3, 7.2.1, 7.3.1, 7.4, 8.3, 9.5.1, 9.7, 10.3.2, 10.4, 14.3.2, 15.1.6, 15.2.5
Time Limits
2.1.2, 2.2, 2.5, 3.2.2, 3.10, 3.11, 3.12.5, 3.15.1, 4.2, 5.2, 5.3, 5.4, 6.2.4, 7.3, 7.4, 8.2, 9.2, 9.3.1, 9.3.3, 9.4.1, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 12.2, 13.4, 14, 15.1.2, 15.1.3, 15.4
Time Limits on Claims
3.7.4, 10.2.8, 15.1.2, 15.1.3
Title to Work
9.3.2, 9.3.3
UNCOVERING AND CORRECTION OF WORK
12
Uncovering of Work
12.1
Unforeseen Conditions, Concealed or Unknown
3.7.4, 8.3.1, 10.3
Unit Prices
7.3.3.2, 9.1.2
Use of Documents
1.1.1, 1.5, 2.3.6, 3.12.6, 5.3
Use of Site
3.13, 6.1.1, 6.2.1
Values, Schedule of
9.2, 9.3.1
Waiver of Claims by the Architect
13.3.2
Waiver of Claims by the Contractor
9.10.5, 13.3.2, 15.1.7
Waiver of Claims by the Owner
9.9.3, 9.10.3, 9.10.4, 12.2.2.1, 13.3.2, 14.2.4, 15.1.7
Waiver of Consequential Damages
14.2.4, 15.1.7
Waiver of Liens
9.3, 9.10.2, 9.10.4
Waivers of Subrogation
6.1.1, 11.3
Warranty
3.5, 4.2.9, 9.3.3, 9.8.4, 9.9.1, 9.10.2, 9.10.4, 12.2.2, 15.1.2
Weather Delays
8.3, 15.1.6.2
Work, Definition of
1.1.3
Written Consent
1.5.2, 3.4.2, 3.7.4, 3.12.8, 3.14.2, 4.1.2, 9.3.2, 9.10.3, 13.2, 13.3.2, 15.4.4.2
Written Interpretations
4.2.11, 4.2.12
Written Orders
1.1.1, 2.4, 3.9, 7, 8.2.2, 12.1, 12.2, 13.4.2, 14.3.1
ARTICLE 1 GENERAL PROVISIONS
§ 1.1 Basic Definitions
§ 1.1.1 The Contract Documents
The Contract Documents are enumerated in the Agreement between the Owner and Contractor (hereinafter the Agreement) and consist of the Agreement, Conditions of the Contract (General, Supplementary and other Conditions), Drawings, Specifications, Addenda issued prior to execution of the Contract, other documents listed in the Agreement, and Modifications issued after execution of the Contract. A Modification is (1) a written amendment to the Contract signed by both parties, (2) a Change Order, (3) a Construction Change Directive, or (4) a written order for a minor change in the Work issued by the Architect. Unless specifically enumerated in the Agreement, the Contract Documents do not include the advertisement or invitation to bid, Instructions to Bidders, sample forms, other information furnished by the Owner in anticipation of receiving bids or proposals, the Contractor’s bid or proposal, or portions of Addenda relating to bidding or proposal requirements.

§ 1.1.2 The Contract
The Contract Documents form the Contract for Construction. The Contract represents the entire and integrated agreement between the parties hereto and supersedes prior negotiations, representations, or agreements, either written or oral. The Contract may be amended or modified only by a Modification. The Contract Documents shall not be construed to create a contractual relationship of any kind (1) between the Contractor and the Architect or the Architect’s consultants, (2) between the Owner and a Subcontractor or a Sub-subcontractor, (3) between the Owner and the Architect or the Architect’s consultants, or (4) between any persons or entities other than the Owner and the Contractor. The Architect shall, however, be entitled to performance and enforcement of obligations under the Contract intended to facilitate performance of the Architect’s duties.

§ 1.1.3 The Work
The term “Work” means the construction and services required by the Contract Documents, whether completed or partially completed, and includes all other labor, materials, equipment, and services provided or to be provided by the Contractor to fulfill the Contractor’s obligations. The Work may constitute the whole or a part of the Project.

§ 1.1.4 The Project
The Project is the total construction of which the Work performed under the Contract Documents may be the whole or a part and which may include construction by the Owner and by Separate Contractors.

§ 1.1.5 The Drawings
The Drawings are the graphic and pictorial portions of the Contract Documents showing the design, location and dimensions of the Work, generally including plans, elevations, sections, details, schedules, and diagrams.

§ 1.1.6 The Specifications
The Specifications are that portion of the Contract Documents consisting of the written requirements for materials, equipment, systems, standards and workmanship for the Work, and performance of related services.

§ 1.1.7 Instruments of Service
Instruments of Service are representations, in any medium of expression now known or later developed, of the tangible and intangible creative work performed by the Architect and the Architect’s consultants under their respective professional services agreements. Instruments of Service may include, without limitation, studies, surveys, models, sketches, drawings, specifications, and other similar materials.

§ 1.1.8 Initial Decision Maker
The Initial Decision Maker is the person identified in the Agreement to render initial decisions on Claims in accordance with Section 15.2. The Initial Decision Maker shall not show partiality to the Owner or Contractor and shall not be liable for results of interpretations or decisions rendered in good faith.

§ 1.2 Correlation and Intent of the Contract Documents
§ 1.2.1 The intent of the Contract Documents is to include all items necessary for the proper execution and completion of the Work by the Contractor. The Contract Documents are complementary, and what is required by one shall be as binding as if required by all; performance by the Contractor shall be required only to the extent consistent with the Contract Documents and reasonably inferable from them as being necessary to produce the indicated results.
§ 1.2.1.1 The invalidity of any provision of the Contract Documents shall not invalidate the Contract or its remaining provisions. If it is determined that any provision of the Contract Documents violates any law, or is otherwise invalid or unenforceable, then that provision shall be revised to the extent necessary to make that provision legal and enforceable. In such case the Contract Documents shall be construed, to the fullest extent permitted by law, to give effect to the parties’ intentions and purposes in executing the Contract.

§ 1.2.2 Organization of the Specifications into divisions, sections and articles, and arrangement of Drawings shall not control the Contractor in dividing the Work among Subcontractors or in establishing the extent of Work to be performed by any trade.

§ 1.2.3 Unless otherwise stated in the Contract Documents, words that have well-known technical or construction industry meanings are used in the Contract Documents in accordance with such recognized meanings.

§ 1.3 Capitalization
Terms capitalized in these General Conditions include those that are (1) specifically defined, (2) the titles of numbered articles, or (3) the titles of other documents published by the American Institute of Architects.

§ 1.4 Interpretation
In the interest of brevity the Contract Documents frequently omit modifying words such as "all" and "any" and articles such as "the" and "an," but the fact that a modifier or an article is absent from one statement and appears in another is not intended to affect the interpretation of either statement.

§ 1.5 Ownership and Use of Drawings, Specifications, and Other Instruments of Service
§ 1.5.1 The Architect and the Architect’s consultants shall be deemed the authors and owners of their respective Instruments of Service, including the Drawings and Specifications, and retain all common law, statutory, and other reserved rights in their Instruments of Service, including copyrights. The Contractor, Subcontractors, Sub-subcontractors, and suppliers shall not own or claim a copyright in the Instruments of Service. Submittal or distribution to meet official regulatory requirements or for other purposes in connection with the Project is not to be construed as publication in derogation of the Architect’s or Architect’s consultants’ reserved rights.

§ 1.5.2 The Contractor, Subcontractors, Sub-subcontractors, and suppliers are authorized to use and reproduce the Instruments of Service provided to them, subject to any protocols established pursuant to Sections 1.7 and 1.8, solely and exclusively for execution of the Work. All copies made under this authorization shall bear the copyright notice, if any, shown on the Instruments of Service. The Contractor, Subcontractors, Sub-subcontractors, and suppliers may not use the Instruments of Service on other projects or for additions to the Project outside the scope of the Work without the specific written consent of the Owner, Architect, and the Architect’s consultants.

§ 1.6 Notice
§ 1.6.1 Except as otherwise provided in Section 1.6.2, where the Contract Documents require one party to notify or give notice to the other party, such notice shall be provided in writing to the designated representative of the party to whom the notice is addressed and shall be deemed to have been duly served if delivered in person, by mail, by courier, or by electronic transmission if a method for electronic transmission is set forth in the Agreement.

§ 1.6.2 Notice of Claims as provided in Section 15.1.3 shall be provided in writing and shall be deemed to have been duly served only if delivered to the designated representative of the party to whom the notice is addressed by certified or registered mail, or by courier providing proof of delivery.

§ 1.7 Digital Data Use and Transmission
The parties shall agree upon protocols governing the transmission and use of Instruments of Service or any other information or documentation in digital form. The parties will use AIA Document E203™-2013, Building Information Modeling and Digital Data Exhibit, to establish the protocols for the development, use, transmission, and exchange of digital data.

§ 1.8 Building Information Models Use and Reliance
Any use of, or reliance on, all or a portion of a building information model without agreement to protocols governing the use of, and reliance on, the information contained in the model and without having those protocols set forth in AIA Document E203™-2013, Building Information Modeling and Digital Data Exhibit, and the requisite AIA Document
G202™-2013, Project Building Information Modeling Protocol Form, shall be at the using or relying party's sole risk and without liability to the other party and its contractors or consultants, the authors of, or contributors to, the building information model, and each of their agents and employees.

ARTICLE 2 OWNER

§ 2.1 General
§ 2.1.1 The Owner is the person or entity identified as such in the Agreement and is referred to throughout the Contract Documents as if singular in number. The Owner shall designate in writing a representative who shall have express authority to bind the Owner with respect to all matters requiring the Owner’s approval or authorization. Except as otherwise provided in Section 4.2.1, the Architect does not have such authority. The term "Owner" means the Owner or the Owner’s authorized representative.

§ 2.1.2 The Owner shall furnish to the Contractor, within fifteen days after receipt of a written request, information necessary and relevant for the Contractor to evaluate, give notice of, or enforce mechanic’s lien rights. Such information shall include a correct statement of the record legal title to the property on which the Project is located, usually referred to as the site, and the Owner’s interest therein.

§ 2.2 Evidence of the Owner’s Financial Arrangements
§ 2.2.1 Prior to commencement of the Work and upon written request by the Contractor, the Owner shall furnish to the Contractor reasonable evidence that the Owner has made financial arrangements to fulfill the Owner’s obligations under the Contract. The Contractor shall have no obligation to commence the Work until the Owner provides such evidence. If commencement of the Work is delayed under this Section 2.2.1, the Contract Time shall be extended appropriately.

§ 2.2.2 Following commencement of the Work and upon written request by the Contractor, the Owner shall furnish to the Contractor reasonable evidence that the Owner has made financial arrangements to fulfill the Owner’s obligations under the Contract only if (1) the Owner fails to make payments to the Contractor as the Contract Documents require; (2) the Contractor identifies in writing a reasonable concern regarding the Owner’s ability to make payment when due; or (3) a change in the Work materially changes the Contract Sum. If the Owner fails to provide such evidence, as required, within fourteen days of the Contractor’s request, the Contractor may immediately stop the Work and, in that event, shall notify the Owner that the Work has stopped. However, if the request is made because a change in the Work materially changes the Contract Sum under (3) above, the Contractor may immediately stop only that portion of the Work affected by the change until reasonable evidence is provided. If the Work is stopped under this Section 2.2.2, the Contract Time shall be extended appropriately and the Contract Sum shall be increased by the amount of the Contractor’s reasonable costs of shutdown, delay and start-up, plus interest as provided in the Contract Documents.

§ 2.2.3 After the Owner furnishes evidence of financial arrangements under this Section 2.2, the Owner shall not materially vary such financial arrangements without prior notice to the Contractor.

§ 2.2.4 Where the Owner has designated information furnished under this Section 2.2 as "confidential," the Contractor shall keep the information confidential and shall not disclose it to any other person. However, the Contractor may disclose "confidential" information, after seven (7) days’ notice to the Owner, where disclosure is required by law, including a subpoena or other form of compulsory legal process issued by a court or governmental entity, or by court or arbitrator(s) order. The Contractor may also disclose "confidential" information to its employees, consultants, sureties, Subcontractors and their employees, Sub-subcontractors, and others who need to know the content of such information solely and exclusively for the Project and who agree to maintain the confidentiality of such information.

§ 2.3 Information and Services Required of the Owner
§ 2.3.1 Except for permits and fees that are the responsibility of the Contractor under the Contract Documents, including those required under Section 3.7.1, the Owner shall secure and pay for necessary approvals, easements, assessments and charges required for construction, use or occupancy of permanent structures or for permanent changes in existing facilities.

§ 2.3.2 The Owner shall retain an architect lawfully licensed to practice architecture, or an entity lawfully practicing architecture, in the jurisdiction where the Project is located. That person or entity is identified as the Architect in the Agreement and is referred to throughout the Contract Documents as if singular in number.
§ 2.3.3 If the employment of the Architect terminates, the Owner shall employ a successor to whom the Contractor has no reasonable objection and whose status under the Contract Documents shall be that of the Architect.

§ 2.3.4 The Owner shall furnish surveys describing physical characteristics, legal limitations and utility locations for the site of the Project, and a legal description of the site. The Contractor shall be entitled to rely on the accuracy of information furnished by the Owner but shall exercise proper precautions relating to the safe performance of the Work.

§ 2.3.5 The Owner shall furnish information or services required of the Owner by the Contract Documents with reasonable promptness. The Owner shall also furnish any other information or services under the Owner’s control and relevant to the Contractor’s performance of the Work with reasonable promptness after receiving the Contractor’s written request for such information or services.

§ 2.3.6 Unless otherwise provided in the Contract Documents, the Owner shall furnish to the Contractor one copy of the Contract Documents for purposes of making reproductions pursuant to Section 1.5.2.

§ 2.4 Owner’s Right to Stop the Work
If the Contractor fails to correct Work that is not in accordance with the requirements of the Contract Documents as required by Section 12.2 or repeatedly fails to carry out Work in accordance with the Contract Documents, the Owner may issue a written order to the Contractor to stop the Work, or any portion thereof, until the cause for such order has been eliminated; however, the right of the Owner to stop the Work shall not give rise to a duty on the part of the Owner to exercise this right for the benefit of the Contractor or any other person or entity, except to the extent required by Section 6.1.3.

§ 2.5 Owner’s Right to Carry Out the Work
If the Contractor defaults or neglects to carry out the Work in accordance with the Contract Documents and fails within a ten-day period after receipt of notice from the Owner to commence and continue correction of such default or neglect with diligence and promptness, the Owner may, without prejudice to other remedies the Owner may have, correct such default or neglect. Such action by the Owner and amounts charged to the Contractor are both subject to prior approval of the Architect and the Architect may, pursuant to Section 9.5.1, withhold or nullify a Certificate for Payment in whole or in part, to the extent reasonably necessary to reimburse the Owner for the reasonable cost of correcting such deficiencies, including Owner’s expenses and compensation for the Architect’s additional services made necessary by such default, neglect, or failure. If current and future payments are not sufficient to cover such amounts, the Contractor shall pay the difference to the Owner. If the Contractor disagrees with the actions of the Owner or the Architect, or the amounts claimed as costs to the Owner, the Contractor may file a Claim pursuant to Article 15.

ARTICLE 3 CONTRACTOR
§ 3.1 General
§ 3.1.1 The Contractor is the person or entity identified as such in the Agreement and is referred to throughout the Contract Documents as if singular in number. The Contractor shall be lawfully licensed, if required in the jurisdiction where the Project is located. The Contractor shall designate in writing a representative who shall have express authority to bind the Contractor with respect to all matters under this Contract. The term "Contractor" means the Contractor or the Contractor’s authorized representative.

§ 3.1.2 The Contractor shall perform the Work in accordance with the Contract Documents.

§ 3.1.3 The Contractor shall not be relieved of its obligations to perform the Work in accordance with the Contract Documents either by activities or duties of the Architect in the Architect’s administration of the Contract, or by tests, inspections or approvals required or performed by persons or entities other than the Contractor.

§ 3.2 Review of Contract Documents and Field Conditions by Contractor
§ 3.2.1 Execution of the Contract by the Contractor is a representation that the Contractor has visited the site, become generally familiar with local conditions under which the Work is to be performed, and correlated personal observations with requirements of the Contract Documents.
§ 3.2.2 Because the Contract Documents are complementary, the Contractor shall, before starting each portion of the Work, carefully study and compare the various Contract Documents relative to that portion of the Work, as well as the information furnished by the Owner pursuant to Section 2.3.4, shall take field measurements of any existing conditions related to that portion of the Work, and shall observe any conditions at the site affecting it. These obligations are for the purpose of facilitating coordination and construction by the Contractor and are not for the purpose of discovering errors, omissions, or inconsistencies in the Contract Documents; however, the Contractor shall promptly report to the Architect any errors, inconsistencies or omissions discovered by or made known to the Contractor as a request for information in such form as the Architect may require. It is recognized that the Contractor's review is made in the Contractor's capacity as a contractor and not as a licensed design professional, unless otherwise specifically provided in the Contract Documents.

§ 3.2.3 The Contractor is not required to ascertain that the Contract Documents are in accordance with applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of public authorities, but the Contractor shall promptly report to the Architect any nonconformity discovered by or made known to the Contractor as a request for information in such form as the Architect may require.

§ 3.2.4 If the Contractor believes that additional cost or time is involved because of clarifications or instructions the Architect issues in response to the Contractor's notices or requests for information pursuant to Sections 3.2.2 or 3.2.3, the Contractor shall submit Claims as provided in Article 15. If the Contractor fails to perform the obligations of Sections 3.2.2 or 3.2.3, the Contractor shall pay such costs and damages to the Owner, subject to Section 15.1.7, as would have been avoided if the Contractor had performed such obligations. If the Contractor performs those obligations, the Contractor shall not be liable to the Owner or Architect for damages resulting from errors, inconsistencies or omissions in the Contract Documents, for differences between field measurements or conditions and the Contract Documents, or for nonconformities of the Contract Documents to applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities.

§ 3.3 Supervision and Construction Procedures
§ 3.3.1 The Contractor shall supervise and direct the Work, using the Contractor's best skill and attention. The Contractor shall be solely responsible for, and have control over, construction means, methods, techniques, sequences, and procedures, and for coordinating all portions of the Work under the Contract. If the Contract Documents give specific instructions concerning construction means, methods, techniques, sequences, or procedures, the Contractor shall evaluate the jobsite safety thereof and shall be solely responsible for the jobsite safety of such means, methods, techniques, sequences, procedures. If the Contractor determines that such means, methods, techniques, sequences or procedures may not be safe, the Contractor shall give timely notice to the Owner and Architect, and shall propose alternative means, methods, techniques, sequences, or procedures. The Architect shall evaluate the proposed alternative solely for conformance with the design intent for the completed construction. Unless the Architect objects to the Contractor's proposed alternative, the Contractor shall perform the Work using its alternative means, methods, techniques, sequences, or procedures.

§ 3.3.2 The Contractor shall be responsible to the Owner for acts and omissions of the Contractor's employees, Subcontractors and their agents and employees, and other persons or entities performing portions of the Work for, or on behalf of, the Contractor or any of its Subcontractors.

§ 3.3.3 The Contractor shall be responsible for inspection of portions of Work already performed to determine that such portions are in proper condition to receive subsequent Work.

§ 3.4 Labor and Materials
§ 3.4.1 Unless otherwise provided in the Contract Documents, the Contractor shall provide and pay for labor, materials, equipment, tools, construction equipment and machinery, water, heat, utilities, transportation, and other facilities and services necessary for proper execution and completion of the Work, whether temporary or permanent and whether or not incorporated or to be incorporated in the Work.

§ 3.4.2 Except in the case of minor changes in the Work approved by the Architect in accordance with Section 3.12.8 or ordered by the Architect in accordance with Section 7.4, the Contractor may make substitutions only with the consent of the Owner, after evaluation by the Architect and in accordance with a Change Order or Construction Change Directive.
§ 3.4.3 The Contractor shall enforce strict discipline and good order among the Contractor’s employees and other persons carrying out the Work. The Contractor shall not permit employment of unfit persons or persons not properly skilled in tasks assigned to them.

§ 3.5 Warranty
§ 3.5.1 The Contractor warrants to the Owner and Architect that materials and equipment furnished under the Contract will be of good quality and new unless the Contract Documents require or permit otherwise. The Contractor further warrants that the Work will conform to the requirements of the Contract Documents and will be free from defects, except for those inherent in the quality of the Work the Contract Documents require or permit. Work, materials, or equipment not conforming to these requirements may be considered defective. The Contractor’s warranty excludes remedy for damage or defect caused by abuse, alterations to the Work not executed by the Contractor, improper or insufficient maintenance, improper operation, or normal wear and tear and normal usage. If required by the Architect, the Contractor shall furnish satisfactory evidence as to the kind and quality of materials and equipment.

§ 3.5.2 All material, equipment, or other special warranties required by the Contract Documents shall be issued in the name of the Owner, or shall be transferable to the Owner, and shall commence in accordance with Section 9.8.4.

§ 3.6 Taxes
The Contractor shall pay sales, consumer, use and similar taxes for the Work provided by the Contractor that are legally enacted when bids are received or negotiations concluded, whether or not yet effective or merely scheduled to go into effect.

§ 3.7 Permits, Fees, Notices and Compliance with Laws
§ 3.7.1 Unless otherwise provided in the Contract Documents, the Contractor shall secure and pay for the building permit as well as for other permits, fees, licenses, and inspections by government agencies necessary for proper execution and completion of the Work that are customarily secured after execution of the Contract and legally required at the time bids are received or negotiations concluded.

§ 3.7.2 The Contractor shall comply with and give notices required by applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities applicable to performance of the Work.

§ 3.7.3 If the Contractor performs Work knowing it to be contrary to applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of public authorities, the Contractor shall assume appropriate responsibility for such Work and shall bear the costs attributable to correction.

§ 3.7.4 Concealed or Unknown Conditions
If the Contractor encounters conditions at the site that are (1) subsurface or otherwise concealed physical conditions that differ materially from those indicated in the Contract Documents or (2) unknown physical conditions of an unusual nature that differ materially from those ordinarily found to exist and generally recognized as inherent in construction activities of the character provided for in the Contract Documents, the Contractor shall promptly provide notice to the Owner and the Architect before conditions are disturbed and in no event later than 14 days after first observance of the conditions. The Architect will promptly investigate such conditions and, if the Architect determines that they differ materially and cause an increase or decrease in the Contractor’s cost of, or time required for, performance of any part of the Work, will recommend that an equitable adjustment be made in the Contract Sum or Contract Time, or both. If the Architect determines that the conditions at the site are not materially different from those indicated in the Contract Documents and that no change in the terms of the Contract is justified, the Architect shall promptly notify the Owner and Contractor, stating the reasons. If either party disputes the Architect’s determination or recommendation, that party may submit a Claim as provided in Article 15.

§ 3.7.5 If, in the course of the Work, the Contractor encounters human remains or recognizes the existence of burial markers, archaeological sites or wetlands not indicated in the Contract Documents, the Contractor shall immediately suspend any operations that would affect them and shall notify the Owner and Architect. Upon receipt of such notice, the Owner shall promptly take any action necessary to obtain governmental authorization required to resume the operations. The Contractor shall continue to suspend such operations until otherwise instructed by the Owner but shall continue with all other operations that do not affect those remains or features. Requests for adjustments in the Contract Sum and Contract Time arising from the existence of such remains or features may be made as provided in Article 15.
§ 3.8 Allowances

§ 3.8.1 The Contractor shall include in the Contract Sum all allowances stated in the Contract Documents. Items covered by allowances shall be supplied for such amounts and by such persons or entities as the Owner may direct, but the Contractor shall not be required to employ persons or entities to whom the Contractor has reasonable objection.

§ 3.8.2 Unless otherwise provided in the Contract Documents,

.1 allowances shall cover the cost to the Contractor of materials and equipment delivered at the site and all required taxes, less applicable trade discounts;

.2 Contractor’s costs for unloading and handling at the site, labor, installation costs, overhead, profit, and other expenses contemplated for stated allowance amounts shall be included in the Contract Sum but not in the allowances; and

.3 whenever costs are more than or less than allowances, the Contract Sum shall be adjusted accordingly by Change Order. The amount of the Change Order shall reflect (1) the difference between actual costs and the allowances under Section 3.8.2.1 and (2) changes in Contractor’s costs under Section 3.8.2.2.

§ 3.8.3 Materials and equipment under an allowance shall be selected by the Owner with reasonable promptness.

§ 3.9 Superintendent

§ 3.9.1 The Contractor shall employ a competent superintendent and necessary assistants who shall be in attendance at the Project site during performance of the Work. The superintendent shall represent the Contractor, and communications given to the superintendent shall be as binding as if given to the Contractor.

§ 3.9.2 The Contractor, as soon as practicable after award of the Contract, shall notify the Owner and Architect of the name and qualifications of a proposed superintendent. Within 14 days of receipt of the information, the Architect may notify the Contractor, stating whether the Owner or the Architect (1) has reasonable objection to the proposed superintendent or (2) requires additional time for review. Failure of the Architect to provide notice within the 14-day period shall constitute notice of no reasonable objection.

§ 3.9.3 The Contractor shall not employ a proposed superintendent to whom the Owner or Architect has made reasonable and timely objection. The Contractor shall not change the superintendent without the Owner’s consent, which shall not unreasonably be withheld or delayed.

§ 3.10 Contractor’s Construction and Submittal Schedules

§ 3.10.1 The Contractor, promptly after being awarded the Contract, shall submit for the Owner’s and Architect’s information a Contractor’s construction schedule for the Work. The schedule shall contain detail appropriate for the Project, including (1) the date of commencement of the Work, interim schedule milestone dates, and the date of Substantial Completion; (2) an apportionment of the Work by construction activity; and (3) the time required for completion of each portion of the Work. The schedule shall provide for the orderly progression of the Work to completion and shall not exceed time limits current under the Contract Documents. The schedule shall be revised at appropriate intervals as required by the conditions of the Work and Project.

§ 3.10.2 The Contractor, promptly after being awarded the Contract and thereafter as necessary to maintain a current submittal schedule, shall submit a submittal schedule for the Architect’s approval. The Architect’s approval shall not be unreasonably delayed or withheld. The submittal schedule shall (1) be coordinated with the Contractor’s construction schedule, and (2) allow the Architect reasonable time to review submittals. If the Contractor fails to submit a submittal schedule, or fails to provide submittals in accordance with the approved submittal schedule, the Contractor shall not be entitled to any increase in Contract Sum or extension of Contract Time based on the time required for review of submittals.

§ 3.10.3 The Contractor shall perform the Work in general accordance with the most recent schedules submitted to the Owner and Architect.

§ 3.11 Documents and Samples at the Site

The Contractor shall make available, at the Project site, the Contract Documents, including Change Orders, Construction Change Directives, and other Modifications, in good order and marked currently to indicate field changes and selections made during construction, and the approved Shop Drawings, Product Data, Samples, and similar required submittals. These shall be in electronic form or paper copy, available to the Architect and Owner, and
delivered to the Architect for submittal to the Owner upon completion of the Work as a record of the Work as constructed.

§ 3.12 Shop Drawings, Product Data and Samples
§ 3.12.1 Shop Drawings are drawings, diagrams, schedules, and other data specially prepared for the Work by the Contractor or a Subcontractor, Sub-subcontractor, manufacturer, supplier, or distributor to illustrate some portion of the Work.

§ 3.12.2 Product Data are illustrations, standard schedules, performance charts, instructions, brochures, diagrams, and other information furnished by the Contractor to illustrate materials or equipment for some portion of the Work.

§ 3.12.3 Samples are physical examples that illustrate materials, equipment, or workmanship, and establish standards by which the Work will be judged.

§ 3.12.4 Shop Drawings, Product Data, Samples, and similar submittals are not Contract Documents. Their purpose is to demonstrate how the Contractor proposes to conform to the information given and the design concept expressed in the Contract Documents for those portions of the Work for which the Contract Documents require submittals. Review by the Architect is subject to the limitations of Section 4.2.7. Informational submittals upon which the Architect is not expected to take responsive action may be so identified in the Contract Documents. Submittals that are not required by the Contract Documents may be returned by the Architect without action.

§ 3.12.5 The Contractor shall review for compliance with the Contract Documents, approve, and submit to the Architect, Shop Drawings, Product Data, Samples, and similar submittals required by the Contract Documents, in accordance with the submittal schedule approved by the Architect or, in the absence of an approved submittal schedule, with reasonable promptness and in such sequence as to cause no delay in the Work or in the activities of the Owner or of Separate Contractors.

§ 3.12.6 By submitting Shop Drawings, Product Data, Samples, and similar submittals, the Contractor represents to the Owner and Architect that the Contractor has (1) reviewed and approved them, (2) determined and verified materials, field measurements and field construction criteria related thereto, or will do so, and (3) checked and coordinated the information contained within such submittals with the requirements of the Work and of the Contract Documents.

§ 3.12.7 The Contractor shall perform no portion of the Work for which the Contract Documents require submittal and review of Shop Drawings, Product Data, Samples, or similar submittals, until the respective submittal has been approved by the Architect.

§ 3.12.8 The Work shall be in accordance with approved submittals except that the Contractor shall not be relieved of responsibility for deviations from the requirements of the Contract Documents by the Architect’s approval of Shop Drawings, Product Data, Samples, or similar submittals, unless the Contractor has specifically notified the Architect of such deviation at the time of submittal and (1) the Architect has given written approval to the specific deviation as a minor change in the Work, or (2) a Change Order or Construction Change Directive has been issued authorizing the deviation. The Contractor shall not be relieved of responsibility for errors or omissions in Shop Drawings, Product Data, Samples, or similar submittals, by the Architect’s approval thereof.

§ 3.12.9 The Contractor shall direct specific attention, in writing or on resubmitted Shop Drawings, Product Data, Samples, or similar submittals, to revisions other than those requested by the Architect on previous submittals. In the absence of such notice, the Architect’s approval of a resubmission shall not apply to such revisions.

§ 3.12.10 The Contractor shall not be required to provide professional services that constitute the practice of architecture or engineering unless such services are specifically required by the Contract Documents for a portion of the Work or unless the Contractor needs to provide such services in order to carry out the Contractor’s responsibilities for construction means, methods, techniques, sequences, and procedures. The Contractor shall not be required to provide professional services in violation of applicable law.

§ 3.12.10.1 If professional design services or certifications by a design professional related to systems, materials, or equipment are specifically required of the Contractor by the Contract Documents, the Owner and the Architect will
specify all performance and design criteria that such services must satisfy. The Contractor shall be entitled to rely upon the adequacy and accuracy of the performance and design criteria provided in the Contract Documents. The Contractor shall cause such services or certifications to be provided by an appropriately licensed design professional, whose signature and seal shall appear on all drawings, calculations, specifications, certifications, Shop Drawings, and other submittals prepared by such professional. Shop Drawings, and other submittals related to the Work, designed or certified by such professional, if prepared by others, shall bear such professional’s written approval when submitted to the Architect. The Owner and the Architect shall be entitled to rely upon the adequacy and accuracy of the services, certifications, and approvals performed or provided by such design professionals, provided the Owner and Architect have specified to the Contractor the performance and design criteria that such services must satisfy. Pursuant to this Section 3.12.10, the Architect will review and approve or take other appropriate action upon submittals only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents.

§ 3.12.10.2 If the Contract Documents require the Contractor’s design professional to certify that the Work has been performed in accordance with the design criteria, the Contractor shall furnish such certifications to the Architect at the time and in the form specified by the Architect.

§ 3.13 Use of Site
The Contractor shall confine operations at the site to areas permitted by applicable laws, statutes, ordinances, codes, rules and regulations, lawful orders of public authorities, and the Contract Documents and shall not unreasonably encumber the site with materials or equipment.

§ 3.14 Cutting and Patching
§ 3.14.1 The Contractor shall be responsible for cutting, fitting, or patching required to complete the Work or to make its parts fit together properly. All areas requiring cutting, fitting, or patching shall be restored to the condition existing prior to the cutting, fitting, or patching, unless otherwise required by the Contract Documents.

§ 3.14.2 The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or Separate Contractors by cutting, patching, or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter construction by the Owner or a Separate Contractor except with written consent of the Owner and of the Separate Contractor. Consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold, from the Owner or a Separate Contractor, its consent to cutting or otherwise altering the Work.

§ 3.15 Cleaning Up
§ 3.15.1 The Contractor shall keep the premises and surrounding area free from accumulation of waste materials and rubbish caused by operations under the Contract. At completion of the Work, the Contractor shall remove waste materials, rubbish, the Contractor’s tools, construction equipment, machinery, and surplus materials from and about the Project.

§ 3.15.2 If the Contractor fails to clean up as provided in the Contract Documents, the Owner may do so and the Owner shall be entitled to reimbursement from the Contractor.

§ 3.16 Access to Work
The Contractor shall provide the Owner and Architect with access to the Work in preparation and progress wherever located.

§ 3.17 Royalties, Patents and Copyrights
The Contractor shall pay all royalties and license fees. The Contractor shall defend suits or claims for infringement of copyrights and patent rights and shall hold the Owner and Architect harmless from loss on account thereof, but shall not be responsible for defense or loss when a particular design, process, or product of a particular manufacturer or manufacturers is required by the Contract Documents, or where the copyright violations are contained in Drawings, Specifications, or other documents prepared by the Owner or Architect. However, if an infringement of a copyright or patent is discovered by, or made known to, the Contractor, the Contractor shall be responsible for the loss unless the information is promptly furnished to the Architect.
§ 3.18 Indemnification

§ 3.18.1 To the fullest extent permitted by law, the Contractor shall indemnify and hold harmless the Owner, Architect, Architect’s consultants, and agents and employees of any of them from and against claims, damages, losses, and expenses, including but not limited to attorneys’ fees, arising out of or resulting from performance of the Work, provided that such claim, damage, loss, or expense is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property (other than the Work itself), but only to the extent caused by the negligent acts or omissions of the Contractor, a Subcontractor, anyone directly or indirectly employed by them, or anyone for whose acts they may be liable, regardless of whether or not such claim, damage, loss, or expense is caused in part by a party indemnified hereunder. Such obligation shall not be construed to negate, abridge, or reduce other rights or obligations of indemnity that would otherwise exist as to a party or person described in this Section 3.18.

§ 3.18.2 In claims against any person or entity indemnified under this Section 3.18 by an employee of the Contractor, a Subcontractor, anyone directly or indirectly employed by them, or anyone for whose acts they may be liable, the indemnification obligation under Section 3.18.1 shall not be limited by a limitation on amount or type of damages, compensation, or benefits payable by or for the Contractor or a Subcontractor under workers’ compensation acts, disability benefit acts, or other employee benefit acts.

ARTICLE 4 ARCHITECT

§ 4.1 General

§ 4.1.1 The Architect is the person or entity retained by the Owner pursuant to Section 2.3.2 and identified as such in the Agreement.

§ 4.1.2 Duties, responsibilities, and limitations of authority of the Architect as set forth in the Contract Documents shall not be restricted, modified, or extended without written consent of the Owner, Contractor, and Architect. Consent shall not be unreasonably withheld.

§ 4.2 Administration of the Contract

§ 4.2.1 The Architect will provide administration of the Contract as described in the Contract Documents and will be an Owner’s representative during construction until the date the Architect issues the final Certificate for Payment. The Architect will have authority to act on behalf of the Owner only to the extent provided in the Contract Documents.

§ 4.2.2 The Architect will visit the site at intervals appropriate to the stage of construction, or as otherwise agreed with the Owner, to become generally familiar with the progress and quality of the portion of the Work completed, and to determine in general if the Work observed is being performed in a manner indicating that the Work, when fully completed, will be in accordance with the Contract Documents. However, the Architect will not be required to make exhaustive or continuous on-site inspections to check the quality or quantity of the Work. The Architect will not have control over, charge of, or responsibility for the construction means, methods, techniques, sequences or procedures, or for the safety precautions and programs in connection with the Work, since these are solely the Contractor’s rights and responsibilities under the Contract Documents.

§ 4.2.3 On the basis of the site visits, the Architect will keep the Owner reasonably informed about the progress and quality of the portion of the Work completed, and promptly report to the Owner (1) known deviations from the Contract Documents, (2) known deviations from the most recent construction schedule submitted by the Contractor, and (3) defects and deficiencies observed in the Work. The Architect will not be responsible for the Contractor’s failure to perform the Work in accordance with the requirements of the Contract Documents. The Architect will not have control over or charge of, and will not be responsible for acts or omissions of, the Contractor, Subcontractors, or their agents or employees, or any other persons or entities performing portions of the Work.

§ 4.2.4 Communications

The Owner and Contractor shall include the Architect in all communications that relate to or affect the Architect’s services or professional responsibilities. The Owner shall promptly notify the Architect of the substance of any direct communications between the Owner and the Contractor otherwise relating to the Project. Communications by and with the Architect’s consultants shall be through the Architect. Communications by and with Subcontractors and suppliers shall be through the Contractor. Communications by and with Separate Contractors shall be through the Owner. The Contract Documents may specify other communication protocols.
§ 4.2.5 Based on the Architect’s evaluations of the Contractor’s Applications for Payment, the Architect will review and certify the amounts due the Contractor and will issue Certificates for Payment in such amounts.

§ 4.2.6 The Architect has authority to reject Work that does not conform to the Contract Documents. Whenever the Architect considers it necessary or advisable, the Architect will have authority to require inspection or testing of the Work in accordance with Sections 13.4.2 and 13.4.3, whether or not the Work is fabricated, installed or completed. However, neither this authority of the Architect nor a decision made in good faith either to exercise or not to exercise such authority shall give rise to a duty or responsibility of the Architect to the Contractor, Subcontractors, suppliers, their agents or employees, or other persons or entities performing portions of the Work.

§ 4.2.7 The Architect will review and approve, or take other appropriate action upon, the Contractor’s submittals such as Shop Drawings, Product Data, and Samples, but only for the limited purpose of checking for conformance with information given and the design concept expressed in the Contract Documents. The Architect’s action will be taken in accordance with the submittal schedule approved by the Architect or, in the absence of an approved submittal schedule, with reasonable promptness while allowing sufficient time in the Architect’s professional judgment to permit adequate review. Review of such submittals is not conducted for the purpose of determining the accuracy and completeness of other details such as dimensions and quantities, or for substantiating instructions for installation or performance of equipment or systems, all of which remain the responsibility of the Contractor as required by the Contract Documents. The Architect’s review of the Contractor’s submittals shall not relieve the Contractor of the obligations under Sections 3.3, 3.5, and 3.12. The Architect’s review shall not constitute approval of safety precautions or of any construction means, methods, techniques, sequences, or procedures. The Architect’s approval of a specific item shall not indicate approval of an assembly of which the item is a component.

§ 4.2.8 The Architect will prepare Change Orders and Construction Change Directives, and may order minor changes in the Work as provided in Section 7.4. The Architect will investigate and make determinations and recommendations regarding concealed and unknown conditions as provided in Section 3.7.4.

§ 4.2.9 The Architect will conduct inspections to determine the date or dates of Substantial Completion and the date of final completion; issue Certificates of Substantial Completion pursuant to Section 9.8; receive and forward to the Owner, for the Owner’s review and records, written warranties and related documents required by the Contract and assembled by the Contractor pursuant to Section 9.10; and issue a final Certificate for Payment pursuant to Section 9.10.

§ 4.2.10 If the Owner and Architect agree, the Architect will provide one or more Project representatives to assist in carrying out the Architect’s responsibilities at the site. The Owner shall notify the Contractor of any change in the duties, responsibilities and limitations of authority of the Project representatives.

§ 4.2.11 The Architect will interpret and decide matters concerning performance under, and requirements of, the Contract Documents on written request of either the Owner or Contractor. The Architect’s response to such requests will be made in writing within any time limits agreed upon or otherwise with reasonable promptness.

§ 4.2.12 Interpretations and decisions of the Architect will be consistent with the intent of, and reasonably inferable from, the Contract Documents and will be in writing or in the form of drawings. When making such interpretations and decisions, the Architect will endeavor to secure faithful performance by both Owner and Contractor, will not show partiality to either, and will not be liable for results of interpretations or decisions rendered in good faith.

§ 4.2.13 The Architect’s decisions on matters relating to aesthetic effect will be final if consistent with the intent expressed in the Contract Documents.

§ 4.2.14 The Architect will review and respond to requests for information about the Contract Documents. The Architect’s response to such requests will be made in writing within any time limits agreed upon or otherwise with reasonable promptness. If appropriate, the Architect will prepare and issue supplemental Drawings and Specifications in response to the requests for information.
ARTICLE 5 SUBCONTRACTORS

§ 5.1 Definitions
§ 5.1.1 A Subcontractor is a person or entity who has a direct contract with the Contractor to perform a portion of the Work at the site. The term "Subcontractor" is referred to throughout the Contract Documents as if singular in number and means a Subcontractor or an authorized representative of the Subcontractor. The term "Subcontractor" does not include a Separate Contractor or the subcontractors of a Separate Contractor.

§ 5.1.2 A Sub-subcontractor is a person or entity who has a direct or indirect contract with a Subcontractor to perform a portion of the Work at the site. The term "Sub-subcontractor" is referred to throughout the Contract Documents as if singular in number and means a Sub-subcontractor or an authorized representative of the Sub-subcontractor.

§ 5.2 Award of Subcontracts and Other Contracts for Portions of the Work
§ 5.2.1 Unless otherwise stated in the Contract Documents, the Contractor, as soon as practicable after award of the Contract, shall notify the Owner and Architect of the persons or entities proposed for each principal portion of the Work, including those who are to furnish materials or equipment fabricated to a special design. Within 14 days of receipt of the information, the Architect may notify the Contractor whether the Owner or the Architect (1) has reasonable objection to any such proposed person or entity or (2) requires additional time for review. Failure of the Architect to provide notice within the 14-day period shall constitute notice of no reasonable objection.

§ 5.2.2 The Contractor shall not contract with a proposed person or entity to whom the Owner or Architect has made reasonable and timely objection. The Contractor shall not be required to contract with anyone to whom the Contractor has made reasonable objection.

§ 5.2.3 If the Owner or Architect has reasonable objection to a person or entity proposed by the Contractor, the Contractor shall propose another to whom the Owner or Architect has no reasonable objection. If the proposed but rejected Subcontractor was reasonably capable of performing the Work, the Contract Sum and Contract Time shall be increased or decreased by the difference, if any, occasioned by such change, and an appropriate Change Order shall be issued before commencement of the substitute Subcontractor’s Work. However, no increase in the Contract Sum or Contract Time shall be allowed for such change unless the Contractor has acted promptly and responsively in submitting names as required.

§ 5.2.4 The Contractor shall not substitute a Subcontractor, person or entity for one previously selected if the Owner or Architect makes reasonable objection to such substitution.

§ 5.3 Subcontractual Relations
By appropriate written agreement, the Contractor shall require each Subcontractor, to the extent of the Work to be performed by the Subcontractor, to be bound to the Contractor by terms of the Contract Documents, and to assume toward the Contractor all the obligations and responsibilities, including the responsibility for safety of the Subcontractor’s Work that the Contractor, by these Contract Documents, assumes toward the Owner and Architect. Each subcontract agreement shall preserve and protect the rights of the Owner and Architect under the Contract Documents with respect to the Work to be performed by the Subcontractor so that subcontracting thereof will not prejudice such rights, and shall allow to the Subcontractor, unless specifically provided otherwise in the subcontract agreement, the benefit of all rights, remedies, and redress against the Contractor that the Contractor, by the Contract Documents, has against the Owner. Where appropriate, the Contractor shall require each Subcontractor to enter into similar agreements with Sub-subcontractors. The Contractor shall make available to each proposed Subcontractor, prior to the execution of the subcontract agreement, copies of the Contract Documents to which the Subcontractor will be bound, and, upon written request of the Subcontractor, identify to the Subcontractor terms and conditions of the proposed subcontract agreement that may be at variance with the Contract Documents. Subcontractors will similarly make copies of applicable portions of such documents available to their respective proposed Sub-subcontractors.

§ 5.4 Contingent Assignment of Subcontracts
§ 5.4.1 Each subcontract agreement for a portion of the Work is assigned by the Contractor to the Owner, provided that
 .1 assignment is effective only after termination of the Contract by the Owner for cause pursuant to Section 14.2 and only for those subcontract agreements that the Owner accepts by notifying the Subcontractor and Contractor; and
 .2 assignment is subject to the prior rights of the surety, if any, obligated under bond relating to the Contract.

AIA Document A201® - 2017. Copyright © 1911, 1915, 1918, 1925, 1937, 1951, 1958, 1961, 1963, 1966, 1970, 1976, 1987, 1997, 2007 and 2017 by The American Institute of Architects. All rights reserved. The "American Institute of Architects," "AIA," the AIA Logo, "AIA," and "AIA Contract Documents" are registered trademarks and may not be used without permission. This document was produced by AIA software at 11:39:09 ET on 07/28/2020 under Order No.9490984409 which expires on 12/30/2022, is not for resale, is licensed for one-time use only, and may only be used in accordance with the AIA Contract Documents® Terms of Service. To report copyright violations, e-mail copyright@aia.org.

Init. 20

User Notes:
When the Owner accepts the assignment of a subcontract agreement, the Owner assumes the Contractor’s rights and obligations under the subcontract.

§ 5.4.2 Upon such assignment, if the Work has been suspended for more than 30 days, the Subcontractor’s compensation shall be equitably adjusted for increases in cost resulting from the suspension.

§ 5.4.3 Upon assignment to the Owner under this Section 5.4, the Owner may further assign the subcontract to a successor contractor or other entity. If the Owner assigns the subcontract to a successor contractor or other entity, the Owner shall nevertheless remain legally responsible for all of the successor contractor’s obligations under the subcontract.

ARTICLE 6 CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS

§ 6.1 Owner’s Right to Perform Construction and to Award Separate Contracts

§ 6.1.1 The term “Separate Contractor(s)” shall mean other contractors retained by the Owner under separate agreements. The Owner reserves the right to perform construction or operations related to the Project with the Owner’s own forces, and with Separate Contractors retained under Conditions of the Contract substantially similar to those of this Contract, including those provisions of the Conditions of the Contract related to insurance and waiver of subrogation.

§ 6.1.2 When separate contracts are awarded for different portions of the Project or other construction or operations on the site, the term “Contractor” in the Contract Documents in each case shall mean the Contractor who executes each separate Owner-Contractor Agreement.

§ 6.1.3 The Owner shall provide for coordination of the activities of the Owner’s own forces and of each Separate Contractor with the Work of the Contractor, who shall cooperate with them. The Contractor shall participate with any Separate Contractors and the Owner in reviewing their construction schedules. The Contractor shall make any revisions to its construction schedule deemed necessary after a joint review and mutual agreement. The construction schedules shall then constitute the schedules to be used by the Contractor, Separate Contractors, and the Owner until subsequently revised.

§ 6.1.4 Unless otherwise provided in the Contract Documents, when the Owner performs construction or operations related to the Project with the Owner’s own forces or with Separate Contractors, the Owner or its Separate Contractors shall have the same obligations and rights that the Contractor has under the Conditions of the Contract, including, without excluding others, those stated in Article 3, this Article 6, and Articles 10, 11, and 12.

§ 6.2 Mutual Responsibility

§ 6.2.1 The Contractor shall afford the Owner and Separate Contractors reasonable opportunity for introduction and storage of their materials and equipment and performance of their activities, and shall connect and coordinate the Contractor’s construction and operations with theirs as required by the Contract Documents.

§ 6.2.2 If part of the Contractor’s Work depends for proper execution or results upon construction or operations by the Owner or a Separate Contractor, the Contractor shall, prior to proceeding with that portion of the Work, promptly notify the Architect of apparent discrepancies or defects in the construction or operations by the Owner or Separate Contractor that would render it unsuitable for proper execution and results of the Contractor’s Work. Failure of the Contractor to notify the Architect of apparent discrepancies or defects prior to proceeding with the Work shall constitute an acknowledgment that the Owner’s or Separate Contractor’s completed or partially completed construction is fit and proper to receive the Contractor’s Work. The Contractor shall not be responsible for discrepancies or defects in the construction or operations by the Owner or Separate Contractor that are not apparent.

§ 6.2.3 The Contractor shall reimburse the Owner for costs the Owner incurs that are payable to a Separate Contractor because of the Contractor’s delays, improperly timed activities or defective construction. The Owner shall be responsible to the Contractor for costs the Contractor incurs because of a Separate Contractor’s delays, improperly timed activities, damage to the Work or defective construction.

§ 6.2.4 The Contractor shall promptly remedy damage that the Contractor wrongfully causes to completed or partially completed construction or to property of the Owner or Separate Contractor as provided in Section 10.2.5.
§ 6.2.5 The Owner and each Separate Contractor shall have the same responsibilities for cutting and patching as are described for the Contractor in Section 3.14.

§ 6.3 Owner's Right to Clean Up
If a dispute arises among the Contractor, Separate Contractors, and the Owner as to the responsibility under their respective contracts for maintaining the premises and surrounding area free from waste materials and rubbish, the Owner may clean up and the Architect will allocate the cost among those responsible.

ARTICLE 7 CHANGES IN THE WORK
§ 7.1 General
§ 7.1.1 Changes in the Work may be accomplished after execution of the Contract, and without invalidating the Contract, by Change Order, Construction Change Directive or order for a minor change in the Work, subject to the limitations stated in this Article 7 and elsewhere in the Contract Documents.

§ 7.1.2 A Change Order shall be based upon agreement among the Owner, Contractor, and Architect. A Construction Change Directive requires agreement by the Owner and Architect and may or may not be agreed to by the Contractor. An order for a minor change in the Work may be issued by the Architect alone.

§ 7.1.3 Changes in the Work shall be performed under applicable provisions of the Contract Documents. The Contractor shall proceed promptly with changes in the Work, unless otherwise provided in the Change Order, Construction Change Directive, or order for a minor change in the Work.

§ 7.2 Change Orders
§ 7.2.1 A Change Order is a written instrument prepared by the Architect and signed by the Owner, Contractor, and Architect stating their agreement upon all of the following:
 .1 The change in the Work;
 .2 The amount of the adjustment, if any, in the Contract Sum; and
 .3 The extent of the adjustment, if any, in the Contract Time.

§ 7.3 Construction Change Directives
§ 7.3.1 A Construction Change Directive is a written order prepared by the Architect and signed by the Owner and Architect, directing a change in the Work prior to agreement on adjustment, if any, in the Contract Sum or Contract Time, or both. The Owner may by Construction Change Directive, without invalidating the Contract, order changes in the Work within the general scope of the Contract consisting of additions, deletions, or other revisions, the Contract Sum and Contract Time being adjusted accordingly.

§ 7.3.2 A Construction Change Directive shall be used in the absence of total agreement on the terms of a Change Order.

§ 7.3.3 If the Construction Change Directive provides for an adjustment to the Contract Sum, the adjustment shall be based on one of the following methods:
 .1 Mutual acceptance of a lump sum properly itemized and supported by sufficient substantiating data to permit evaluation;
 .2 Unit prices stated in the Contract Documents or subsequently agreed upon;
 .3 Cost to be determined in a manner agreed upon by the parties and a mutually acceptable fixed or percentage fee; or
 .4 As provided in Section 7.3.4.

§ 7.3.4 If the Contractor does not respond promptly or disagrees with the method for adjustment in the Contract Sum, the Architect shall determine the adjustment on the basis of reasonable expenditures and savings of those performing the Work attributable to the change, including, in case of an increase in the Contract Sum, an amount for overhead and profit as set forth in the Agreement, or if no such amount is set forth in the Agreement, a reasonable amount. In such case, and also under Section 7.3.3.3, the Contractor shall keep and present, in such form as the Architect may prescribe, an itemized accounting together with appropriate supporting data. Unless otherwise provided in the Contract Documents, costs for the purposes of this Section 7.3.4 shall be limited to the following:
.1 Costs of labor, including applicable payroll taxes, fringe benefits required by agreement or custom, workers’ compensation insurance, and other employee costs approved by the Architect;
.2 Costs of materials, supplies, and equipment, including cost of transportation, whether incorporated or consumed;
.3 Rental costs of machinery and equipment, exclusive of hand tools, whether rented from the Contractor or others;
.4 Costs of premiums for all bonds and insurance, permit fees, and sales, use, or similar taxes, directly related to the change; and
.5 Costs of supervision and field office personnel directly attributable to the change.

§ 7.3.5 If the Contractor disagrees with the adjustment in the Contract Time, the Contractor may make a Claim in accordance with applicable provisions of Article 15.

§ 7.3.6 Upon receipt of a Construction Change Directive, the Contractor shall promptly proceed with the change in the Work involved and advise the Architect of the Contractor’s agreement or disagreement with the method, if any, provided in the Construction Change Directive for determining the proposed adjustment in the Contract Sum or Contract Time.

§ 7.3.7 A Construction Change Directive signed by the Contractor indicates the Contractor’s agreement therewith, including adjustment in Contract Sum and Contract Time or the method for determining them. Such agreement shall be effective immediately and shall be recorded as a Change Order.

§ 7.3.8 The amount of credit to be allowed by the Contractor to the Owner for a deletion or change that results in a net decrease in the Contract Sum shall be actual net cost as confirmed by the Architect. When both additions and credits covering related Work or substitutions are involved in a change, the allowance for overhead and profit shall be figured on the basis of net increase, if any, with respect to that change.

§ 7.3.9 Pending final determination of the total cost of a Construction Change Directive to the Owner, the Contractor may request payment for Work completed under the Construction Change Directive in Applications for Payment. The Architect will make an interim determination for purposes of monthly certification for payment for those costs and certify for payment the amount that the Architect determines, in the Architect’s professional judgment, to be reasonably justified. The Architect’s interim determination of cost shall adjust the Contract Sum on the same basis as a Change Order, subject to the right of either party to disagree and assert a Claim in accordance with Article 15.

§ 7.3.10 When the Owner and Contractor agree with a determination made by the Architect concerning the adjustments in the Contract Sum and Contract Time, or otherwise reach agreement upon the adjustments, such agreement shall be effective immediately and the Architect will prepare a Change Order. Change Orders may be issued for all or any part of a Construction Change Directive.

§ 7.4 Minor Changes in the Work
The Architect may order minor changes in the Work that are consistent with the intent of the Contract Documents and do not involve an adjustment in the Contract Sum or an extension of the Contract Time. The Architect’s order for minor changes shall be in writing. If the Contractor believes that the proposed minor change in the Work will affect the Contract Sum or Contract Time, the Contractor shall notify the Architect and shall not proceed to implement the change in the Work. If the Contractor performs the Work set forth in the Architect’s order for a minor change without prior notice to the Architect that such change will affect the Contract Sum or Contract Time, the Contractor waives any adjustment to the Contract Sum or extension of the Contract Time.

ARTICLE 8 TIME
§ 8.1 Definitions
§ 8.1.1 Unless otherwise provided, Contract Time is the period of time, including authorized adjustments, allotted in the Contract Documents for Substantial Completion of the Work.

§ 8.1.2 The date of commencement of the Work is the date established in the Agreement.

§ 8.1.3 The date of Substantial Completion is the date certified by the Architect in accordance with Section 9.8.
§ 8.1.4 The term "day" as used in the Contract Documents shall mean calendar day unless otherwise specifically defined.

§ 8.2 Progress and Completion
§ 8.2.1 Time limits stated in the Contract Documents are of the essence of the Contract. By executing the Agreement, the Contractor confirms that the Contract Time is a reasonable period for performing the Work.

§ 8.2.2 The Contractor shall not knowingly, except by agreement or instruction of the Owner in writing, commence the Work prior to the effective date of insurance required to be furnished by the Contractor and Owner.

§ 8.2.3 The Contractor shall proceed expeditiously with adequate forces and shall achieve Substantial Completion within the Contract Time.

§ 8.3 Delays and Extensions of Time
§ 8.3.1 If the Contractor is delayed at any time in the commencement or progress of the Work by (1) an act or neglect of the Owner or Architect, of an employee of either, or of a Separate Contractor; (2) by changes ordered in the Work; (3) by labor disputes, fire, unusual delay in deliveries, unavoidable casualties, adverse weather conditions documented in accordance with Section 15.1.6.2, or other causes beyond the Contractor’s control; (4) by delay authorized by the Owner pending mediation and binding dispute resolution; or (5) by other causes that the Contractor asserts, and the Architect determines, justify delay, then the Contract Time shall be extended for such reasonable time as the Architect may determine.

§ 8.3.2 Claims relating to time shall be made in accordance with applicable provisions of Article 15.

§ 8.3.3 This Section 8.3 does not preclude recovery of damages for delay by either party under other provisions of the Contract Documents.

ARTICLE 9 PAYMENTS AND COMPLETION
§ 9.1 Contract Sum
§ 9.1.1 The Contract Sum is stated in the Agreement and, including authorized adjustments, is the total amount payable by the Owner to the Contractor for performance of the Work under the Contract Documents.

§ 9.1.2 If unit prices are stated in the Contract Documents or subsequently agreed upon, and if quantities originally contemplated are materially changed so that application of such unit prices to the actual quantities causes substantial inequity to the Owner or Contractor, the applicable unit prices shall be equitably adjusted.

§ 9.2 Schedule of Values
Where the Contract is based on a stipulated sum or Guaranteed Maximum Price, the Contractor shall submit a schedule of values to the Architect before the first Application for Payment, allocating the entire Contract Sum to the various portions of the Work. The schedule of values shall be prepared in the form, and supported by the data to substantiate its accuracy, required by the Architect. This schedule, unless objected to by the Architect, shall be used as a basis for reviewing the Contractor’s Applications for Payment. Any changes to the schedule of values shall be submitted to the Architect and supported by such data to substantiate its accuracy as the Architect may require, and unless objected to by the Architect, shall be used as a basis for reviewing the Contractor’s subsequent Applications for Payment.

§ 9.3 Applications for Payment
§ 9.3.1 At least ten days before the date established for each progress payment, the Contractor shall submit to the Architect an itemized Application for Payment prepared in accordance with the schedule of values, if required under Section 9.2, for completed portions of the Work. The application shall be notarized, if required, and supported by all data substantiating the Contractor’s right to payment that the Owner or Architect require, such as copies of requisitions, and releases and waivers of liens from Subcontractors and suppliers, and shall reflect retainage if provided for in the Contract Documents.

§ 9.3.1.1 As provided in Section 7.3.9, such applications may include requests for payment on account of changes in the Work that have been properly authorized by Construction Change Directives, or by interim determinations of the Architect, but not yet included in Change Orders.
§ 9.3.1.2 Applications for Payment shall not include requests for payment for portions of the Work for which the Contractor does not intend to pay a Subcontractor or supplier, unless such Work has been performed by others whom the Contractor intends to pay.

§ 9.3.2 Unless otherwise provided in the Contract Documents, payments shall be made on account of materials and equipment delivered and suitably stored at the site for subsequent incorporation in the Work. If approved in advance by the Owner, payment may similarly be made for materials and equipment suitably stored off the site at a location agreed upon in writing. Payment for materials and equipment stored on or off the site shall be conditioned upon compliance by the Contractor with procedures satisfactory to the Owner to establish the Owner’s title to such materials and equipment or otherwise protect the Owner’s interest, and shall include the costs of applicable insurance, storage, and transportation to the site, for such materials and equipment stored off the site.

§ 9.3.3 The Contractor warrants that title to all Work covered by an Application for Payment will pass to the Owner no later than the time of payment. The Contractor further warrants that upon submittal of an Application for Payment all Work for which Certificates for Payment have been previously issued and payments received from the Owner shall, to the best of the Contractor’s knowledge, information, and belief, be free and clear of liens, claims, security interests, or encumbrances, in favor of the Contractor, Subcontractors, suppliers, or other persons or entities that provided labor, materials, and equipment relating to the Work.

§ 9.4 Certificates for Payment
§ 9.4.1 The Architect will, within seven days after receipt of the Contractor’s Application for Payment, either (1) issue to the Owner a Certificate for Payment in the full amount of the Application for Payment, with a copy to the Contractor; or (2) issue to the Owner a Certificate for Payment for such amount as the Architect determines is properly due, and notify the Contractor and Owner of the Architect’s reasons for withholding certification in part as provided in Section 9.5.1; or (3) withhold certification of the entire Application for Payment, and notify the Contractor and Owner of the Architect’s reason for withholding certification in whole as provided in Section 9.5.1.

§ 9.4.2 The issuance of a Certificate for Payment will constitute a representation by the Architect to the Owner, based on the Architect’s evaluation of the Work and the data in the Application for Payment, that, to the best of the Architect’s knowledge, information, and belief, the Work has progressed to the point indicated, the quality of the Work is in accordance with the Contract Documents, and that the Contractor is entitled to payment in the amount certified. The foregoing representations are subject to an evaluation of the Work for conformance with the Contract Documents upon Substantial Completion, to results of subsequent tests and inspections, to correction of minor deviations from the Contract Documents prior to completion, and to specific qualifications expressed by the Architect. However, the issuance of a Certificate for Payment will not be a representation that the Architect has (1) made exhaustive or continuous on-site inspections to check the quality or quantity of the Work; (2) reviewed construction means, methods, techniques, sequences, or procedures; (3) reviewed copies of requisitions received from Subcontractors and suppliers and other data requested by the Owner to substantiate the Contractor’s right to payment; or (4) made examination to ascertain how or for what purpose the Contractor has used money previously paid on account of the Contract Sum.

§ 9.5 Decisions to Withhold Certification
§ 9.5.1 The Architect may withhold a Certificate for Payment in whole or in part, to the extent reasonably necessary to protect the Owner, if in the Architect’s opinion the representations to the Owner required by Section 9.4.2 cannot be made. If the Architect is unable to certify payment in the amount of the Application, the Architect will notify the Contractor and Owner as provided in Section 9.4.1. If the Contractor and Architect cannot agree on a revised amount, the Architect will promptly issue a Certificate for Payment for the amount for which the Architect is able to make such representations to the Owner. The Architect may also withhold a Certificate for Payment or, because of subsequently discovered evidence, may nullify the whole or a part of a Certificate for Payment previously issued, to such extent as may be necessary in the Architect’s opinion to protect the Owner from loss for which the Contractor is responsible, including loss resulting from acts and omissions described in Section 3.3.2, because of

1. defective Work not remedied;

2. third party claims filed or reasonable evidence indicating probable filing of such claims, unless security acceptable to the Owner is provided by the Contractor;

3. failure of the Contractor to make payments properly to Subcontractors or suppliers for labor, materials or equipment;
.4 reasonable evidence that the Work cannot be completed for the unpaid balance of the Contract Sum;
.5 damage to the Owner or a Separate Contractor;
.6 reasonable evidence that the Work will not be completed within the Contract Time, and that the unpaid
balance would not be adequate to cover actual or liquidated damages for the anticipated delay; or
.7 repeated failure to carry out the Work in accordance with the Contract Documents.

§ 9.5.2 When either party disputes the Architect’s decision regarding a Certificate for Payment under Section 9.5.1, in
whole or in part, that party may submit a Claim in accordance with Article 15.

§ 9.5.3 When the reasons for withholding certification are removed, certification will be made for amounts previously
withheld.

§ 9.6.4 If the Architect withholds certification for payment under Section 9.5.1.3, the Owner may, at its sole option,
issue joint checks to the Contractor and to any Subcontractor or supplier to whom the Contractor failed to make
payment for Work properly performed or material or equipment suitably delivered. If the Owner makes payments by
joint check, the Owner shall notify the Architect and the Contractor shall reflect such payment on its next Application
for Payment.

§ 9.6 Progress Payments
§ 9.6.1 After the Architect has issued a Certificate for Payment, the Owner shall make payment in the manner and
within the time provided in the Contract Documents, and shall so notify the Architect.

§ 9.6.2 The Contractor shall pay each Subcontractor, no later than seven days after receipt of payment from the Owner,
the amount to which the Subcontractor is entitled, reflecting percentages actually retained from payments to the
Contractor on account of the Subcontractor’s portion of the Work. The Contractor shall, by appropriate agreement
with each Subcontractor, require each Subcontractor to make payments to Sub-subcontractors in a similar manner.

§ 9.6.3 The Architect will, on request, furnish to a Subcontractor, if practicable, information regarding percentages of
completion or amounts applied for by the Contractor and action taken thereon by the Architect and Owner on account
of portions of the Work done by such Subcontractor.

§ 9.6.4 The Owner has the right to request written evidence from the Contractor that the Contractor has properly paid
Subcontractors and suppliers amounts paid by the Owner to the Contractor for subcontracted Work. If the Contractor
fails to furnish such evidence within seven days, the Owner shall have the right to contact Subcontractors and
suppliers to ascertain whether they have been properly paid. Neither the Owner nor Architect shall have an obligation
to pay, or to see to the payment of money to, a Subcontractor or supplier, except as may otherwise be required by law.

§ 9.6.5 The Contractor’s payments to suppliers shall be treated in a manner similar to that provided in Sections 9.6.2,
9.6.3 and 9.6.4.

§ 9.6.6 A Certificate for Payment, a progress payment, or partial or entire use or occupancy of the Project by the
Owner shall not constitute acceptance of Work not in accordance with the Contract Documents.

§ 9.6.7 Unless the Contractor provides the Owner with a payment bond in the full penal sum of the Contract Sum,
payments received by the Contractor for Work properly performed by Subcontractors or provided by suppliers shall be
held by the Contractor for those Subcontractors or suppliers who performed Work or furnished materials, or both,
under contract with the Contractor for which payment was made by the Owner. Nothing contained herein shall require
money to be placed in a separate account and not commingled with money of the Contractor, create any fiduciary
liability or tort liability on the part of the Contractor for breach of trust, or entitle any person or entity to an award of
punitive damages against the Contractor for breach of the requirements of this provision.

§ 9.6.8 Provided the Owner has fulfilled its payment obligations under the Contract Documents, the Contractor shall
defend and indemnify the Owner from all loss, liability, damage or expense, including reasonable attorney’s fees and
litigation expenses, arising out of any lien claim or other claim for payment by any Subcontractor or supplier of any
tier. Upon receipt of notice of a lien claim or other claim for payment, the Owner shall notify the Contractor. If
approved by the applicable court, when required, the Contractor may substitute a surety bond for the property against
which the lien or other claim for payment has been asserted.
§ 9.7 Failure of Payment
If the Architect does not issue a Certificate for Payment, through no fault of the Contractor, within seven days after receipt of the Contractor's Application for Payment, or if the Owner does not pay the Contractor within seven days after the date established in the Contract Documents, the amount certified by the Architect or awarded by binding dispute resolution, then the Contractor may, upon seven additional days' notice to the Owner and Architect, stop the Work until payment of the amount owing has been received. The Contract Time shall be extended appropriately and the Contract Sum shall be increased by the amount of the Contractor's reasonable costs of shutdown, delay and start-up, plus interest as provided for in the Contract Documents.

§ 9.8 Substantial Completion
§ 9.8.1 Substantial Completion is the stage in the progress of the Work when the Work or designated portion thereof is sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work for its intended use.

§ 9.8.2 When the Contractor considers that the Work, or a portion thereof which the Owner agrees to accept separately, is substantially complete, the Contractor shall prepare and submit to the Architect a comprehensive list of items to be completed or corrected prior to final payment. Failure to include an item on such list does not alter the responsibility of the Contractor to complete all Work in accordance with the Contract Documents.

§ 9.8.3 Upon receipt of the Contractor's list, the Architect will make an inspection to determine whether the Work or designated portion thereof is substantially complete. If the Architect's inspection discloses any item, whether or not included on the Contractor's list, which is not sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work or designated portion thereof for its intended use, the Contractor shall, before issuance of the Certificate of Substantial Completion, complete or correct such item upon notification by the Architect. In such case, the Contractor shall then submit a request for another inspection by the Architect to determine Substantial Completion.

§ 9.8.4 When the Work or designated portion thereof is substantially complete, the Architect will prepare a Certificate of Substantial Completion that shall establish the date of Substantial Completion; establish responsibilities of the Owner and Contractor for security, maintenance, heat, utilities, damage to the Work and insurance; and fix the time within which the Contractor shall finish all items on the list accompanying the Certificate. Warranties required by the Contract Documents shall commence on the date of Substantial Completion of the Work or designated portion thereof unless otherwise provided in the Certificate of Substantial Completion.

§ 9.8.5 The Certificate of Substantial Completion shall be submitted to the Owner and Contractor for their written acceptance of responsibilities assigned to them in the Certificate. Upon such acceptance, and consent of surety if any, the Owner shall make payment of retention applying to the Work or designated portion thereof. Such payment shall be adjusted for Work that is incomplete or not in accordance with the requirements of the Contract Documents.

§ 9.9 Partial Occupancy or Use
§ 9.9.1 The Owner may occupy or use any completed or partially completed portion of the Work at any stage when such portion is designated by separate agreement with the Contractor, provided such occupancy or use is consented to by the insurer and authorized by public authorities having jurisdiction over the Project. Such partial occupancy or use may commence whether or not the portion is substantially complete, provided the Owner and Contractor have accepted in writing the responsibilities assigned to each of them for payments, retainage, if any, security, maintenance, heat, utilities, damage to the Work and insurance, and have agreed in writing concerning the period for correction of the Work and commencement of warranties required by the Contract Documents. When the Contractor considers a portion substantially complete, the Contractor shall prepare and submit a list to the Architect as provided under Section 9.8.2. Consent of the Contractor to partial occupancy or use shall not be unreasonably withheld. The stage of the progress of the Work shall be determined by written agreement between the Owner and Contractor or, if no agreement is reached, by decision of the Architect.

§ 9.9.2 Immediately prior to such partial occupancy or use, the Owner, Contractor, and Architect shall jointly inspect the area to be occupied or portion of the Work to be used in order to determine and record the condition of the Work.
§ 9.9.3 Unless otherwise agreed upon, partial occupancy or use of a portion or portions of the Work shall not constitute acceptance of Work not complying with the requirements of the Contract Documents.

§ 9.10 Final Completion and Final Payment
§ 9.10.1 Upon receipt of the Contractor’s notice that the Work is ready for final inspection and acceptance and upon receipt of a final Application for Payment, the Architect will promptly make such inspection. When the Architect finds the Work acceptable under the Contract Documents and the Contract fully performed, the Architect will promptly issue a final Certificate for Payment stating that to the best of the Architect’s knowledge, information and belief, and on the basis of the Architect’s on-site visits and inspections, the Work has been completed in accordance with the Contract Documents and that the entire balance found to be due the Contractor and noted in the final Certificate is due and payable. The Architect’s final Certificate for Payment will constitute a further representation that conditions listed in Section 9.10.2 as precedent to the Contractor’s being entitled to final payment have been fulfilled.

§ 9.10.2 Neither final payment nor any remaining retained percentage shall become due until the Contractor submits to the Architect (1) an affidavit that payrolls, bills for materials and equipment, and other indebtedness connected with the Work for which the Owner or the Owner’s property might be responsible or encumbered (less amounts withheld by Owner) have been paid or otherwise satisfied, (2) a certificate evidencing that insurance required by the Contract Documents to remain in force after final payment is currently in effect, (3) a written statement that the Contractor knows of no reason that the insurance will not be renewable to cover the period required by the Contract Documents, (4) consent of surety, if any, to final payment, (5) documentation of any special warranties, such as manufacturers’ warranties or specific Subcontractor warranties, and (6) if required by the Owner, other data establishing payment or satisfaction of obligations, such as receipts and releases and waivers of liens, claims, security interests, or encumbrances arising out of the Contract, to the extent and in such form as may be designated by the Owner. If a Subcontractor refuses to furnish a release or waiver required by the Owner, the Contractor may furnish a bond satisfactory to the Owner to indemnify the Owner against such lien, claim, security interest, or encumbrance. If a lien, claim, security interest, or encumbrance remains unsatisfied after payments are made, the Contractor shall refund to the Owner all money that the Owner may be compelled to pay in discharging the lien, claim, security interest, or encumbrance, including all costs and reasonable attorneys’ fees.

§ 9.10.3 If, after Substantial Completion of the Work, final completion thereof is materially delayed through no fault of the Contractor or by issuance of Change Orders affecting final completion, and the Architect so confirms, the Owner shall, upon application by the Contractor and certification by the Architect, and without terminating the Contract, make payment of the balance due for that portion of the Work fully completed, corrected, and accepted. If the remaining balance for Work not fully completed or corrected is less than retainage stipulated in the Contract Documents, and if bonds have been furnished, the written consent of the surety to payment of the balance due for that portion of the Work fully completed and accepted shall be submitted by the Contractor to the Architect prior to certification of such payment. Such payment shall be made under terms and conditions governing final payment, except that it shall not constitute a waiver of Claims.

§ 9.10.4 The making of final payment shall constitute a waiver of Claims by the Owner except those arising from
.1 liens, Claims, security interests, or encumbrances arising out of the Contract and unsettled;
.2 failure of the Work to comply with the requirements of the Contract Documents;
.3 terms of special warranties required by the Contract Documents; or
.4 audits performed by the Owner, if permitted by the Contract Documents, after final payment.

§ 9.10.5 Acceptance of final payment by the Contractor, a Subcontractor, or a supplier, shall constitute a waiver of claims by that payee except those previously made in writing and identified by that payee as unsettled at the time of final Application for Payment.

ARTICLE 10 PROTECTION OF PERSONS AND PROPERTY
§ 10.1 Safety Precautions and Programs
The Contractor shall be responsible for initiating, maintaining, and supervising all safety precautions and programs in connection with the performance of the Contract.

§ 10.2 Safety of Persons and Property
§ 10.2.1 The Contractor shall take reasonable precautions for safety of, and shall provide reasonable protection to prevent damage, injury, or loss to
.1 employees on the Work and other persons who may be affected thereby;
.2 the Work and materials and equipment to be incorporated therein, whether in storage on or off the site, under care, custody, or control of the Contractor, a Subcontractor, or a Sub-subcontractor; and
.3 other property at the site or adjacent thereto, such as trees, shrubs, lawns, walks, pavements, roadways, structures, and utilities not designated for removal, relocation, or replacement in the course of construction.

§ 10.2.2 The Contractor shall comply with, and give notices required by applicable laws, statutes, ordinances, codes, rules and regulations, and lawful orders of public authorities, bearing on safety of persons or property or their protection from damage, injury, or loss.

§ 10.2.3 The Contractor shall implement, erect, and maintain, as required by existing conditions and performance of the Contract, reasonable safeguards for safety and protection, including posting danger signs and other warnings against hazards; promulgating safety regulations; and notifying the owners and users of adjacent sites and utilities of the safeguards.

§ 10.2.4 When use or storage of explosives or other hazardous materials or equipment, or unusual methods are necessary for execution of the Work, the Contractor shall exercise utmost care and carry on such activities under supervision of properly qualified personnel.

§ 10.2.5 The Contractor shall promptly remedy damage and loss (other than damage or loss insured under property insurance required by the Contract Documents) to property referred to in Sections 10.2.1.2 and 10.2.1.3 caused in whole or in part by the Contractor, a Subcontractor, a Sub-subcontractor, or anyone directly or indirectly employed by any of them, or by anyone for whose acts they may be liable and for which the Contractor is responsible under Sections 10.2.1.2 and 10.2.1.3. The Contractor may make a Claim for the cost to remedy the damage or loss to the extent such damage or loss is attributable to acts or omissions of the Owner or Architect or anyone directly or indirectly employed by either of them, or by anyone for whose acts either of them may be liable, and not attributable to the fault or negligence of the Contractor. The foregoing obligations of the Contractor are in addition to the Contractor’s obligations under Section 3.18.

§ 10.2.6 The Contractor shall designate a responsible member of the Contractor’s organization at the site whose duty shall be the prevention of accidents. This person shall be the Contractor’s superintendent unless otherwise designated by the Contractor in writing to the Owner and Architect.

§ 10.2.7 The Contractor shall not permit any part of the construction or site to be loaded so as to cause damage or create an unsafe condition.

§ 10.2.8 Injury or Damage to Person or Property
If either party suffers injury or damage to person or property because of an act or omission of the other party, or of others for whose acts such party is legally responsible, notice of the injury or damage, whether or not insured, shall be given to the other party within a reasonable time not exceeding 21 days after discovery. The notice shall provide sufficient detail to enable the other party to investigate the matter.

§ 10.3 Hazardous Materials and Substances
§ 10.3.1 The Contractor is responsible for compliance with any requirements included in the Contract Documents regarding hazardous materials or substances. If the Contractor encounters a hazardous material or substance not addressed in the Contract Documents and if reasonable precautions will be inadequate to prevent foreseeable bodily injury or death to persons resulting from a material or substance, including but not limited to asbestos or polychlorinated biphenyl (PCB), encountered on the site by the Contractor, the Contractor shall, upon recognizing the condition, immediately stop Work in the affected area and notify the Owner and Architect of the condition.

§ 10.3.2 Upon receipt of the Contractor’s notice, the Owner shall obtain the services of a licensed laboratory to verify the presence or absence of the material or substance reported by the Contractor and, in the event such material or substance is found to be present, to cause it to be rendered harmless. Unless otherwise required by the Contract Documents, the Owner shall furnish in writing to the Contractor and Architect the names and qualifications of persons or entities who are to perform tests verifying the presence or absence of the material or substance or who are to perform the task of removal or safe containment of the material or substance. The Contractor and the Architect will
promptly reply to the Owner in writing stating whether or not either has reasonable objection to the persons or entities proposed by the Owner. If either the Contractor or Architect has an objection to a person or entity proposed by the Owner, the Owner shall propose another to whom the Contractor and the Architect have no reasonable objection. When the material or substance has been rendered harmless, Work in the affected area shall resume upon written agreement of the Owner and Contractor. By Change Order, the Contract Time shall be extended appropriately and the Contract Sum shall be increased by the amount of the Contractor’s reasonable additional costs of shutdown, delay, and start-up.

§ 10.3.3 To the fullest extent permitted by law, the Owner shall indemnify and hold harmless the Contractor, Subcontractors, Architect, Architect’s consultants, and agents and employees of any of them from and against claims, damages, losses, and expenses, including but not limited to attorneys’ fees, arising out of or resulting from performance of the Work in the affected area if in fact the material or substance presents the risk of bodily injury or death as described in Section 10.3.1 and has not been rendered harmless, provided that such claim, damage, loss, or expense is attributable to bodily injury, sickness, disease or death, or to injury to or destruction of tangible property (other than the Work itself), except to the extent that such damage, loss, or expense is due to the fault or negligence of the party seeking indemnity.

§ 10.3.4 The Owner shall not be responsible under this Section 10.3 for hazardous materials or substances the Contractor brings to the site unless such materials or substances are required by the Contract Documents. The Owner shall be responsible for hazardous materials or substances required by the Contract Documents, except to the extent of the Contractor’s fault or negligence in the use and handling of such materials or substances.

§ 10.3.5 The Contractor shall reimburse the Owner for the cost and expense the Owner incurs (1) for remediation of hazardous materials or substances the Contractor brings to the site and negligently handles, or (2) where the Contractor fails to perform its obligations under Section 10.3.1, except to the extent that the cost and expense are due to the Owner’s fault or negligence.

§ 10.3.6 If, without negligence on the part of the Contractor, the Contractor is held liable by a government agency for the cost of remediation of a hazardous material or substance solely by reason of performing Work as required by the Contract Documents, the Owner shall reimburse the Contractor for all cost and expense thereby incurred.

§ 10.4 Emergencies
In an emergency affecting safety of persons or property, the Contractor shall act, at the Contractor’s discretion, to prevent threatened damage, injury, or loss. Additional compensation or extension of time claimed by the Contractor on account of an emergency shall be determined as provided in Article 15 and Article 7.

ARTICLE 11 INSURANCE AND BONDS
§ 11.1 Contractor’s Insurance and Bonds
§ 11.1.1 The Contractor shall purchase and maintain insurance of the types and limits of liability, containing the endorsements, and subject to the terms and conditions, as described in the Agreement or elsewhere in the Contract Documents. The Contractor shall purchase and maintain the required insurance from an insurance company or insurance companies lawfully authorized to issue insurance in the jurisdiction where the Project is located. The Owner, Architect, and Architect’s consultants shall be named as additional insureds under the Contractor’s commercial general liability policy or as otherwise described in the Contract Documents.

§ 11.1.2 The Contractor shall provide surety bonds of the types, for such penal sums, and subject to such terms and conditions as required by the Contract Documents. The Contractor shall purchase and maintain the required bonds from a company or companies lawfully authorized to issue surety bonds in the jurisdiction where the Project is located.

§ 11.1.3 Upon the request of any person or entity appearing to be a potential beneficiary of bonds covering payment of obligations arising under the Contract, the Contractor shall promptly furnish a copy of the bonds or shall authorize a copy to be furnished.

§ 11.1.4 Notice of Cancellation or Expiration of Contractor’s Required Insurance. Within three (3) business days of the date the Contractor becomes aware of an impending or actual cancellation or expiration of any insurance required by the Contract Documents, the Contractor shall provide notice to the Owner of such impending or actual cancellation or
expiration. Upon receipt of notice from the Contractor, the Owner shall, unless the lapse in coverage arises from an act or omission of the Owner, have the right to stop the Work until the lapse in coverage has been cured by the procurement of replacement coverage by the Contractor. The furnishing of notice by the Contractor shall not relieve the Contractor of any contractual obligation to provide any required coverage.

§ 11.2 Owner's Insurance
§ 11.2.1 The Owner shall purchase and maintain insurance of the types and limits of liability, containing the endorsements, and subject to the terms and conditions, as described in the Agreement or elsewhere in the Contract Documents. The Owner shall purchase and maintain the required insurance from an insurance company or insurance companies lawfully authorized to issue insurance in the jurisdiction where the Project is located.

§ 11.2.2 Failure to Purchase Required Property Insurance. If the Owner fails to purchase and maintain the required property insurance, with all of the coverages and in the amounts described in the Agreement or elsewhere in the Contract Documents, the Owner shall inform the Contractor in writing prior to commencement of the Work. Upon receipt of notice from the Owner, the Contractor may delay commencement of the Work and may obtain insurance that will protect the interests of the Contractor, Subcontractors, and Sub-Subcontractors in the Work. When the failure to provide coverage has been cured or resolved, the Contract Sum and Contract Time shall be equitably adjusted. In the event the Owner fails to procure coverage, the Owner waives all rights against the Contractor, Subcontractors, and Sub-subcontractors to the extent the loss to the Owner would have been covered by the insurance to have been procured by the Owner. The cost of the insurance shall be charged to the Owner by a Change Order. If the Owner does not provide written notice, and the Contractor is damaged by the failure or neglect of the Owner to purchase or maintain the required insurance, the Owner shall reimburse the Contractor for all reasonable costs and damages attributable thereto.

§ 11.2.3 Notice of Cancellation or Expiration of Owner’s Required Property Insurance. Within three (3) business days of the date the Owner becomes aware of an impending or actual cancellation or expiration of any property insurance required by the Contract Documents, the Owner shall provide notice to the Contractor of such impending or actual cancellation or expiration. Unless the lapse in coverage arises from an act or omission of the Contractor: (1) the Contractor, upon receipt of notice from the Owner, shall have the right to stop the Work until the lapse in coverage has been cured by the procurement of replacement coverage by either the Owner or the Contractor; (2) the Contract Time and Contract Sum shall be equitably adjusted; and (3) the Owner waives all rights against the Contractor, Subcontractors, and Sub-subcontractors to the extent any loss to the Owner would have been covered by the insurance had it not expired or been cancelled. If the Contractor purchases replacement coverage, the cost of the insurance shall be charged to the Owner by an appropriate Change Order. The furnishing of notice by the Owner shall not relieve the Owner of any contractual obligation to provide required insurance.

§ 11.3 Waivers of Subrogation
§ 11.3.1 The Owner and Contractor waive all rights against (1) each other and any of their subcontractors, sub-subcontractors, agents, and employees, each of the other; (2) the Architect and Architect’s consultants; and (3) Separate Contractors, if any, and any of their subcontractors, sub-subcontractors, agents, and employees, for damages caused by fire, or other causes of loss, to the extent those losses are covered by property insurance required by the Agreement or other property insurance applicable to the Project, except such rights as they have to proceed of such insurance. The Owner or Contractor, as appropriate, shall require similar written waivers in favor of the individuals and entities identified above from the Architect, Architect’s consultants, Separate Contractors, subcontractors, and sub-subcontractors. The policies of insurance purchased and maintained by each person or entity agreeing to waive claims pursuant to this section 11.3.1 shall not prohibit this waiver of subrogation. This waiver of subrogation shall be effective as to a person or entity (1) even though that person or entity would otherwise have a duty of indemnification, contractual or otherwise, (2) even though that person or entity did not pay the insurance premium directly or indirectly, or (3) whether or not the person or entity had an insurable interest in the damaged property.

§ 11.3.2 If during the Project construction period the Owner insures properties, real or personal or both, at or adjacent to the site by property insurance under policies separate from those insuring the Project, or if after final payment property insurance is to be provided on the completed Project through a policy or policies other than those insuring the Project during the construction period, to the extent permissible by such policies, the Owner waives all rights in accordance with the terms of Section 11.3.1 for damages caused by fire or other causes of loss covered by this separate property insurance.
§ 11.4 Loss of Use, Business Interruption, and Delay in Completion Insurance
The Owner, at the Owner's option, may purchase and maintain insurance that will protect the Owner against loss of use of the Owner's property, or the inability to conduct normal operations, due to fire or other causes of loss. The Owner waives all rights of action against the Contractor and Architect for loss of use of the Owner's property, due to fire or other hazards however caused.

§ 11.5 Adjustment and Settlement of Insured Loss
§ 11.5.1 A loss insured under the property insurance required by the Agreement shall be adjusted by the Owner as fiduciary and made payable to the Owner as fiduciary for the insureds, as their interests may appear, subject to requirements of any applicable mortgagee clause and of Section 11.5.2. The Owner shall pay the Architect and Contractor their just shares of insurance proceeds received by the Owner, and by appropriate agreements the Architect and Contractor shall make payments to their consultants and Subcontractors in similar manner.

§ 11.5.2 Prior to settlement of an insured loss, the Owner shall notify the Contractor of the terms of the proposed settlement as well as the proposed allocation of the insurance proceeds. The Contractor shall have 14 days from receipt of notice to object to the proposed settlement or allocation of the proceeds. If the Contractor does not object, the Owner shall settle the loss and the Contractor shall be bound by the settlement and allocation. Upon receipt, the Owner shall deposit the insurance proceeds in a separate account and make the appropriate distributions. Thereafter, if no other agreement is made or the Owner does not terminate the Contract for convenience, the Owner and Contractor shall execute a Change Order for reconstruction of the damaged or destroyed Work in the amount allocated for that purpose. If the Contractor timely objects to either the terms of the proposed settlement or the allocation of the proceeds, the Owner may proceed to settle the insured loss, and any dispute between the Owner and Contractor arising out of the settlement or allocation of the proceeds shall be resolved pursuant to Article 15. Pending resolution of any dispute, the Owner may issue a Construction Change Directive for the reconstruction of the damaged or destroyed Work.

ARTICLE 12 UNCOVERING AND CORRECTION OF WORK
§ 12.1 Uncovering of Work
§ 12.1.1 If a portion of the Work is covered contrary to the Architect's request or to requirements specifically expressed in the Contract Documents, it must, if requested in writing by the Architect, be uncovered for the Architect's examination and be replaced at the Contractor's expense without change in the Contract Time.

§ 12.1.2 If a portion of the Work has been covered that the Architect has not specifically requested to examine prior to its being covered, the Architect may request to see such Work and it shall be uncovered by the Contractor. If such Work is in accordance with the Contract Documents, the Contractor shall be entitled to an equitable adjustment to the Contract Sum and Contract Time as may be appropriate. If such Work is not in accordance with the Contract Documents, the costs of uncovering the Work, and the cost of correction, shall be at the Contractor's expense.

§ 12.2 Correction of Work
§ 12.2.1 Before Substantial Completion
The Contractor shall promptly correct Work rejected by the Architect or failing to conform to the requirements of the Contract Documents, discovered before Substantial Completion and whether or not fabricated, installed or completed. Costs of correcting such rejected Work, including additional testing and inspections, the cost of uncovering and replacement, and compensation for the Architect's services and expenses made necessary thereby, shall be at the Contractor's expense.

§ 12.2.2 After Substantial Completion
§ 12.2.2.1 In addition to the Contractor's obligations under Section 3.5, if, within one year after the date of Substantial Completion of the Work or designated portion thereof or after the date for commencement of warranties established under Section 9.9.1, or by terms of any applicable special warranty required by the Contract Documents, any of the Work is found to be not in accordance with the requirements of the Contract Documents, the Contractor shall correct it promptly after receipt of notice from the Owner to do so, unless the Owner has previously given the Contractor a written acceptance of such condition. The Owner shall give such notice promptly after discovery of the condition. During the one-year period for correction of Work, if the Owner fails to notify the Contractor and give the Contractor an opportunity to make the correction, the Owner waives the rights to require correction by the Contractor and to make a claim for breach of warranty. If the Contractor fails to correct nonconforming Work within a reasonable time during
that period after receipt of notice from the Owner or Architect, the Owner may correct it in accordance with Section 2.5.

§ 12.2.2 The one-year period for correction of Work shall be extended with respect to portions of Work first performed after Substantial Completion by the period of time between Substantial Completion and the actual completion of that portion of the Work.

§ 12.2.3 The one-year period for correction of Work shall not be extended by corrective Work performed by the Contractor pursuant to this Section 12.2.

§ 12.2.3 The Contractor shall remove from the site portions of the Work that are not in accordance with the requirements of the Contract Documents and are neither corrected by the Contractor nor accepted by the Owner.

§ 12.2.4 The Contractor shall bear the cost of correcting destroyed or damaged construction of the Owner or Separate Contractors, whether completed or partially completed, caused by the Contractor’s correction or removal of Work that is not in accordance with the requirements of the Contract Documents.

§ 12.2.5 Nothing contained in this Section 12.2 shall be construed to establish a period of limitation with respect to other obligations the Contractor has under the Contract Documents. Establishment of the one-year period for correction of Work as described in Section 12.2.2 relates only to the specific obligation of the Contractor to correct the Work, and has no relationship to the time within which the obligation to comply with the Contract Documents may be sought to be enforced, nor to the time within which proceedings may be commenced to establish the Contractor’s liability with respect to the Contractor’s obligations other than specifically to correct the Work.

§ 12.3 Acceptance of Nonconforming Work
If the Owner prefers to accept Work that is not in accordance with the requirements of the Contract Documents, the Owner may do so instead of requiring its removal and correction, in which case the Contract Sum will be reduced as appropriate and equitable. Such adjustment shall be effected whether or not final payment has been made.

ARTICLE 13 MISCELLANEOUS PROVISIONS
§ 13.1 Governing Law
The Contract shall be governed by the law of the place where the Project is located, excluding that jurisdiction’s choice of law rules. If the parties have selected arbitration as the method of binding dispute resolution, the Federal Arbitration Act shall govern Section 15.4.

§ 13.2 Successors and Assigns
§ 13.2.1 The Owner and Contractor respectively bind themselves, their partners, successors, assigns, and legal representatives to covenants, agreements, and obligations contained in the Contract Documents. Except as provided in Section 13.2.2, neither party to the Contract shall assign the Contract as a whole without written consent of the other. If either party attempts to make an assignment without such consent, that party shall nevertheless remain legally responsible for all obligations under the Contract.

§ 13.2.2 The Owner may, without consent of the Contractor, assign the Contract to a lender providing construction financing for the Project, if the lender assumes the Owner’s rights and obligations under the Contract Documents. The Contractor shall execute all consents reasonably required to facilitate the assignment.

§ 13.3 Rights and Remedies
§ 13.3.1 Duties and obligations imposed by the Contract Documents and rights and remedies available thereunder shall be in addition to and not a limitation of duties, obligations, rights, and remedies otherwise imposed or available by law.

§ 13.3.2 No action or failure to act by the Owner, Architect, or Contractor shall constitute a waiver of a right or duty afforded them under the Contract, nor shall such action or failure to act constitute approval of or acquiescence in a breach thereunder, except as may be specifically agreed upon in writing.
§ 13.4 Tests and Inspections
§ 13.4.1 Tests, inspections, and approvals of portions of the Work shall be made as required by the Contract Documents and by applicable laws, statutes, ordinances, codes, rules, and regulations or lawful orders of public authorities. Unless otherwise provided, the Contractor shall make arrangements for such tests, inspections, and approvals with an independent testing laboratory or entity acceptable to the Owner, or with the appropriate public authority, and shall bear all related costs of tests, inspections, and approvals. The Contractor shall give the Architect timely notice of when and where tests and inspections are to be made so that the Architect may be present for such procedures. The Owner shall bear costs of tests, inspections, or approvals that do not become requirements until after bids are received or negotiations concluded. The Owner shall directly arrange and pay for tests, inspections, or approvals where building codes or applicable laws or regulations so require.

§ 13.4.2 If the Architect, Owner, or public authorities having jurisdiction determine that portions of the Work require additional testing, inspection, or approval not included under Section 13.4.1, the Architect will, upon written authorization from the Owner, instruct the Contractor to make arrangements for such additional testing, inspection, or approval, by an entity acceptable to the Owner, and the Contractor shall give timely notice to the Architect of when and where tests and inspections are to be made so that the Architect may be present for such procedures. Such costs, except as provided in Section 13.4.3, shall be at the Owner’s expense.

§ 13.4.3 If procedures for testing, inspection, or approval under Sections 13.4.1 and 13.4.2 reveal failure of the portions of the Work to comply with requirements established by the Contract Documents, all costs made necessary by such failure, including those of repeated procedures and compensation for the Architect’s services and expenses, shall be at the Contractor’s expense.

§ 13.4.4 Required certificates of testing, inspection, or approval shall, unless otherwise required by the Contract Documents, be secured by the Contractor and promptly delivered to the Architect.

§ 13.4.5 If the Architect is to observe tests, inspections, or approvals required by the Contract Documents, the Architect will do so promptly and, where practicable, at the normal place of testing.

§ 13.4.6 Tests or inspections conducted pursuant to the Contract Documents shall be made promptly to avoid unreasonable delay in the Work.

§ 13.5 Interest
Payments due and unpaid under the Contract Documents shall bear interest from the date payment is due at the rate the parties agree upon in writing or, in the absence thereof, at the legal rate prevailing from time to time at the place where the Project is located.

ARTICLE 14 TERMINATION OR SUSPENSION OF THE CONTRACT
§ 14.1 Termination by the Contractor
§ 14.1.1 The Contractor may terminate the Contract if the Work is stopped for a period of 30 consecutive days through no act or fault of the Contractor, a Subcontractor, a Sub-subcontractor, their agents or employees, or any other persons or entities performing portions of the Work, for any of the following reasons:

.1 Issuance of an order of a court or other public authority having jurisdiction that requires all Work to be stopped;

.2 An act of government, such as a declaration of national emergency, that requires all Work to be stopped;

.3 Because the Architect has not issued a Certificate for Payment and has not notified the Contractor of the reason for withholding certification as provided in Section 9.4.1, or because the Owner has not made payment on a Certificate for Payment within the time stated in the Contract Documents; or

.4 The Owner has failed to furnish to the Contractor reasonable evidence as required by Section 2.2.

§ 14.1.2 The Contractor may terminate the Contract if, through no act or fault of the Contractor, a Subcontractor, a Sub-subcontractor, their agents or employees, or any other persons or entities performing portions of the Work, repeated suspensions, delays, or interruptions of the entire Work by the Owner as described in Section 14.3, constitute in the aggregate more than 100 percent of the total number of days scheduled for completion, or 120 days in any 365-day period, whichever is less.
§ 14.1.3 If one of the reasons described in Section 14.1.1 or 14.1.2 exists, the Contractor may, upon seven days' notice to the Owner and Architect, terminate the Contract and recover from the Owner payment for Work executed, as well as reasonable overhead and profit on Work not executed, and costs incurred by reason of such termination.

§ 14.1.4 If the Work is stopped for a period of 60 consecutive days through no act or fault of the Contractor, a Subcontractor, a Sub-subcontractor, or their agents or employees or any other persons or entities performing portions of the Work because the Owner has repeatedly failed to fulfill the Owner's obligations under the Contract Documents with respect to matters important to the progress of the Work, the Contractor may, upon seven additional days' notice to the Owner and the Architect, terminate the Contract and recover from the Owner as provided in Section 14.1.3.

§ 14.2 Termination by the Owner for Cause

§ 14.2.1 The Owner may terminate the Contract if the Contractor

.1 repeatedly refuses or fails to supply enough properly skilled workers or proper materials;

.2 fails to make payment to Subcontractors or suppliers in accordance with the respective agreements between the Contractor and the Subcontractors or suppliers;

.3 repeatedly disregards applicable laws, statutes, ordinances, codes, rules and regulations, or lawful orders of a public authority; or

.4 otherwise is guilty of substantial breach of a provision of the Contract Documents.

§ 14.2.2 When any of the reasons described in Section 14.2.1 exist, and upon certification by the Architect that sufficient cause exists to justify such action, the Owner may, without prejudice to any other rights or remedies of the Owner and after giving the Contractor and the Contractor's surety, if any, seven days' notice, terminate employment of the Contractor and may, subject to any prior rights of the surety:

.1 Exclude the Contractor from the site and take possession of all materials, equipment, tools, and construction equipment and machinery thereon owned by the Contractor;

.2 Accept assignment of subcontracts pursuant to Section 5.4; and

.3 Finish the Work by whatever reasonable method the Owner may deem expedient. Upon written request of the Contractor, the Owner shall furnish to the Contractor a detailed accounting of the costs incurred by the Owner in finishing the Work.

§ 14.2.3 When the Owner terminates the Contract for one of the reasons stated in Section 14.2.1, the Contractor shall not be entitled to receive further payment until the Work is finished.

§ 14.2.4 If the unpaid balance of the Contract Sum exceeds costs of finishing the Work, including compensation for the Architect's services and expenses made necessary thereby, and other damages incurred by the Owner and not expressly waived, such excess shall be paid to the Contractor. If such costs and damages exceed the unpaid balance, the Contractor shall pay the difference to the Owner. The amount to be paid to the Contractor or Owner, as the case may be, shall be certified by the Initial Decision Maker, upon application, and this obligation for payment shall survive termination of the Contract.

§ 14.3 Suspension by the Owner for Convenience

§ 14.3.1 The Owner may, without cause, order the Contractor in writing to suspend, delay or interrupt the Work, in whole or in part for such period of time as the Owner may determine.

§ 14.3.2 The Contract Sum and Contract Time shall be adjusted for increases in the cost and time caused by suspension, delay, or interruption under Section 14.3.1. Adjustment of the Contract Sum shall include profit. No adjustment shall be made to the extent

.1 that performance is, was, or would have been, so suspended, delayed, or interrupted, by another cause for which the Contractor is responsible; or

.2 that an equitable adjustment is made or denied under another provision of the Contract.

§ 14.4 Termination by the Owner for Convenience

§ 14.4.1 The Owner may, at any time, terminate the Contract for the Owner's convenience and without cause.

§ 14.4.2 Upon receipt of notice from the Owner of such termination for the Owner's convenience, the Contractor shall

.1 cease operations as directed by the Owner in the notice;
.2 take actions necessary, or that the Owner may direct, for the protection and preservation of the Work; and
.3 except for Work directed to be performed prior to the effective date of termination stated in the notice, terminate all existing subcontracts and purchase orders and enter into no further subcontracts and purchase orders.

§ 14.4.3 In case of such termination for the Owner’s convenience, the Owner shall pay the Contractor for Work properly executed; costs incurred by reason of the termination, including costs attributable to termination of Subcontracts; and the termination fee, if any, set forth in the Agreement.

ARTICLE 15 CLAIMS AND DISPUTES

§ 15.1.1 Claims
§ 15.1.2 Time Limits on Claims

The Owner and Contractor shall commence all Claims and causes of action against the other and arising out of or related to the Contract, whether in contract, tort, breach of warranty or otherwise, in accordance with the requirements of the binding dispute resolution method selected in the Agreement and within the period specified by applicable law, but in any case not more than 10 years after the date of Substantial Completion of the Work. The Owner and Contractor waive all Claims and causes of action not commenced in accordance with this Section 15.1.2.

§ 15.1.3 Notice of Claims

§ 15.1.3.1 Claims by either the Owner or Contractor, where the condition giving rise to the Claim is first discovered prior to expiration of the period for correction of the Work set forth in Section 12.2.2, shall be initiated by notice to the other party and to the Initial Decision Maker with a copy sent to the Architect, if the Architect is not serving as the Initial Decision Maker. Claims by either party under this Section 15.1.3.1 shall be initiated within 21 days after occurrence of the event giving rise to such Claim or within 21 days after the claimant first recognizes the condition giving rise to the Claim, whichever is later.

§ 15.1.3.2 Claims by either the Owner or Contractor, where the condition giving rise to the Claim is first discovered after expiration of the period for correction of the Work set forth in Section 12.2.2, shall be initiated by notice to the other party. In such event, no decision by the Initial Decision Maker is required.

§ 15.1.4 Continuing Contract Performance

§ 15.1.4.1 Pending final resolution of a Claim, except as otherwise agreed in writing or as provided in Section 9.7 and Article 14, the Contractor shall proceed diligently with performance of the Contract and the Owner shall continue to make payments in accordance with the Contract Documents.

§ 15.1.5 Claims for Additional Cost

If the Contractor wishes to make a Claim for an increase in the Contract Sum, notice as provided in Section 15.1.3 shall be given before proceeding to execute the portion of the Work that is the subject of the Claim. Prior notice is not required for Claims relating to an emergency endangering life or property arising under Section 10.4.

§ 15.1.6 Claims for Additional Time

§ 15.1.6.1 If the Contractor wishes to make a Claim for an increase in the Contract Time, notice as provided in Section 15.1.3 shall be given. The Contractor’s Claim shall include an estimate of cost and of probable effect of delay on progress of the Work. In the case of a continuing delay, only one Claim is necessary.
§ 15.1.6.2 If adverse weather conditions are the basis for a Claim for additional time, such Claim shall be documented by data substantiating that weather conditions were abnormal for the period of time, could not have been reasonably anticipated, and had an adverse effect on the scheduled construction.

§ 15.1.7 Waiver of Claims for Consequential Damages
The Contractor and Owner waive Claims against each other for consequential damages arising out of or relating to this Contract. This mutual waiver includes

.1 damages incurred by the Owner for rental expenses, for losses of use, income, profit, financing, business and reputation, and for loss of management or employee productivity or of the services of such persons; and

.2 damages incurred by the Contractor for principal office expenses including the compensation of personnel stationed there, for losses of financing, business and reputation, and for loss of profit, except anticipated profit arising directly from the Work.

This mutual waiver is applicable, without limitation, to all consequential damages due to either party’s termination in accordance with Article 14. Nothing contained in this Section 15.1.7 shall be deemed to preclude assessment of liquidated damages, when applicable, in accordance with the requirements of the Contract Documents.

§ 15.2 Initial Decision
§ 15.2.1 Claims, excluding those where the condition giving rise to the Claim is first discovered after expiration of the period for correction of the Work set forth in Section 12.2.2 or arising under Sections 10.3, 10.4, and 11.5, shall be referred to the Initial Decision Maker for initial decision. The Architect will serve as the Initial Decision Maker, unless otherwise indicated in the Agreement. Except for those Claims excluded by this Section 15.2.1, an initial decision shall be required as a condition precedent to mediation of any Claim. If an initial decision has not been rendered within 30 days after the Claim has been referred to the Initial Decision Maker, the party asserting the Claim may demand mediation and binding dispute resolution without a decision having been rendered. Unless the Initial Decision Maker and all affected parties agree, the Initial Decision Maker will not decide disputes between the Contractor and persons or entities other than the Owner.

§ 15.2.2 The Initial Decision Maker will review Claims and within ten days of the receipt of a Claim take one or more of the following actions: (1) request additional supporting data from the claimant or a response with supporting data from the other party, (2) reject the Claim in whole or in part, (3) approve the Claim, (4) suggest a compromise, or (5) advise the parties that the Initial Decision Maker is unable to resolve the Claim if the Initial Decision Maker lacks sufficient information to evaluate the merits of the Claim or if the Initial Decision Maker concludes that, in the Initial Decision Maker’s sole discretion, it would be inappropriate for the Initial Decision Maker to resolve the Claim.

§ 15.2.3 In evaluating Claims, the Initial Decision Maker may, but shall not be obligated to, consult or seek information from either party or from persons with special knowledge or expertise who may assist the Initial Decision Maker in rendering a decision. The Initial Decision Maker may request the Owner to authorize retention of such persons at the Owner’s expense.

§ 15.2.4 If the Initial Decision Maker requests a party to provide a response to a Claim or to furnish additional supporting data, such party shall respond, within ten days after receipt of the request, and shall either (1) provide a response on the requested supporting data, (2) advise the Initial Decision Maker when the response or supporting data will be furnished, or (3) advise the Initial Decision Maker that no supporting data will be furnished. Upon receipt of the response or supporting data, if any, the Initial Decision Maker will either reject or approve the Claim in whole or in part.

§ 15.2.5 The Initial Decision Maker will render an initial decision approving or rejecting the Claim, or indicating that the Initial Decision Maker is unable to resolve the Claim. This initial decision shall (1) be in writing; (2) state the reasons therefor; and (3) notify the parties and the Architect, if the Architect is not serving as the Initial Decision Maker, of any change in the Contract Sum or Contract Time or both. The initial decision shall be final and binding on the parties but subject to mediation and, if the parties fail to resolve their dispute through mediation, to binding dispute resolution.

§ 15.2.6 Either party may file for mediation of an initial decision at any time, subject to the terms of Section 15.2.6.1.
§ 15.2.6.1 Either party may, within 30 days from the date of receipt of an initial decision, demand in writing that the other party file for mediation. If such a demand is made and the party receiving the demand fails to file for mediation within 30 days after receipt thereof, then both parties waive their rights to mediate or pursue binding dispute resolution proceedings with respect to the initial decision.

§ 15.2.7 In the event of a Claim against the Contractor, the Owner may, but is not obligated to, notify the surety, if any, of the nature and amount of the Claim. If the Claim relates to a possibility of a Contractor’s default, the Owner may, but is not obligated to, notify the surety and request the surety’s assistance in resolving the controversy.

§ 15.2.8 If a Claim relates to or is the subject of a mechanic’s lien, the party asserting such Claim may proceed in accordance with applicable law to comply with the lien notice or filing deadlines.

§ 15.3 Mediation
§ 15.3.1 Claims, disputes, or other matters in controversy arising out of or related to the Contract, except those waived as provided for in Sections 9.10.4, 9.10.5, and 15.1.7, shall be subject to mediation as a condition precedent to binding dispute resolution.

§ 15.3.2 The parties shall endeavor to resolve their Claims by mediation which, unless the parties mutually agree otherwise, shall be administered by the American Arbitration Association in accordance with its Construction Industry Mediation Procedures in effect on the date of the Agreement. A request for mediation shall be made in writing, delivered to the other party to the Contract, and filed with the person or entity administering the mediation. The request may be made concurrently with the filing of binding dispute resolution proceedings but, in such event, mediation shall proceed in advance of binding dispute resolution proceedings, which shall be stayed pending mediation for a period of 60 days from the date of filing, unless stayed for a longer period by agreement of the parties or court order. If an arbitration is stayed pursuant to this Section 15.3.2, the parties may nonetheless proceed to the selection of the arbitrator(s) and agree upon a schedule for later proceedings.

§ 15.3.3 Either party may, within 30 days from the date that mediation has been concluded without resolution of the dispute or 60 days after mediation has been demanded without resolution of the dispute, demand in writing that the other party file for binding dispute resolution. If such a demand is made and the party receiving the demand fails to file for binding dispute resolution within 60 days after receipt thereof, then both parties waive their rights to binding dispute resolution proceedings with respect to the initial decision.

§ 15.3.4 The parties shall share the mediator’s fee and any filing fees equally. The mediation shall be held in the place where the Project is located, unless another location is mutually agreed upon. Agreements reached in mediation shall be enforceable as settlement agreements in any court having jurisdiction thereof.

§ 15.4 Arbitration
§ 15.4.1 If the parties have selected arbitration as the method for binding dispute resolution in the Agreement, any Claim subject to, but not resolved by, mediation shall be subject to arbitration which, unless the parties mutually agree otherwise, shall be administered by the American Arbitration Association in accordance with its Construction Industry Arbitration Rules in effect on the date of the Agreement. The Arbitration shall be conducted in the place where the Project is located, unless another location is mutually agreed upon. A demand for arbitration shall be made in writing, delivered to the other party to the Contract, and filed with the person or entity administering the arbitration. The party filing a notice of demand for arbitration must assert in the demand all Claims then known to that party on which arbitration is permitted to be demanded.

§ 15.4.1.1 A demand for arbitration shall be made no earlier than concurrently with the filing of a request for mediation, but in no event shall it be made after the date when the institution of legal or equitable proceedings based on the Claim would be barred by the applicable statute of limitations. For statute of limitations purposes, receipt of a written demand for arbitration by the person or entity administering the arbitration shall constitute the institution of legal or equitable proceedings based on the Claim.

§ 15.4.2 The award rendered by the arbitrator or arbitrators shall be final, and judgment may be entered upon it in accordance with applicable law in any court having jurisdiction thereof.
§ 15.4.3 The foregoing agreement to arbitrate and other agreements to arbitrate with an additional person or entity duly consented to by parties to the Agreement, shall be specifically enforceable under applicable law in any court having jurisdiction thereof.

§ 15.4.4 Consolidation or Joinder
§ 15.4.4.1 Subject to the rules of the American Arbitration Association or other applicable arbitration rules, either party may consolidate an arbitration conducted under this Agreement with any other arbitration to which it is a party provided that (1) the arbitration agreement governing the other arbitration permits consolidation, (2) the arbitrations to be consolidated substantially involve common questions of law or fact, and (3) the arbitrations employ materially similar procedural rules and methods for selecting arbitrator(s).

§ 15.4.4.2 Subject to the rules of the American Arbitration Association or other applicable arbitration rules, either party may include by joinder persons or entities substantially involved in a common question of law or fact whose presence is required if complete relief is to be accorded in arbitration, provided that the party sought to be joined consents in writing to such joinder. Consent to arbitration involving an additional person or entity shall not constitute consent to arbitration of any claim, dispute or other matter in question not described in the written consent.

§ 15.4.4.3 The Owner and Contractor grant to any person or entity made a party to an arbitration conducted under this Section 15.4, whether by joinder or consolidation, the same rights of joinder and consolidation as those of the Owner and Contractor under this Agreement.
Additions and Deletions Report for
AIA® Document A201® – 2017

This Additions and Deletions Report, as defined on page 1 of the associated document, reproduces below all text the author has added to the standard form AIA document in order to complete it, as well as any text the author may have added to or deleted from the original AIA text. Added text is shown underlined. Deleted text is indicated with a horizontal line through the original AIA text.

Note: This Additions and Deletions Report is provided for information purposes only and is not incorporated into or constitute any part of the associated AIA document. This Additions and Deletions Report and its associated document were generated simultaneously by AIA software at 11:39:09 ET on 07/28/2020.

INDOOR ICE RINK
The Club
585 Main Street
Woodbridge, NJ 07095

Township of Woodbridge
One Main Street
Woodbridge, NJ 07095

THE ARCHITECT:
(Name, legal status and address)

THE ARCHITECT:
(Name, legal status and address)
The Vaughn Collaborative
300 Phillips Boulevard, Suite 500
Ewing, NJ 08618

THE ENGINEER
(Name, legal status and address)
T & M Associates
11 Tindal Road
Middletown, NJ 07748

CLAIMS AND DISPUTES
Certification of Document's Authenticity
AIA® Document D401™ – 2003

I, [Name], hereby certify, to the best of my knowledge, information and belief, that I created the attached final document simultaneously with its associated Additions and Deletions Report and this certification at 11:39:09 ET on 07/28/2020 under Order No. 9490984409 from AIA Contract Documents software and that in preparing the attached final document I made no changes to the original text of AIA® Document A201™ – 2017, General Conditions of the Contract for Construction, as published by the AIA in its software, other than those additions and deletions shown in the associated Additions and Deletions Report.

(Signed)

>Title

(Dated)
COORDINATION WITH THE GENERAL CONDITIONS

The following supplements modify, change, delete from, or add to the "General Conditions of the Contract for Construction: AIA Document A201-2017. Where any Article of the General Conditions is modified or any Paragraph or Clause, thereof is modified or deleted by these supplements, the unaltered provisions of that Article, Paragraph, Sub-paragraph or Clause shall remain in effect.

1.0 MODIFICATIONS OF ARTICLE 1 - GENERAL PROVISIONS

1.2.4 ADD the following paragraphs: "Where the Work is shown in complete detail on only half or portion of a Drawing or there is an indication of continuation, the remainder being shown in outline, the work drawn out in detail shall be understood to apply to other like portions of the structure. On all Work of a rehabilitative nature or installation upon existing structural framework, it will be the responsibility of the Contractor, by personal inspection, to satisfy himself as to the correctness of any information given which may affect the quantity, size, and quality of materials required for a satisfactorily completed Contract, whether or not such information is indicated on the Drawings or within the Specifications."

The Drawings are generally diagrammatic and indicative of the Work to be installed. Contractor shall coordinate installation of its work with existing conditions and the work of others. Exact locations of equipment and points of termination shall be approved by the Architect. Should it be found that any system or equipment cannot be installed as indicated, the Architect shall be notified in writing before installing or making changes to layout.

The Drawings and Specifications are intended to function as a common set of documents. Anything shown on the Drawings but not in the Specifications, or mentioned in the Specifications and not shown on the Drawings, shall be equally binding as if both noted on the Drawings and called for in the Specifications.

1.2.5 Add the following paragraph: No measurement of a drawing by scale shall be used as a working dimension. Working measurements shall be taken from figured dimensions.

1.4. Interpretation

1.4.1 ADD: "In the event of conflicts or discrepancies among the Contract Documents, interpretations will be based on the following priorities:
1. Agreement between Owner & Contractor.
2. Addenda, with those of later date having precedence over those of earlier date.
3. The Supplementary Conditions.

“In the case of an inconsistency between Drawings and Specifications or within either document not clarified by addendum, the better quality or greater quantity of Work shall be provided in accordance with Architect's interpretation”.

"In case of discrepancy between the Contract Documents, such conflict shall be promptly referred to the Architect in writing for interpretation and final decision consistent with the general intent of
the Contract Documents”.

“No departures from the Contract Documents shall be made without prior written approval of the Architect”.

2.0 MODIFICATIONS TO ARTICLE 2 - OWNER

2.1.2 DELETE in its entirety.

2.2.1 DELETE in its entirety.

2.2.2 DELETE in its entirety and ADD: Except for permits and fees including those required under subparagraph 3.7.1 which are the responsibility of the Contractor under the Contract Documents, the Owner will pay for and the Contractor shall secure necessary building permit, municipal connecting fees, utility co. charges, and governmental fees, zoning approvals, site development approvals, highway access approvals, design approvals, and other approvals related to permanent facilities and required precedent to applications for permits for Work at the site.”

2.4.1 ADD: “Notwithstanding the above, Owner shall not be required to comply with the notice provisions hereof, and may proceed to correct deficiencies if Contractor fails within a 24-hour period after receipt of written notice from the Owner to commence and continue correction of such deficiencies where further delay would cause substantial disruption to the Project schedule. Owner shall have the further right to carry out Work without any prior notice to Contractor, in an emergency affecting safety of persons or property, and said Work is necessary to prevent threatened damage, injury or loss. Owner’s rights in this regard shall not relieve Contractor of its obligations and responsibilities under the Contract Documents.”

3.0 MODIFICATIONS TO ARTICLE 3 - CONTRACTOR

3.2.3 ADD: Claims shall not be made by failure of the Contractor to verify field measurements or conditions or to coordinate its work with others in a timely manner and to notify the Architect in writing of conditions inconsistent with the Contract documents.

3.3.4 ADD: “The Contractor shall not be relieved of obligations to perform the Work in accordance with the Contract Documents either by activities or duties of the Architect in the Architect’s administration of the Contract, or by tests, inspections or approvals required or performed by persons other than the Contractor.”

3.4.1.1 ADD: “Any claims for additional costs associated with completion of the Work within the time indicated in the Construction Schedule will not be considered. Contractor shall include cost for extra time, in any form such as shift work, overtime, and premium time necessary to meet Contract requirements regardless of trade. Contractors must recognize that although their work might not require shift, overtime, or premium time work for completion within the stipulated time frame, it may be required in order to allow other contractors to complete within the time frame. Contractor must allow for these overtime requirements and include the costs necessary to allow the other contractors to complete within the specified time. “Contractors whose failure to perform their Work or whose negligence in performing their Work, impacts other Contractors shall be responsible for damages incurred by the other contractors that are necessary to maintain the project schedules.”
3.7.1 ADD: Owner shall pay for and the Contractor shall secure all permits and fees indicated in paragraph 2.2.2.

3.9.4 ADD: “When more than one phase is scheduled or shifts are required to comply with the Construction Schedule, Contractor shall provide additional supervisory personnel for each phase and shift.

3.18.1 Delete Subparagraph 3.18.1 in its entirety and insert the following:

3.18.1: To the fullest extent permitted by law, the Contractor shall indemnify and hold harmless the Owner and Architect, agents and employees of any of them from and against claims, damages, losses and expenses, including but not limited to, attorney’s fees and defense costs, arising out of or resulting from performance of the Work, but only to the extent caused in whole or in part by the acts or omissions of the Contractor, a Subcontractor, anyone directly or indirectly employed by them or anyone for whose acts or omissions they may be liable, regardless of whether or not such claim, damage, loss or expense is caused in part by a party indemnified hereunder. Such obligation shall not be construed to negate, abridge or reduce other rights or obligations of indemnity which would otherwise exist as to a party or person described in this Paragraph 3.18. The Contractor agrees to and does hereby assume on behalf of the Owner and Architect the defense of any action at law or in equity that may be brought against such indemnities, upon their demand, the amount of any judgment that may be entered against such indemnities in any such action. In the event that any such claim, loss, cost, expense, liability, damage or injury arises or is made, asserted, threatened against the Owner for which the Contractor or its insurer does not admit coverage, or if the Owner reasonably determines such coverage to be inadequate, the Owner shall have the right to withhold from any payments due or to become due to the Contractor an amount sufficient to protect the Owner from such claim, loss, cost expense, liability, damage or injury, including attorney’s fees and expenses reasonably necessary for the defense thereof.

4.0 MODIFICATIONS TO ARTICLE 4 – ARCHITECT

4.2.4 ADD: “Coordination and Scheduling of Work shall be between Contractors”.

4.2.7 ADD: “Incomplete or uncoordinated submittals, or submittals not in conformance with Contract Documents will not be reviewed in their entirety but will be returned for resubmission. Architect will not be responsible for delay caused by such submissions.”

5.0 MODIFICATIONS TO ARTICLE 5 - SUBCONTRACTORS

5.2.5 ADD: Subcontractors shall be identified in Post Bid Submittals and included with the Agreement.

5.4.1.3 ADD: Upon request of the Owner, the Contractor agrees to execute instruments required to confirm any such assignments.

6.0 MODIFICATIONS TO ARTICLE 6 – CONSTRUCTION BY OWNER OR BY SEPARATE CONTRACTORS

6.2.4: Delete from the first sentence, first line, the word "wrongfully".

The Club At Woodbridge
INDOOR ICE RINK
SUPPLEMENTARY CONDITIONS

TVC 18-27905
00 8000 - 3/11
6.2.6 ADD the following: Should the Contractor wrongfully cause damage to the Work or property of any separate contractor or other contractor, the Contractor shall, upon due notice, promptly attempt to settle with the separate contractor or other contractor by agreement, or otherwise to resolve the dispute. If such separate trade contractor or other contractor sues the Owner or the Architect on account of any damage alleged to have been caused by the Contractor, the Owner or Architect shall notify the Contractor who shall defend such proceedings at the Contractor's expense, and if any judgement or award against the Owner or Architect arises therefrom the Contractor shall pay or satisfy it and shall reimburse the Owner, Owner's Representative or Architect for all attorneys' fees and court costs which the Owner, Owner's Representative or Architect has incurred.

7.0 MODIFICATIONS TO ARTICLE 7 - CHANGES IN THE WORK

7.3.7 In Subparagraph 7.3.7, ADD: the percentage for overhead and profit, included in the total cost to the Owner, shall be based on the following schedule:

.1 for the Contractor, for any Work performed by the Contractor's own forces, 15% of the cost;

.2 for the Contractor, for any Work performed by its Subcontractor, 5% of the amount due the Subcontractor;

.3 for each Subcontractor or sub-subcontractor involved, for any Work performed by that Contractor's own forces, 10% of the cost;

.4 for each Subcontractor, for any Work performed by its sub-subcontractor, 5% of the amount due the sub-subcontractor;

.5 allowance work will not include bond amount.

7.3.11 ADD the following: "In order to facilitate checking of quotations for extras or credits, all proposals, except those so minor that their propriety can be seen by inspection, shall be accompanied by a complete itemization of costs including labor, materials and Subcontracts. Labor and materials shall be itemized in the manner prescribed above. When major cost items are Subcontracts, these costs shall be itemized also."

8.0 MODIFICATIONS TO ARTICLE 8 - TIME

8.3.1 DELETE "mediation and arbitration" in line 5 and ADD "litigation".

8.3.3 DELETE in its entirety and ADD:

8.3.3: Any delay attributable to lack of coordination or cooperation by and between the separate contractors among themselves or their subcontractors will not be recognized by the Owner as a basis for any claim for increasing any Contract Sum.

8.4 ADD: "8.4 Completion and Liquidated Damages": $1,000.00 per calendar day

8.4.1 The Contractor shall substantially complete all of the Work included in the Contract Documents
ready for the Owner’s occupancy as defined in Subparagraph 9.8 of the General Conditions within the time stated in the Agreement and the approved Project Schedule, subject to extensions of contract time as provided in Paragraph 8.3 of the General Conditions.

8.4.2 In the event of the failure of any Contractor to complete the entire work within the calendar day period and incremental deadlines established by the mutually agreed upon Project Schedule, that Contractor shall be liable to the Owner in the sum listed in the Agreement One Thousand Dollars ($1,000.00) for each calendar day that the work shall be and remain incomplete which said sums shall be treated as liquidated damages and not a penalty, for the loss to the Owner of the use of premises in a completed state of construction or repair, and inspection costs to the Owner on account of the delay; provided, however, that the said liquidated damages provided for herein shall be in addition to other consequential losses or damages that the Owner may incur by reason of such delay, such as, but not limited to, added costs of the Project, associated costs to the Owner and Architect, and damages due to other Contractors, and the cost of furnishing temporary services, if any. Any such sums for which the Contractor is liable may be deducted by the Owner from any moneys due or to become due to the Contractor.

8.4.3 It is hereby understood and mutually agreed by and between the Contractor and the Owner that the date of commencement, rate of progress and the time of completion of the work are essential conditions of this Contract.

8.4.4 The Contractor agrees that said work shall be prosecuted regularly, diligently, and un-interrupted at such rate of progress as will insure full completion thereof within the time specified. It is expressly understood and agreed, by and between the Contractor and the Owner, that the time for the completion of work described herein is a reasonable time for the completion of the same, taking into consideration the average climatic range and usual industrial conditions prevailing in its locality.

8.4.5 If the Contractor shall neglect, fail or refuse to complete the work within the time herein specified, or any proper extension thereof granted by the Owner, then the Contractor and Contractor’s Surety does hereby agree, as a part consideration for the awarding of this Contract, to pay to the Owner the amount specified in 8.4.2 above, not as a penalty but as liquidated damages for such breach of Contract as hereinafter set forth, for each and every calendar day that the Contractor shall be in default after the time stipulated in the Contract for completing the work.

8.4.6 The said amount is fixed agreed upon by and between the Contractor and the Owner because of the impracticality and extreme difficulty of affixing and ascertaining the actual damages the Owner would in such event sustain, and said amounts shall be retained from time to time by the Owner for the current periodical payments.

8.4.7 It is further agreed that time is of the essence of each and every portion of this Contract and of the Specifications wherein a definite and certain length of time is fixed for the performance of any act whatsoever; and where under this Contract an additional time is allowed for the completion of any work, the new time limit fixed by such extension shall be of the essence of this Contract. Accordingly, the liquidated damages provisions set forth in Paragraphs 8.4.2 and 8.4.5 above shall apply to each and every portion of this Contract and of the Specifications wherein a certain and definite length of time is fixed for performance.
8.4.8 The Owner shall have the right to deduct the total amount of liquidated damages for which the Contractor may be liable under this Paragraph from any payments then or thereafter due the Contractor.

9.0 MODIFICATIONS TO ARTICLE 9 - PAYMENT AND COMPLETION

9.2 REVISE as follows: FIRST APPLICATION FOR PAYMENT

9.2.1 REVISE: Within 10 days after bid award, the Contractor shall submit to the Architect the Schedule of Values and Project Schedule. The Schedule of Values and Project Schedule unless objected to by the Architect shall be used as the basis for reviewing the Contractor’s application for payment and progress of work. Liquidated damages if applicable may be assessed based upon failure to comply with the Project Schedule as agreed upon by all Contractors, Architect and Owner.

9.2.2 ADD: The schedule of values shall be prepared in such a manner that each major item of Work, each Subcontract, and Labor and Material is shown as a line item on AIA Document G703, Application and Certificate for Payment, Continuation Sheet. The schedule shall also include a separate line item for field supervision, bonds and insurance, temporary facilities, general and final cleaning, punch list, project record documents and operation and maintenance manuals.

The Contractor may be required to provide additional cost breakdown information including copies of sub-contracts as required by the Architect or Owner for verification.

9.3.1 REVISE the first sentence to read "At least thirty days before...and ADD "The form of Application and Certification for Payment shall be AIA Document G702 Application and Certificate for Payment, supported by AIA Document G703, Continuation Sheet." Notarization is required after the first payment.

9.3.2 ADD: “Contractor shall not be entitled to an additional payment if the Owner does not approve storage of material or equipment off site.”

9.3.4 ADD "RETAINE: The Owner shall retain two percent (2%) of all amounts due the Contractor until the Work is completed.

9.4.1 REVISE: The Architect will, within fifteen (15) days after the receipt of the Contractor's Application for Payment, either issue a Certificate for Payment to the Owner, with a copy to the Contractor, for such amount as the Architect determines is properly due, or notify the Contractor in writing his reasons for withholding a Certificate as provide in Subparagraph 9.5.1.

9.5.1.7 REVISE in its entirety to read "Unsatisfactory Prosecution of the Work in accordance with the Contract Documents."

9.5.1.8 ADD "Failure to comply with government statutes, regulations and laws."

9.5.1.9 ADD: Disputed Construction Change Directive amounts.

9.6.1 ADD "Owner will make payment to the Contractor within twenty (20) days after the Architect submits the Certificate for Payment together with the approved Contractor's Application for Payment."

The Club At Woodbridge
INDOOR ICE RINK
SUPPLEMENTARY CONDITIONS
9.6.8 ADD "The Owner, or Architect may require proof of payment to subcontractors, sub-
subcontractors, and suppliers, at any time and from time to time."

9.7 REVISE "If the Architect does not issue a Certificate for Payment, through no fault of the
Contractor, within fifteen (15) days after receipt of the Contractor's Application for Payment, or if
the Owner does not pay the Contractor within twenty (20) days after the date established in the
Contract Documents any amount certified by the Architect, then the Contractor may, upon seven
(7) additional days' written notice to the Owner and the Architect, stop the Work until payment of
the amount owning has been received. The Contract Time shall be extended appropriately and the
Contract Sum shall be increased by the amount of the Contractor's reasonable costs of shut-down,
delay and start-up, which shall be accomplished as provided in Article 7."

9.8.2.1 ADD: "Inspections for Substantial Completion will be conducted only at the completion of each
phase stipulated in the Summary of Work. The inspection for Substantial Completion will only be
made when all Contracts for that phase are substantially complete."

9.8.2.2 ADD: "If the Contractor fails to complete the work on the Contractor's and/or Architect's punchlist
in accordance with the Contract Documents and as stipulated for Substantial Completion, the
Contractor shall be liable to the Owner in accordance with Supplemental Conditions Article 8.4
"Completion and Liquidated Damages".

9.8.3.1 ADD: "If it is required, because of the Contractor's inability to complete a comprehensive punch
list of items to be completed or corrected as stipulated in 9.8.2 and therefore to complete the
Contract, that the Architect, or any of its consultants or representatives, is required to prepare
punch lists, then according to 12.2.1, the Contractor will be responsible for such costs. The
Architect will be compensated for such additional work at standard prevailing rates by the Owner.
The Owner will duly backcharge the Contractor for such additional costs and deduct same from
retainage or Application for Payment."

9.8.5.1 ADD "Items on the Architect approved punch list will have in addition to an established time for
completion, a value of 150% of the worth affixed to them. The amounts will be deducted from the
payment and held until the items are completed or corrected. In no case shall the established time
for completion extend beyond 60 days from the Certification for Substantial Completion except
for delay beyond the Contractors control or any additional time stipulated and approved by the
Owner and Architect in the Certificate for Substantial Completion."

In the event Contractor or its subcontractor fails to complete the list of items of the Work
 instructed by the Architect to be corrected or completed within the time stipulated, the Owner may
(i) exercise any available remedies to correct or complete deficient work or retain a third party to
correct or complete such work at the cost of the defaulting contractor; and (ii) retain and deduct
from any payments or retention otherwise due to the defaulting Contractor."

9.8.5.2 ADD "The Contractor shall pay for all Architectural and Consultant services after 60 days from
the date of Substantial Completion of the Work due to the failure of the Contractor to complete the
work on the Architect approved punch list or submission of documentation and items required for
Final Completion and Final Payment".

9.8.5.3 ADD: "The payment for Substantial Completion shall be sufficient to increase the total payments
to 100% of the Contract sum for the Work or designated portion thereof, less such amounts as
determined by Architect pursuant to Paragraph 9.8.5.1 above."

9.9.1 ADD "The Contractor shall not withhold Partial Occupancy or Use from the Owner due to failure
by the Contractor to complete the work in accordance with the Contract Documents in the time
stipulated in the Agreement with approved Change Orders for extension of time and approved
Project Schedule".

9.9.4 As portions of the Project are completed, and occupied, Contractor shall ensure the continuing
construction activity will not unreasonably interfere with the use, occupancy and quiet enjoyment
of the completed portions thereof.

9.9.5 The Contractor agrees to coordinate the Work with the Architect and the Owner in order to
minimize disturbance to occupied portions of the structure. In the event performances or tests are
conducted in close proximity to the Work in progress, the Contractor agrees to cease all work that
may disturb the Owner's occupants at the site.

9.10.1.1 ADD: "If more than one inspection for Final Completion is required, the Contractor will pay for the
professional fees and services of the Architect for additional inspections."

9.10.1.2 ADD: "The Architect shall make final inspection within thirty (30) days following receipt of the
Contractor's request for final inspection and final Application for Payment."

10.0 MODIFICATIONS TO ARTICLE 10 - PROTECTION OF PERSONS & PROPERTY

10.2.4 DELETE: "Explosives or other" from Line 1 and ADD: "The use of explosives in conjunction
with the Work at this Project is prohibited.

11.0 MODIFICATIONS TO ARTICLE 11 - INSURANCE AND BONDS

11.1.4 ADD: Language such as "will endeavor to mail..." or "...but failure to mail...shall impose no
obligation or liability... upon the company, its agents or representatives..." is not acceptable within
the Cancellation Clause.

If this insurance is written on the Comprehensive General Liability policy form, the Certificates
shall be AIA Document G705, Certificate of Insurance. If this insurance is written on a
Commercial General Liability policy form, ACORD Form 25S will be acceptable.

11.1.5 ADD: "Certificates called for herein shall be furnished in triplicate and shall specifically set forth
evidence of all coverage required by 11.1.1 and 11.1.2 and the Contractor shall furnish to the
Architect copies of all endorsements that are subsequently issued." Additions, deletions and
modifications to the Insurance Coverage shall be issued to the Owner by certified mail. Failure to
furnish the correct types of insurance on the correct forms in the correct amounts shall constitute a
material breach of the conditions for award of the Contract and the Contractor would be in default.
In no case shall the Contractor be permitted to work at or occupy the Project without the required
insurance.
11.3.1.1 ADD: "The form of policy for this coverage shall be Completed Value."

11.3.1.3: ADD: The Contractor shall provide insurance coverage for portions of the Work stored off the site after written approval of the Owner at the value established in the approval, and also for portions of the Work in transit.

11.3.1.4: Add the following: "Owner and Contractor intend that policies provided in response to these provisions shall protect all of the parties insured and provide primary coverage for losses and damages caused by the perils covered thereby. Accordingly, such policies shall state that in the event of payment of loss or damage, the insurer shall have no right of recovery against the parties named as insureds or additional insureds."

11.6. PERFORMANCE BOND: ADD: The Contractor shall furnish a Performance Bond in an amount equal to one hundred percent (100%) of the Contract Sum as security for the faithful performance of this Contract and also a Material Payment Bond in an amount not less than one hundred percent (100%) of the Contract Sum as security for the payment of persons performing labor on the Project under this Contract and furnishing materials in connection with this Contract.

11.6.1 ADD: "The Bonds shall be executed on the forms approved by the Owner. The Bonds shall be executed by corporate surety licensed and qualified to do business in the State of New Jersey. The surety company shall be named in the current list of ´companies holding certificates of authority as accepted sureties on federal bonds and as acceptable reinsuring companies´ as published in Circular 570 (as amended) by the audit staff, Bureau of Government Financial Operations, U.S. Treasury Department, and the amount of the Bonds shall not exceed the underwriting risk of such surety set forth in said Circular or revision thereof. The Bonds shall be accompanied by a power of attorney evidencing the authority of the agent of the surety to execute the Bonds as of the date of the Bonds."

11.7 ADD the following: INSURANCE AND BOND CARRIERS - "All insurance and bonds required pursuant to Article 11 and the Contract Documents must involve insurance providers that are licensed and authorized to conduct business in the State of New Jersey. The insurance carriers of whom the Contractor has purchased insurance coverage are to have an "A-" or better rating plus a financial rating of VI or better with the A.M. Best's Company (Key Rating Guide - Latest Edition).” and shall be satisfactory to the Owner and the Architect.

12.0 MODIFICATIONS TO ARTICLE 12 - UNCOVERING AND CORRECTION OF WORK

12.2.1 ADD: “The Owner may deduct same from any Application for Payment or any amount of retainage.”

12.2.6 ADD "Nothing contained in Section 12.2 shall decrease the responsibility set forth in the Performance Bond."

13.0 MODIFICATIONS TO ARTICLE 13 - MISCELLANEOUS PROVISIONS

13.1.1: Delete Subparagraph 13.1 in its entirety and insert the following:

13.1.1: The Contract shall be governed by the laws of the State of New Jersey.
13.3.1: Written notice shall be deemed to have been duly served the Owner if delivered in person or sent by Registered or Certified Mail to the Owner with a copy to the Solicitor.

14.0 MODIFICATIONS TO ARTICLE 14 -TERMINATION OR SUSPENSION OF THE CONTRACT

14.1.1: Delete Subparagraph in its entirety and insert the following:

14.1.1: The Contractor may terminate the Contract if the Work is stopped for a period of 60 days under final, non-appealable order of any court or other public authority having jurisdiction, through no act or fault of the Contractor or a subcontractor or their agents or employees or any other persons performing portions of the Work under Contract with the Contractor, for any of the following reasons:

14.1.1.3 DELETE: "Semicolon and the word "or" at the end of subparagraph 14.1.1.3 and DELETE subparagraph 14.1.1.4"

14.2.1: In the first line of Subparagraph 14.2.1.4, delete the word "substantial" and insert the word "material".

14.2.1.5 ADD: "If the Contractor is adjudged bankrupt or files for bankruptcy or creditor protection under the laws of this United States."

14.2.5 ADD: "In the event the Owner terminates the Contract for cause, and such cause is determined to be valid and justified, in addition and without prejudice to all other rights, remedies and relief which the Owner may obtain under this Agreement and pursuant to the law, the Owner shall be entitled to immediate payment by Contractor of all reasonable professional fees, including attorney's fees, architectural fees, engineering fees, and consulting fees (together with reasonable expenses and disbursements incurred in connection therewith) which the Owner may incur in connection with any legal proceedings or action (including professional fees rendered in anticipation of such proceedings or action). This provision shall create no right to the Contractor or to any other person or entity for payment of such costs or expenses." In such event, the Owner may deduct such amounts from any Application for Payment, retainage or otherwise invoice the Contractor.

14.5 ADD: TERMINATION OR SUSPENSION PROCEDURES BY CONTRACTOR

"Upon receipt of written notice from the Owner of suspension or termination of the Contract, the Contractor shall:

.1 cease operations as directed by the Owner in the Notice,
.2 take actions necessary, or that the Owner may direct, for the protection and preservation of the Work; and
.3 except for Work directed to be performed prior to the effective date of suspension or termination stated in the Notice, suspend or terminate, as the case may be, all existing subcontracts and purchase orders and enter into no further subcontracts and purchase orders."

15.0 MODIFICATIONS TO ARTICLE 15 –CLAIMS AND DISPUTES
15.1.6 ADD: Liquidated damages as stipulated in Article 8.4 will be withheld from the delaying Contractor's Invoice for failure to comply with the mutually approved Project Schedule stipulated in 3.10. Liquidated damages will be reinstated to the Contractor's Application for Payment when the Contractor is in compliance with the Schedule and all claims have been dropped or until Substantial Completion at which time Final Liquidated Damages will be assessed.

15.1.7 ADD: Delay Claims: Contractor claiming delays to its Contract shall prepare all documentation against the delaying party as the basis for delay claims and shall defend, indemnify and hold harmless the Owner and Architect from such claims. Inadequate, deficient or indefensible documentation for claims will be a basis for rejection of the claim by the Architect.

15.2.5 REVISE: Line 5 …on the parties but subject to litigation.

15.2.8 DELETE. Owner is not subject to Mechanic’s Liens.

15.3 DELETE: 15.3 MEDIATION in its entirety.

15.4 DELETE: 15.4 ARBITRATION in its entirety.

END OF SECTION 00 8000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Phased construction.
 4. Work performed by Owner.
 5. Contractor's use of site and premises.
 6. Coordination with occupants.
 7. Work restrictions.
 8. Specification and Drawing conventions.

B. Related Requirements:
 1. Section 015000 "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities.

C. This project includes select proprietary products. Those products are identified in Paragraph 1.2 of their respective Specification Section.

1.3 DEFINITIONS
A. Work Package: A group of specifications, drawings, and schedules prepared by the design team to describe a portion of the Project Work for pricing, permitting, and construction.

1.4 PROJECT INFORMATION
A. The Club at Woodbridge is a health club with full membership, operating seven days a week. The portion of the building, where this project shall occur, previously contained four tennis courts, which the Owner has removed, including the asphalt court base.
 1. The project area has been cordoned off, prohibiting member access.
 2. Portions of the remaining building will require sporadic Contractor access. Coordinate with Owner, no less than 72 hours in advance, for access into member occupied spaces.

B. Contract Duration: 360 days.
C. Liquidated Damages: $1,000.00 per day.

D. Project Identification: Indoor Ice Rink at The Club at Woodbridge.
 1. Project Location: 585 Main Street, Woodbridge, New Jersey 07095.

E. Owner: Township of Woodbridge.
 1. Owner's Representatives:
 a. John Cook; General Manager; Phone: (732) 634-5000.
 b. Amanda Kozub; Phone: (732) 634-5000.
 c. John Rusbarsky; Maintenance Manager; Phone: (732) 634-5000.

F. Architect: The Vaughn Collaborative; contact information is on the project manual front cover.

G. Architect's Consultants: Architect has retained the following design professionals, who have prepared designated portions of the Contract Documents:
 1. Ice Rink Refrigeration Consultant: MacLaughlin Management & Design.
 a. Representative: Terry MacLaughlin, President; Phone: (603) 686-0423.

H. Consultant (Engineer) Directly Retained by Owner:
 1. Civil, Structural, Fire Protection, Mechanical, Electrical & Plumbing Engineers:
 a. T&M Associates, LLC.
 b. 11 Tindal Road, Middletown, NJ 07748.
 c. Phone: (732) 671-6400

1.5 WORK COVERED BY CONTRACT DOCUMENTS

A. The Work of Project is defined by the Contract Documents and includes, but is not limited to, the following:
 1. Construct an NHL size hockey rink, ADA restrooms, and refrigeration pump room which shall also contain the ice resurfacing vehicle, within the existing building.
 2. Construct a new addition containing locker rooms and associated restrooms for player use.
 3. Contractor is required to “paint the field color and lines” on the initial ice sheet only.
 a. Owner shall paint the logos on the initial ice sheet.

B. Type of Contract: Project will be constructed under a single prime contract.

1.6 PHASED CONSTRUCTION

A. The phased construction addresses the relocation of Existing Air Handling Unit 3 (AHU-3) and installation of Energy Recovery Ventilator 1 (ERV-1), upon the roof of the new addition. Construct the Work in phases, with each phase substantially complete as indicated below.

B. Phase One:
 1. Construct addition from Column Line 12 to plan, right-side end wall.
 2. Provide temporary air handling unit, on grade, and connect to ductwork on existing roof.
 3. Disconnect existing AHU-3, remove from grade location, and salvage for reinstallation.

C. Phase Two:
1. Reinstall existing AHU-3 on addition roof, between Column Lines 12 and 13.
2. Construct remainder of addition between Column Lines 11 and 12.

D. Phase Three:
 1. Reconnect existing ductwork to reinstalled AHU-3.
 2. Remove temporary air handling unit, and return to loaning vendor.

1.7 WORK PERFORMED BY OWNER

A. Cooperate fully with Owner, so work may be carried out smoothly, without interfering with or delaying Work under this Contract or work by Owner. Coordinate the Work of this Contract with work performed by Owner.

B. The Owner has purchased an electric powered ice resurfacing vehicle, which shall be used exclusively at this facility. The Contractor shall be required to coordinate with the Owner, when said vehicle can be delivered to the facility and securely stored within its’ designated storage room.
 1. Contractor shall also be required to coordinate installation of a remote-control device onto the ice resurfacer vehicle dashboard. The remote-control device is paired with the indoor overhead coiling door.

C. Owner shall apply rink line markings.

1.8 CONTRACTOR’S USE OF SITE AND PREMISES

A. Restricted Use of Site: Contractor shall have limited use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.

B. Limits on Use of Site: Limit use of Project site to Work in areas indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 1. Driveways, Walkways and Entrances: Keep driveways and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or for storage of materials.
 a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

C. Condition of Existing Building: Maintain portions of existing building affected by construction operations in a weathertight condition throughout construction period. Repair damage caused by construction operations.

D. Condition of Existing Grounds: Maintain portions of existing grounds, landscaping, and hardscaping affected by construction operations throughout construction period. Repair damage caused by construction operations.
1.9 COORDINATION WITH OCCUPANTS

A. Partial Owner Occupancy: Owner will occupy the premises during entire construction period, with the exception of areas under construction. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's operations. Maintain existing exits unless otherwise indicated.
 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction.
 2. Provide not less than 72 hours’ notice to Owner of activities that will affect Owner's operations.

1.10 WORK RESTRICTIONS

A. Comply with restrictions on construction operations. Comply with limitations on use of public streets, work on public streets, rights of way, and other requirements of authorities having jurisdiction.

B. On-Site Work Hours: Limit work to between 7:00 a.m. to 5:00 p.m., Monday through Friday, unless otherwise indicated. Work hours may be modified to meet Project requirements if approved by Owner and authorities having jurisdiction.
 1. Weekend Hours: Requires prior Owner authorization.
 2. Early Morning Hours: Requires prior Owner authorization.
 3. Hours for Utility Shutdowns: Coordinate with Owner on per basis occurrence.

C. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging for temporary utility services according to requirements indicated:
 1. Notify Owner not less than two days in advance of proposed utility interruptions.
 2. Obtain Owner's written permission before proceeding with utility interruptions.

D. Smoking and Controlled Substance Restrictions: Use of tobacco products, alcoholic beverages, and other controlled substances on Owner's property is not permitted.

E. Employee Identification: Provide identification tags for Contractor personnel working on Project site. Require personnel to use identification tags at all times.

F. Employee Screening: Comply with Owner's requirements for drug screening of Contractor personnel working on Project site. Maintain list of approved screened personnel with Owner's representative.

1.11 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

The Club at Woodbridge
INDOOR ICE RINK
PROJECT SUMMARY
2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 00 Contracting Requirements and Division 01 General Requirements apply to all Sections of the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:
 1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
 2. Abbreviations: Materials and products are identified by abbreviations scheduled on Drawings.

1.12 EXTENDED CONTRACTOR MAINTENANCE

A. Contractor shall perform maintenance, for a period of one visit every three (3) months, during a two (2) year period, on all components within the following systems:
 1. Refrigeration system.
 2. Dehumidification system.
 3. Mechanical system.
 4. Electrical system.

B. Maintenance shall include verification that each system is operating within the parameters defined within the specification sections governing each system, and within manufacturer’s written parameters and factory settings.

C. Two (2) year maintenance period shall commence upon the date established on the Certificate of Substantial Completion.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 1000
SECTION 01 2100 – ALLOWANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements governing allowances.
B. Allowance type included is Contingency Allowance.
C. Related Requirements: Section 012600 "Contract Modification Procedures" for procedures for submitting and handling Change Orders.

1.3 DEFINITIONS
A. Allowance: A quantity of work or dollar amount included in the Contract, established in lieu of additional requirements, used to defer selection of actual materials and equipment to a later date when direction will be provided to Contractor. If necessary, additional requirements will be issued by Change Order.

1.4 SELECTION AND PURCHASE
A. At the earliest practical date after award of the Contract, advise Architect of the date when final selection, or purchase and delivery, of each product or system described by an allowance must be completed by the Owner to avoid delaying the Work.
B. At Architect's request, obtain proposals for each allowance for use in making final selections. Include recommendations that are relevant to performing the Work.
C. Purchase products and systems selected by Architect from the designated supplier.

1.5 ACTION SUBMITTALS
A. Submit proposals for purchase of products or systems included in allowances in the form specified for Change Orders without percent for bond.
1.6 INFORMATIONAL SUBMITTALS

A. Submit invoices or delivery slips to show actual quantities of materials delivered to the site for use in fulfillment of each allowance.

B. Submit time sheets and other documentation to show labor time and cost for installation of allowance items that include installation as part of the allowance.

C. Coordinate and process submittals for allowance items in same manner as for other portions of the Work.

1.7 CONTINGENCY ALLOWANCES

A. Use the contingency allowance only as directed by Architect for Owner's purposes and only by Change Orders that indicate amounts to be charged to the allowance.

B. Contractor's overhead, profit, and related costs for products and equipment ordered by Owner under the contingency allowance are included in the allowance and are not part of the Contract Sum. These costs include delivery, installation, insurance, equipment rental, and similar costs.

C. Change Orders authorizing use of funds from the contingency allowance will include Contractor's related costs and reasonable overhead and profit.

D. At Project closeout, credit unused amounts remaining in the contingency allowance to Owner by Change Order.

1.8 ADJUSTMENT OF ALLOWANCES

A. Allowance Adjustment: To adjust allowance amounts, prepare a Change Order proposal based on the difference between purchase amount and the allowance, multiplied by final measurement of work-in-place where applicable. If applicable, include reasonable allowances for cutting losses, tolerances, mixing wastes, normal product imperfections, required maintenance materials, and similar margins.
 1. Include installation costs in purchase amount only where indicated as part of the allowance.
 2. If requested, prepare explanation and documentation to substantiate distribution of overhead costs and other markups.
 3. Submit substantiation of a change in scope of Work, if any, claimed in Change Orders related to unit-cost allowances.
 4. Subparagraph below reflects the major drawback of using unit-cost allowances. No matter who performs the Work, a final quantity survey is needed.
 5. Owner reserves the right to establish the quantity of work-in-place by independent quantity survey, measure, or count.

B. Submit claims for increased costs due to a change in the scope or nature of the allowance described in the Contract Documents, whether for the purchase order amount or Contractor's handling, labor, installation, overhead, and profit.
1. Do not include Contractor's or subcontractor's indirect expense in the Allowance cost amount unless it is clearly shown that the nature or extent of Work has changed from what could have been foreseen from information in the Contract Documents.
2. No change to Contractor's indirect expense is permitted for selection of higher- or lower-priced materials or systems of the same scope and nature as originally indicated.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine products covered by an allowance promptly on delivery for damage or defects. Return damaged or defective products to manufacturer for replacement.

3.2 PREPARATION
 A. Coordinate materials and their installation for each allowance with related materials and installations to ensure that each allowance item is completely integrated and interfaced with related work.

3.3 SCHEDULE OF ALLOWANCES
 A. Allowance No. 1: Miscellaneous Work Allowance: Include an allowance of $150,000.00 for use according to Owner's written instructions.

END OF SECTION 01 2100
SECTION 01 2500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

B. Related Requirements:
 1. Section 01 6000 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.3 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 1. Substitution Request Form: Use form acceptable to the Architect.
 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 a. Statement indicating why specified product or fabrication or installation method cannot be provided.
 b. Coordination of information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitutions with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes, such as performance, weight, size, durability, visual ef-
fect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.

d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.

e. Samples, where applicable or requested.

f. Certificates and qualification data, where applicable or requested.

g. List of similar installations for completed projects, with project names and addresses as well as names and addresses of architects and owners.

h. Material test reports from a qualified testing agency, indicating and interpreting test results for compliance with requirements indicated.

i. Detailed comparison of Contractor's construction schedule using proposed substitutions with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.

j. Cost information, including a proposal of change, if any, in the Contract Sum.

k. Contractor's certification that proposed substitution complies with requirements in the Contract Documents, except as indicated in substitution request, is compatible with related materials and is appropriate for applications indicated.

l. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

1.7 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

The Club at Woodbridge
INDOOR ICE RINK
SUBSTITUTION PROCEDURES

TVC Project No.: 18-27905 01 2500 - 2
1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Substitution request is fully documented and properly submitted.
 c. Requested substitution will not adversely affect Contractor's construction schedule.
 d. Requested substitution has received necessary approvals of authorities having jurisdiction.
 e. Requested substitution is compatible with other portions of the Work.
 f. Requested substitution has been coordinated with other portions of the Work.
 g. Requested substitution provides specified warranty.
 h. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Not allowed.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 2500
SECTION 01 2600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for handling and processing Contract modifications.
B. Related Requirements: Section 01 2500 "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.

1.3 MINOR CHANGES IN THE WORK
A. Architect will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710.

1.4 PROPOSAL REQUESTS
A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 1. Work Change Proposal Requests issued by Architect are not instructions either to stop work in progress or to execute the proposed change.
 2. Within time specified in Proposal Request or 20 days, when not otherwise specified, after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 c. Include costs of labor and supervision directly attributable to the change.
 d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 i. Quotation Form: Use forms acceptable to Architect.
B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.

1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.

2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.

3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.

4. Include costs of labor and supervision directly attributable to the change.

5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

6. Comply with requirements in Section 01 2500 "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.

1.5 CHANGE ORDER PROCEDURES

1.6 CONSTRUCTION CHANGE DIRECTIVE

1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.

B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 2600
SECTION 01 2900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Requirements:
 1. Section 01 2100 “Allowances”.
 2. Section 01 2600 "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule.
 1. Coordinate line items in the schedule of values with items required to be indicated as separate activities in Contractor's construction schedule.
 2. Submit the schedule of values to Architect at earliest possible date, but no later than seven days before the date scheduled for submittal of initial Applications for Payment.

B. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.
 1. Identification: Include the following Project identification on the schedule of values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's Project number.
 d. Contractor's name and address.
 e. Date of submittal.
 2. Arrange schedule of values consistent with format of AIA Document G703.
3. Arrange the schedule of values in tabular form, with separate columns to indicate the following for each item listed:
 a. Related Specification Section or Division.
 b. Description of the Work.
 c. Name of subcontractor.
 d. Name of manufacturer or fabricator.
 e. Name of supplier.
 f. Change Orders (numbers) that affect value.
 g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent. Round dollar amounts to whole dollars, with total equal to Contract Sum.
 1) Labor.
 2) Materials.
 3) Equipment.
4. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Provide multiple line items for principal subcontract amounts in excess of five percent of the Contract Sum.
5. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.
6. Overhead Costs: Include total cost and proportionate share of general overhead and profit for each line item.
7. Closeout Costs. Include separate line items under Contractor and principal subcontracts for Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.
8. Schedule of Values Revisions: Revise the schedule of values when Change Orders or Construction Change Directives result in a change in the Contract Sum. Include at least one separate line item for each Change Order and Construction Change Directive.

1.5 APPLICATIONS FOR PAYMENT

A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.

C. Payment Application Times: Submit Application for Payment to Architect by the last day of the month. The period covered by each Application for Payment is one month, ending on the last day of the month. Submit draft copy of Application for Payment seven days prior to due date for review by Architect.

D. Application for Payment Forms: Use AIA Document G702 and AIA Document G703 as form for Applications for Payment.
1. Other Application for Payment forms proposed by the Contractor shall be acceptable to Architect and Owner. Submit forms for approval with initial submittal of schedule of values.

E. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
 3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.
 4. Indicate separate amounts for work being carried out under Owner-requested project acceleration.

F. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.
 1. Provide certificate of insurance, evidence of transfer of title to Owner, and consent of surety to payment for stored materials.
 2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.
 3. Provide summary documentation for stored materials indicating the following:
 a. Value of materials previously stored and remaining stored as of date of previous Applications for Payment.
 b. Value of previously stored materials put in place after date of previous Application for Payment and on or before date of current Application for Payment.
 c. Value of materials stored since date of previous Application for Payment and remaining stored as of date of current Application for Payment.

G. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

H. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.
 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 2. When an application shows completion of an item, submit conditional final or full waivers.
 3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
 4. Submit final Application for Payment with or preceded by conditional final waivers from every entity involved with performance of the Work covered by the application who is lawfully entitled to a lien.
5. Waiver Forms: Submit executed waivers of lien on forms acceptable to Owner.

I. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
 1. List of subcontractors.
 2. Schedule of values.
 3. Contractor's construction schedule (preliminary if not final).
 4. Products list (preliminary if not final).
 5. Schedule of unit prices.
 6. Submittal schedule (preliminary if not final).
 7. List of Contractor's staff assignments.
 8. List of Contractor's principal consultants.
 11. Initial progress report.
 12. Certificates of insurance and insurance policies.
 13. Performance and payment bonds.
 14. Data needed to acquire Owner's insurance.

J. Application for Payment at Substantial Completion: After Architect issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 2. This application shall reflect Certificate(s) of Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

K. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited to, the following:
 1. Evidence of completion of Project closeout requirements.
 2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
 3. Updated final statement, accounting for final changes to the Contract Sum.
 5. AIA Document G706A.
 7. Evidence that claims have been settled.
 8. Final liquidated damages settlement statement.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 2900
SECTION 01 3100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 1. General coordination procedures.
 2. RFIs.
 3. Project meetings.

B. Each contractor shall participate in coordination requirements. Certain areas of responsibility are assigned to a specific contractor.

C. Related Requirements:
 1. Section 017300 "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
 2. Section 017700 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request for Information. Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 1. Name, address, telephone number, and email address of entity performing subcontract or supplying products.
 2. Number and title of related Specification Section(s) covered by subcontract.
 3. Drawing number and detail references, as appropriate, covered by subcontract.

B. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project
site. Identify individuals and their duties and responsibilities; list addresses and cellular telephone numbers and e-mail addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.

1. Post copies of list in project meeting room, in temporary field office, and in prominent location in built facility. Keep list current at all times.

1.5 GENERAL COORDINATION PROCEDURES

A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.

B. Coordination: Each contractor shall coordinate its construction operations with those of other contractors and entities to ensure efficient and orderly installation of each part of the Work. Each contractor shall coordinate its own operations with operations included in different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components with other contractors to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.

C. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.

1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.

D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Preparation of Contractor's construction schedule.
2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Progress meetings.
6. Project closeout activities.

1.6 REQUEST FOR INFORMATION (RFI)

A. General: Immediately on discovery of the need for additional information, clarification, or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Architect will return without response those RFIs submitted to Architect by other entities controlled by Contractor.
2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.

C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to Architect. Attachments shall be electronic files in PDF format.

D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.

1. The following Contractor-generated RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for approval of Contractor's means and methods.
d. Requests for coordination information already indicated in the Contract Documents.

e. Requests for adjustments in the Contract Time or the Contract Sum.

f. Requests for interpretation of Architect's actions on submittals.

g. Incomplete RFIs or inaccurately prepared RFIs.

2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt by Architect of additional information.

3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."

 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Include the following:

 1. Project name.
 2. Name and address of Contractor.
 3. Name and address of Architect.
 4. RFI number including RFIs that were returned without action or withdrawn.
 5. RFI description.
 6. Date the RFI was submitted.
 7. Date Architect's response was received.
 8. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.

F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

1.7 DIGITAL PROJECT MANAGEMENT PROCEDURES

A. Architect's Data Files Not Available: Architect will not provide Architect's digital data files for Contractor's use during construction.

B. PDF Document Preparation: Where PDFs are required to be submitted to Architect, prepare as follows:

 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 2. Name file with submittal number or other unique identifier, including revision identifier.
3. Certifications: Where digitally submitted certificates and certifications are required, provide a digital signature with digital certificate on where indicated.

1.8 PROJECT MEETINGS

A. General: Architect will schedule and conduct meetings and conferences at Project site unless otherwise indicated.

B. Preconstruction Conference: Architect will schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.

1. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Discuss items of significance that could affect progress, including the following:

 a. Responsibilities and personnel assignments.
 b. Tentative construction schedule.
 c. Designation of key personnel and their duties.
 d. Lines of communications.
 e. Procedures for processing field decisions and Change Orders.
 f. Procedures for RFI's.
 g. Procedures for processing Applications for Payment.
 h. Distribution of the Contract Documents.
 i. Submittal procedures.
 j. Preparation of Record Documents.
 k. Use of the premises.
 l. Work restrictions.
 m. Working hours.
 n. Owner's occupancy requirements.
 o. Responsibility for temporary facilities and controls.
 p. Procedures for moisture and mold control.
 q. Parking availability.
 r. Office, work, and storage areas.
 s. Equipment deliveries and priorities.
 t. First aid.
 u. Security.
 v. Progress cleaning.

3. Minutes: Entity responsible for conducting meeting will record and distribute meeting Minutes. Retain "Preinstallation Conferences" Paragraph below if Project requires preinstallation conferences. Limit preinstallation conferences to major assemblies if the Work requires tight control and coordination. If necessary, individual Sections should specify preinstallation conferences as a requirement and should reference this Section.
C. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to Owner and Architect, but no later than 14 days prior to the scheduled date of Substantial Completion.

1. Conduct the conference to review requirements and responsibilities related to Project closeout.

2. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the meeting. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:
 a. Preparation of Record Documents.
 b. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 c. Submittal of written warranties.
 d. Requirements for completing sustainable design documentation.
 e. Requirements for preparing operations and maintenance data.
 f. Requirements for delivery of material samples, attic stock, and spare parts.
 g. Preparation of Contractor's punch list.
 h. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 i. Submittal procedures.
 j. Coordination of separate contracts.
 k. Responsibility for removing temporary facilities and controls.

4. Minutes: Entity conducting meeting will record and distribute meeting minutes.

D. Progress Meetings: Architect will conduct progress meetings at biweekly intervals.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100
SECTION 01-3233 - PHOTOGRAPHIC DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for the following:
 1. Preconstruction photographs.
 2. Concealed Work photographs.
 3. Periodic construction photographs.
 4. Final Completion construction photographs.
 5. Demonstration and Training video recordings.

B. Related Requirements:
 1. Section 01-7700 "Closeout Procedures" for submitting photographic documentation as Project Record Documents at Project closeout.
 2. Section 01-7900 "Demonstration and Training" for submitting video recordings of demonstration of equipment and training of Owner's personnel.
 3. Section 02-4119 "Selective Demolition" for photographic documentation before selective demolition operations commence.

1.3 INFORMATIONAL SUBMITTALS

A. Key Plan: Submit key plan of Project site and building with notation of vantage points marked for location and direction of each photograph or video recording. Indicate elevation or story of construction. Include same information as corresponding photographic documentation.

B. Digital Photographs: Submit image files within three days of taking photographs.
 1. Submit photos on CD-ROM or thumb-drive. Include copy of key plan indicating each photograph's location and direction.
 2. Identification: Provide the following information with each image description in file metadata tag:
 a. Name of Project and contact information for photographer
 b. Name of Architect and Contractor.
 c. Date photograph was taken.
 d. Description of location, vantage point, and direction.
 e. Unique sequential identifier keyed to accompanying key plan.

C. Video Recordings: Submit video recordings within seven days of recording.
 1. Submit video recordings on CD-ROM or thumb drive.

The Club at Woodbridge
INDOOR ICE RINK
PHOTOGRAPHIC DOCUMENTATION

TVC Project No.: 18-27905
2. Identification: With each submittal, provide the following information in file metadata tag:
 a. Name of Project and address of photographer.
 b. Name of Architect and Contractor.
 c. Date video recording was recorded.

3. Transcript: Prepared on 8-1/2-by-11-inch (215-by-280-mm) paper, punched and bound in three-ring binders. Provide label on front and spine. Include a cover sheet with label information. Include name of Project and date of video recording on each page.

1.4 QUALITY ASSURANCE
 A. Photographer Qualifications: An individual who has been regularly engaged as a professional photographer of construction projects for not less than three years.

1.5 FORMATS AND MEDIA
 A. Digital Photographs: Provide color images in JPG format, produced by a digital camera with minimum sensor size of 12 megapixels, and at an image resolution of not less than 3200 by 2400 pixels, and with vibration-reduction technology. Use flash in low light levels or backlit conditions.
 B. Digital Video Recordings: Provide high-resolution, digital video in MPEG format, produced by a digital camera with minimum sensor resolution of 12 megapixels and capable of recording in full high-definition mode. Provide supplemental lighting in low light levels or backlit conditions.
 C. Digital Images: Submit digital media as originally recorded in the digital camera, without alteration, manipulation, editing, or modifications using image-editing software.
 D. Metadata: Record accurate date and time from camera.
 E. File Names: Name media files with date, Project area and sequential numbering suffix.

1.6 CONSTRUCTION PHOTOGRAPHS
 A. Photographer: Engage a qualified photographer to take construction photographs.
 B. General: Take photographs with maximum depth of field and in focus. Maintain key plan with each set of construction photographs that identifies each photographic location.
 C. Preconstruction Photographs: Before commencement of the Work, take photographs of Project site and surrounding properties, including existing items to remain during construction, from different vantage points.
 1. Flag excavation areas and construction limits before taking construction photographs.
 2. Take 20 photographs to show existing conditions adjacent to property before starting the Work.
3. Take 20 photographs of existing buildings either on or adjoining property, to accurately record physical conditions at start of construction.
4. Take additional photographs as required to record settlement or cracking of adjacent structures, pavements, and improvements.

D. Concealed Work Photographs: Before proceeding with installing work that will conceal other work, take photographs sufficient in number, with annotated descriptions, to record nature and location of concealed Work, including, but not limited to, the following:
 1. Underground utilities.
 2. Underslab services.
 3. Piping.
 4. Electrical conduit.
 5. Waterproofing and weather-resistant barriers.

E. Periodic Construction Photographs: Take 50 photographs monthly coinciding with the cutoff date associated with each Application for Payment. Select vantage points to show status of construction and progress since last photographs were taken.

F. Time-Lapse Sequence Construction Photographs: Take 20 photographs as indicated, to show status of construction and progress since last photographs were taken.
 1. Frequency: Take photographs weekly, on the same day each week.
 2. Vantage Points: During each of the following construction phases, take not less than two of the required shots from same vantage point each time, to create a time-lapse sequence as follows:
 a. Commencement of the Work, through completion of subgrade construction.
 b. Above-grade structural framing.
 c. Exterior building enclosure.
 d. Interior Work, through date of Substantial Completion.

G. Final Completion Construction Photographs: Take 50 photographs after date of Substantial Completion for submission as Project Record Documents.

1.7 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

A. Video Recording Photographer: Engage a qualified videographer to record construction video recordings.

B. Narration: Describe scenes on video recording by audio narration by microphone while video recording is recorded. Include description of items being viewed, recent events, and planned activities.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01-3233
SECTION 01 3300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Submittal schedule requirements.
 2. Administrative and procedural requirements for submittals.

B. Related Requirements:
 1. Section 01 2900 "Payment Procedures" for submitting Applications for Payment and the schedule of values.
 2. Section 01 3100 "Project Management and Coordination" for submitting coordination drawings and subcontract list and for requirements for web-based Project software.
 3. Section 01 3200 "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
 4. Section 01 4000 "Quality Requirements" for submitting test and inspection reports, and schedule of tests and inspections.
 5. Section 01 7700 "Closeout Procedures" for submitting closeout submittals and maintenance material submittals.
 6. Section 01 7823 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 7. Section 01 7839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.3 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."

B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."
1.4 SUBMITTAL SCHEDULE

A. Submittal Schedule: Submit, as an action submittal, a list of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.
 1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.

1.5 SUBMITTAL FORMATS

A. Submittal Information: Include the following information in each submittal:
 1. Project name.
 2. Date.
 4. Names of subcontractor, manufacturer, and supplier.
 5. Include Specification Section number with sequential alphanumeric identifier.
 6. Resubmittals shall include the suffix R1, for the first resubmittal, R2 for the second, etc.
 7. Generic name for each of multiple items.
 8. Drawing number and detail references, as appropriate.
 9. Indication of full or partial submittal.
 10. Location(s) where product is to be installed, as appropriate.
 11. Signature of transmitter.

B. Options: Identify options requiring selection by Architect.

C. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Architect on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.

D. PDF Submittals: Prepare submittals, except physical samples, as PDF package, incorporating complete information into each PDF file. Name PDF file with submittal number.

1.6 SUBMITTAL PROCEDURES

A. Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections. Prepare submittals as PDF package and transmit to Architect by sending via email. Include PDF transmittal form. Include information in email subject line. Architect will return annotated file. Annotate and retain one copy of file as a digital Project Record Document file.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.

The Club at Woodbridge
INDOOR ICE RINK
SUBMITTAL PROCEDURES

TVC Project No.: 18-27905 01 3300 - 2
2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
4. Coordinate transmittal of submittals for related parts of the Work specified in different Sections so processing will not be delayed because of need to review submittals concurrently for coordination.
 a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
 4. Sequential Review: Where sequential review of submittals by Architect's consultants, Owner, or other parties is indicated, allow 21 days for initial review of each submittal.

D. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 1. Note date and content of previous submittal.
 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.

E. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

F. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

1.7 SUBMITTAL REQUIREMENTS

A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.
 2. Mark each copy of each submittal to show which products and options are applicable.
 3. Include the following information, as applicable:
 a. Manufacturer's catalog cuts.
 b. Manufacturer's product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.

The Club at Woodbridge
INDOOR ICE RINK
SUBMITTAL PROCEDURES
e. Testing by recognized testing agency.
f. Application of testing agency labels and seals.
g. Notation of coordination requirements.
h. Availability and delivery time information.

4. Submit Product Data before Shop Drawings, and before or concurrent with Samples.

B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Comply with Owner's requirements and office policy.
 b. Identification of products.
 c. Schedules.
 d. Compliance with specified standards.
 e. Notation of coordination requirements.
 f. Notation of dimensions established by field measurement.
 g. Relationship and attachment to adjoining construction clearly indicated.
 h. Seal and signature of professional engineer if specified.

C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.

 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 2. Identification: Permanently attach label on unexposed side of Samples that includes the following:
 a. Project name and submittal number.
 b. Generic description of Sample.
 c. Product name and name of manufacturer.
 d. Sample source.
 e. Number and title of applicable Specification Section.
 f. Specification paragraph number and generic name of each item.
 3. Paper Transmittal: Include paper transmittal including complete submittal information indicated.
 4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.
 5. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 a. Number of Samples: Submit one full set(s) of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.

D. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
1. Type of product. Include unique identifier for each product indicated in the Contract Documents or assigned by Contractor if none is indicated.
2. Manufacturer and product name, and model number if applicable.

1.8 CONTRACTOR'S REVIEW

A. Action Submittals and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

B. Contractor's Approval: Indicate Contractor's approval for each submittal with a uniform approval stamp. Include name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
 1. Architect will not review submittals received from Contractor that do not have Contractor's review and approval.

1.9 ARCHITECT'S REVIEW

A. Action Submittals: Architect will review each submittal, indicate corrections or revisions required.
 1. PDF Submittals: Architect will indicate the appropriate action via review cover sheet.

B. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.

C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Architect.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Architect will discard submittals received from sources other than Contractor.

F. Submittals not required by the Contract Documents will be returned by Architect without action.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 3300
SECTION 01 4000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspection services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 1. Specific quality-assurance and quality-control requirements for individual work results are specified in their respective Specification Sections. Requirements in individual Sections may also cover production of standard products.
 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and quality-control procedures that facilitate compliance with the Contract Document requirements.
 3. Requirements for Contractor to provide quality-assurance and quality-control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.

1.3 DEFINITIONS

A. Experienced: When used with an entity or individual, "experienced" unless otherwise further described means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

B. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, assembly, and similar operations.

 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

C. Mockups: Full-size physical assemblies that are constructed on-site either as freestanding temporary built elements or as part of permanent construction. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and qualities of materials and execution; to review coordination, testing, or operation; to show interface
between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.

1. Integrated Exterior Mockups: Mockups of the exterior envelope constructed on-site as freestanding temporary built elements or as part of permanent construction, consisting of multiple products, assemblies, and subassemblies.

1.4 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

B. Delegated Design Services Statement: Submit a statement signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional, indicating that the products and systems are in compliance with performance and design criteria indicated. Include list of codes, loads, and other factors used in performing these services.

1.5 CONFLICTING REQUIREMENTS

A. Conflicting Standards and Other Requirements: If compliance with two or more standards or requirements are specified and the standards or requirements establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for direction before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.6 ACTION SUBMITTALS

A. Shop Drawings: For integrated exterior mockups.

1. Include plans, sections, and elevations, indicating materials and size of mockup construction.
2. Indicate manufacturer and model number of individual components.
3. Provide axonometric drawings for conditions difficult to illustrate in two dimensions.
1.7 INFORMATIONAL SUBMITTALS

A. Contractor's Quality-Control Plan: For quality-assurance and quality-control activities and responsibilities.

B. Qualification Data: For Contractor's quality-control personnel.

C. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility submitted to authorities having jurisdiction before starting work on the following systems:

D. Permits, Licenses, and Certificates: For Owner's record, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents established for compliance with standards and regulations bearing on performance of the Work.

1.8 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 1. Date of Issue.
 2. Project title and number.
 3. Name, address, telephone number, and email address of testing agency.
 4. Dates and locations of samples and tests or inspections.
 5. Names of individuals making tests and inspections.
 6. Description of the Work and test and inspection method.
 8. Complete test or inspection data.
 9. Test and inspection results and an interpretation of test results.
 10. Record of temperature and weather conditions at time of sample-taking and testing and inspection.
 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 12. Name and signature of laboratory inspector.
 13. Recommendations on retesting and reinspecting.

B. Manufacturer’s Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:
 1. Name, address, telephone number, and email address of technical representative making report.
 2. Statement on condition of substrates and their acceptability for installation of product.
 3. Statement that products at Project site comply with requirements.
 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 6. Statement of whether conditions, products, and installation will affect warranty.
 7. Other required items indicated in individual Specification Sections.
C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:
 1. Name, Name, address, telephone number, and email address of factory-authorized service representative making report.
 2. Statement that equipment complies with requirements.
 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 4. Statement of whether conditions, products, and installation will affect warranty.
 5. Other required items indicated in individual Specification Sections

1.9 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. As applicable, procure products from manufacturers able to meet qualification requirements, warranty requirements, and technical or factory-authorized service representative requirements.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

D. Installer Qualifications: A firm or individual experienced in installing, erecting, applying, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

F. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

G. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 1. Build mockups of size indicated.
 2. Build mockups in location indicated or, if not indicated, as directed by Architect.
 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
4. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed to perform same tasks during the construction at Project.

5. Demonstrate the proposed range of aesthetic effects and workmanship.

6. Obtain Architect’s approval of mockups before starting corresponding work, fabrication, or construction.

 a. Allow seven days for initial review and each re-review of each mockup.

7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.

8. Demolish and remove mockups when directed unless otherwise indicated.

H. Integrated Exterior Mockups: Construct integrated exterior mockup according to approved Shop Drawings. Coordinate installation of exterior envelope materials and products for which mockups are required in individual Specification Sections, along with supporting materials. Comply with requirements in "Mockups" Paragraph.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 REPAIR AND PROTECTION

A. General: On completion of testing, inspection, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 01 7300 "Execution."

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 01 4000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

A. General: Basic Contract definitions are included in the Conditions of the Contract.

B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.

C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."

D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."

E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.

F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.

G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.

H. "Provide": Furnish and install, complete and ready for the intended use.

I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.3 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

1. For standards referenced by applicable building codes, comply with dates of standards as listed in building codes.

C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.

1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 ABBREVIATIONS AND ACRONYMS

A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. The information in this list is subject to change and is believed to be accurate as of the date of the Contract Documents.

5. ACI - American Concrete Institute; (Formerly: ACI International); www.concrete.org.
7. AEIC - Association of Edison Illuminating Companies, Inc. (The); www.aeic.org.
12. AIA - American Institute of Architects (The); www.aia.org.
19. ARI - Air-Conditioning & Refrigeration Institute; (See AHRI).
20. ARI - American Refrigeration Institute; (See AHRI).
22. ASCE - American Society of Civil Engineers; www.asce.org.
REFERENCES

31. BHMA - Builders Hardware Manufacturers Association; www.buildershardware.com.
32. CDA - Copper Development Association; www.copper.org.
33. CFSEI - Cold-Formed Steel Engineers Institute; www.cfsei.org.
34. CGA - Compressed Gas Association; www.cganet.com.
35. CIMA - Cellulose Insulation Manufacturers Association; www.cellulose.org.
38. CLFMI - Chain Link Fence Manufacturers Institute; www.chainlinkinfo.org.
41. CRSI - Concrete Reinforcing Steel Institute; www.crsi.org.
42. CSA - CSA Group; www.csa-group.org.
43. CSI - Construction Specifications Institute (The); www.csiresources.org.
44. CTI - Cooling Technology Institute; (Formerly: Cooling Tower Institute); www.coolingtechnology.org.
45. DASMA - Door and Access Systems Manufacturers Association; www.dasma.com.
46. DHI - Door and Hardware Institute; www.dhi.org.
47. ECIA - Electronic Components Industry Association; www.eciaonline.org.
48. EIA - Electronic Industries Alliance; (See TIA).
51. ETL - Intertek (See Intertek); www.intertek.com.
52. FM Approvals - FM Approvals LLC; www.fmglobal.com.
54. GANA - Glass Association of North America; (See NGA).
55. HI/GAMA - Hydronics Institute/Gas Appliance Manufacturers Association; (See AHRI).
56. HMMA - Hollow Metal Manufacturers Association; (See NAAMM).
57. IAS - International Accreditation Service; www.iasonline.org.
59. ICRI - International Concrete Repair Institute, Inc.; www.icri.org.
60. IEEE - Institute of Electrical and Electronics Engineers, Inc. (The); www.ieee.org.
63. Intertek - Intertek Group; www.intertek.com.
64. ISO - International Organization for Standardization; www.iso.org.
65. ISSFA - International Solid Surface Fabricators Association; (See ISFA).
66. MBMA - Metal Building Manufacturers Association; www.mbma.com.
69. MPI - Master Painters Institute; www.paintinfo.com.
70. MSS - Manufacturers Standardization Society of The Valve and Fittings Industry Inc.; www.mss-hq.org.
72. NADCA - National Air Duct Cleaners Association; www.nadca.com.
74. NCAA - National Collegiate Athletic Association (The); www.ncaa.org.

The Club at Woodbridge
INDOOR ICE RINK
REFERENCES
75. NCMA - National Concrete Masonry Association; www.ncma.org.
76. NECA - National Electrical Contractors Association; www.necanet.org.
78. NEMA - National Electrical Manufacturers Association; www.nema.org.
80. NFHS - National Federation of State High School Associations; www.nfhs.org.
83. NGA - National Glass Association (The); www.glass.org.
85. NRCA - National Roofing Contractors Association; www.nrca.net.
86. NRMCA - National Ready Mixed Concrete Association; www.nrmca.org.
89. PDI - Plumbing & Drainage Institute; www.pdionline.org.
90. RCSC - Research Council on Structural Connections; www.boltcouncil.org.
93. SDI - Steel Deck Institute; www.sdi.org.
94. SDI - Steel Door Institute; www.steeldoor.org.
95. SJI - Steel Joist Institute; www.steeljoist.org.
96. SMACNA - Sheet Metal and Air Conditioning Contractors’ National Association; www.samacna.org.
97. SPFA - Spray Polyurethane Foam Alliance; www.sprayfoam.org.
106. WCMA - Window Covering Manufacturers Association; www.wcmanet.org.

B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is believed to be accurate as of the date of the Contract Documents.

C. State Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Information is subject to change and is up to date as of the date of the Contract Documents.
1. NJ: State of New Jersey.
2. DCA: New Jersey Department of Law and Public Safety, Division of Consumer Affairs.
3. DEP: New Jersey Department of Environmental Protection.
4. DOT: New Jersey Department of Transportation.
5. DOH: New Jersey Department of Health.

The Club at Woodbridge
INDOOR ICE RINK
REFERENCES
D. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Information is subject to change and is up to date as of the date of the Contract Documents.
 2. DOE - Department of Energy; www.energy.gov.
 3. EPA - Environmental Protection Agency; www.epa.gov.
 5. OSHA - Occupational Safety & Health Administration; www.osha.gov.

E. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 4200
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

B. Related Requirements: Section 011000 "Summary" for work restrictions and limitations on utility interruptions.

1.3 USE CHARGES

A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities engaged in the Project to use temporary services and facilities without cost, including, but not limited to, Owner's construction forces, Architect, Engineer, testing agencies, and authorities having jurisdiction.

B. Water and Sewer Service from Existing System: Water from Owner's existing water system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.

C. Electric Power Service from Existing System: Electric power from Owner's existing system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.

1.4 INFORMATIONAL SUBMITTALS

A. Site Utilization Plan: Show temporary facilities, temporary utility lines and connections, staging areas, construction site entrances, vehicle circulation, and parking areas for construction personnel.

B. Implementation and Termination Schedule: Within 15 days of date established for commencement of the Work, submit schedule indicating implementation and termination dates of each temporary utility.

C. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire-prevention program.
D. Moisture and Mold-Protection Plan: Describe procedures and controls for protecting materials and construction from water absorption and damage and mold. Describe delivery, handling, storage, installation, and protection provisions for materials subject to water absorption or water damage.
 1. Indicate procedures for discarding water-damaged materials, protocols for mitigating water intrusion into completed Work, and requirements for replacing water-damaged Work.
 2. Indicate sequencing of work that requires water, such as sprayed fire-resistive materials, plastering, and terrazzo grinding, and describe plans for dealing with water from these operations. Show procedures for verifying that wet construction has dried sufficiently to permit installation of finish materials.
 3. Indicate methods to be used to avoid trapping water in finished work.

E. Dust and HVAC-Control Plan: Submit coordination drawing and narrative that indicates the dust- and HVAC-control measures proposed for use, proposed locations, and proposed time frame for their operation. Include the following:
 1. Locations of dust-control partitions at each phase of work.
 2. HVAC system isolation schematic drawing.
 3. Location of proposed air-filtration system discharge.
 5. Other dust-control measures.

PART 2 - PRODUCTS

2.1 TEMPORARY FACILITIES

A. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations. Store combustible materials apart from building.

B. Common-Use Field Office: Of sufficient size to accommodate needs of Owner, Architect, Engineer and construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:
 1. Furniture required for Project-site documents.
 2. Conference room of sufficient size to accommodate meetings of 6 individuals, adhering to social distancing guidelines. Provide electrical power service and 120-V ac duplex receptacles, with no fewer than one receptacle on each wall. Furnish room with conference table, chairs, and 4-foot- (1.2-m-) square tack and marker boards.
 3. Drinking water and private toilet.
 4. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F (20 to 22 deg C).
 5. Lighting fixtures capable of maintaining average illumination of 20 fc (215 lx) at desk height.

C. Portable Chain-Link Fencing: Minimum 2-inch (50-mm), 0.148-inch- (3.8-mm-) thick, galvanized-steel, chain-link fabric fencing; minimum 6 feet (1.8 m) high with galvanized-steel pipe posts; minimum 2-3/8-inch- (60-mm-) OD line posts and 2-7/8-inch- (73-mm-) OD corner
and pull posts, with 1-5/8-inch- (42-mm-) OD top and bottom rails. Provide concrete bases for supporting posts.

2.2 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.

PART 3 - EXECUTION

3.1 TEMPORARY FACILITIES, GENERAL

A. Conservation: Coordinate construction and use of temporary facilities with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.
 1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner's property.

3.2 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work. Locate facilities to limit site disturbance as specified in Section 011000 "Summary."

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.3 TEMPORARY UTILITY INSTALLATION

A. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.

3.4 SUPPORT FACILITIES INSTALLATION

A. General: Comply with the following:
 1. Provide construction for temporary shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E136. Comply with NFPA 241.
2. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

B. Parking: Use designated areas of Owner's existing parking areas for construction personnel.

C. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with progress cleaning requirements in Section 017300 "Execution."

D. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.

E. Existing Stair Usage: Use of Owner's existing stairs will be permitted, provided stairs are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore stairs to condition existing before initial use. Provide protective coverings, barriers, devices, signs, or other procedures to protect stairs and to maintain means of egress. If stairs become damaged, restore damaged areas so no evidence remains of correction work.

3.5 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.

B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.

3.6 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.

B. Maintenance: Maintain facilities in good operating condition until removal.

C. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.

END OF SECTION 01 5000
SECTION 01 6000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers’ standard warranties on products; special warranties; and comparable products.

B. Related Requirements:
 1. Section 01 2500 "Substitution Procedures" for requests for substitutions
 2. Section 01 4200 "References" for applicable industry standards for products specified.
 3. Section 01 7700 “Closeout Procedures” for submitting warranties.

1.3 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.
 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 3. Comparable Product: Product that is demonstrated and approved by Architect through submittal process to have the indicated qualities related to type, function, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a single manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation. In addition to the basis-of-design product description, product attributes and characteristics may be listed to establish the significant qualities related to type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other special features and requirements for purposes of evaluating comparable products of additional manufacturers named in the specification.
C. Subject to Compliance with Requirements: Where the phrase "Subject to compliance with requirements" introduces a product selection procedure in an individual Specification Section, provide products qualified under the specified product procedure. In the event that a named product or product by a named manufacturer does not meet the other requirements of the specifications, select another named product or product from another named manufacturer that does meet the requirements of the specifications. Submit a comparable product request, if applicable.

1.4 ACTION SUBMITTALS

A. Comparable Product Request Submittal: Submit request for consideration of each comparable product. Identify basis-of-design product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

a. Form of Architect's Approval of Submittal: As specified in Section 01 3300 "Submittal Procedures."

b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1. Contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
2. If a dispute arises between contractors over concurrently selectable but incompatible products, Architect will determine which products shall be used.

B. Identification of Products: Except for required labels and operating data, do not attach or imprint manufacturer or product names or trademarks on exposed surfaces of products or equipment that will be exposed to view in occupied spaces or on the exterior.

1. Labels: Locate required product labels and stamps on a concealed surface, or, where required for observation following installation, on a visually accessible surface that is not conspicuous.
1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:

1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

1. Store products to allow for inspection and measurement of quantity or counting of units.
2. Store materials in a manner that will not endanger Project structure.
3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
6. Protect stored products from damage and liquids from freezing.

1.7 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.

1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.

3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

C. Submittal Time: Comply with requirements in Section 01 7700 "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.

2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.

3. Owner reserves the right to limit selection to products with warranties meeting requirements of the Contract Documents.

4. Where products are accompanied by the term "as selected," Architect will make selection.

6. Or Equal: For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product.

 a. Submit additional documentation required by Architect in order to establish equivalency of proposed products. Evaluation of "or equal" product status is by the Architect, whose determination is final.

B. Product Selection Procedures:

1. Sole Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

 a. Sole product may be indicated by the phrase: "Subject to compliance with requirements, provide the following: …"

2. Sole Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
a. Sole manufacturer/source may be indicated by the phrase: "Subject to compliance with requirements, provide products by the following: …"

3. Limited List of Products: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 a. Limited list of products may be indicated by the phrase: "Subject to compliance with requirements, provide one of the following: …"

4. Non-Limited List of Products: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, which complies with requirements.
 a. Non-limited list of products is indicated by the phrase: "Subject to compliance with requirements, available products that may be incorporated in the Work include, but are not limited to, the following: …"

5. Limited List of Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 a. Limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, provide products by one of the following: …"

6. Non-Limited List of Manufacturers: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, which complies with requirements.
 a. Non-limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, available manufacturers whose products may be incorporated in the Work include, but are not limited to, the following: …"

7. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.
 a. For approval of products by unnamed manufacturers, comply with requirements in Section 012500 "Substitution Procedures" for substitutions for convenience.

C. Visual Matching Specification: Where Specifications require "match Architect's sample," provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.

D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration of Comparable Products: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:

1. Evidence that proposed product does not require revisions to the Contract Documents, is consistent with the Contract Documents, will produce the indicated results, and is compatible with other portions of the Work. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant product qualities include attributes such as type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other specific features and requirements.

2. Evidence that proposed product provides specified warranty.
3. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
4. Samples, if requested.

B. Submittal Requirements: Approval by the Architect of Contractor's request for use of comparable product is not intended to satisfy other submittal requirements. Comply with specified submittal requirements.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 6000
SECTION 01 7300 – EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work, including, but not limited to, the following:
 2. Field engineering and surveying.
 3. Installation of the Work.
 4. Cutting and patching.
 5. Coordination of Owner's portion of the Work.
 6. Coordination of Owner-installed products.
 7. Progress cleaning.
 8. Starting and adjusting.

B. Related Requirements:
 1. Section 011000 "Summary" for coordination of Owner-performed work, and limits on use of Project site.
 2. Section 013300 "Submittal Procedures" for submitting surveys.
 3. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, replacing defective work, and final cleaning.
 4. Section 024119 "Selective Demolition" for demolition and removal of selected portions of the building.

1.3 DEFINITIONS

A. Cutting: Removal of in-place construction necessary to permit installation or performance of subsequent work.

B. Patching: Fitting and repair work required to restore construction to original conditions after installation of subsequent work.

1.4 PREINSTALLATION MEETINGS

A. Cutting and Patching Conference: Conduct conference at Project site.
1. Prior to submitting cutting and patching plan, review extent of cutting and patching anticipated and examine procedures for ensuring satisfactory result from cutting and patching work. Inform Architect of scheduled meeting. Require representatives of each entity directly concerned with cutting and patching to attend, including the following:
 a. Contractor's superintendent.
 b. Trade supervisor responsible for cutting operations.
 c. Trade supervisor(s) responsible for patching of each type of substrate.
 d. Mechanical, electrical, and utilities subcontractors’ supervisors, to the extent each trade is affected by cutting and patching operations.
2. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

B. Layout Conference: Conduct conference at Project site.
 1. Prior to establishing layout of new addition and ice rink, review building location requirements. Review benchmark, control point, and layout and dimension requirements. Inform Architect of scheduled meeting. Require representatives of each entity directly concerned with Project layout to attend, including the following:
 a. Contractor's superintendent.
 b. Professional surveyor, Professional engineer or Contractor's personnel responsible for performing Project surveying and layout.
 2. Review meanings and intent of dimensions, notes, terms, graphic symbols, and other layout information indicated on the Drawings.
 3. Review requirements for including layouts on Shop Drawings and other submittals.
 4. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Professional surveyor or Professional engineer performing Project surveying and layout.

B. Certified Surveys: Submit two copies signed by Professional surveyor or Professional engineer.

C. Certificates: Submit certificate signed by Professional surveyor or Professional engineer, certifying that location and elevation of improvements comply with requirements.

D. Cutting and Patching Plan: Submit plan describing procedures at least 10 days prior to the time cutting and patching will be performed. Include the following information:
 1. Extent: Describe reason for and extent of each occurrence of cutting and patching.
 2. Changes to In-Place Construction: Describe anticipated results. Include changes to structural elements and operating components as well as changes in building appearance and other significant visual elements.
 3. Products: List products to be used for patching and firms or entities that will perform patching work.
 4. Dates: Indicate when cutting and patching will be performed.
 5. Utilities and Mechanical and Electrical Systems: List services and systems that cutting and patching procedures will disturb or affect. List services and systems that will be relocated and those that will be temporarily out of service. Indicate length of time permanent services and systems will be disrupted.
The Club at Woodbridge
INDOOR ICE RINK
EXECUTION

TVC Project No.: 18-27905

1.6 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.

B. Professional Engineer Qualifications: Refer to Section 014000 "Quality Requirements."

C. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 1. Structural Elements: When cutting and patching structural elements, or when encountering the need for cutting and patching of elements whose structural function is not known, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.
 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

D. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of specified products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with requirements specified in other Sections.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials. Use materials that are not considered hazardous.

C. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.
 1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, gas service piping, and water-service piping; underground electrical services; and other utilities.
 2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 1. Description of the Work, including Specification Section number and paragraph, and Drawing sheet number and detail, where applicable.
 2. List of detrimental conditions, including substrates.
 3. List of unacceptable installation tolerances.
 4. Recommended corrections.

D. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to local utility and Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility
appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents, submit a request for information to Architect in accordance with requirements in Section 013100 "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks and existing conditions. If discrepancies are discovered, notify Architect promptly.

B. Engage a land surveyor or professional engineer experienced in laying out the Work, using the following accepted surveying practices:
 1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
 2. Establish limits on use of Project site.
 3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
 4. Inform installers of lines and levels to which they must comply.
 5. Check the location, level and plumb, of every major element as the Work progresses.
 6. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
 7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.

D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.

E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.
3.4 FIELD ENGINEERING

A. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.
 1. Do not change or relocate existing benchmarks or control points without prior written approval of Architect. Report lost or destroyed permanent benchmarks or control points promptly. Report the need to relocate permanent benchmarks or control points to Architect before proceeding.
 2. Replace lost or destroyed permanent benchmarks and control points promptly. Base replacements on the original survey control points.

B. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.
 1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.
 2. Where the actual location or elevation of layout points cannot be marked, provide temporary reference points sufficient to locate the Work.
 3. Remove temporary reference points when no longer needed. Restore marked construction to its original condition.

C. Certified Survey: On completion of foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.

3.5 INSTALLATION

A. Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb, and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure satisfactory results as judged by Architect. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations, so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy of type expected for Project.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on-site and placement in permanent locations.
F. Tools and Equipment: Select tools or equipment that minimize production of excessive noise levels.

G. Templates: Obtain and distribute to the parties involved templates for Work specified to be factory prepared and field installed. Check Shop Drawings of other portions of the Work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions with manufacturer.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

I. Joints: Make joints of uniform width. Where joint locations in exposed Work are not indicated, arrange joints for the best visual effect, as judged by Architect. Fit exposed connections together to form hairline joints.

J. Repair or remove and replace damaged, defective, or nonconforming Work. Comply with Section 017700 "Closeout Procedures" for repairing or removing and replacing defective Work.

3.6 CUTTING AND PATCHING

A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of Work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching in accordance with requirements in Section 011000 "Summary."
F. **Existing Utility Services and Mechanical/Electrical Systems:** Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

G. **Cutting:** Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.
 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
 6. Proceed with patching after construction operations requiring cutting are complete.

H. **Patching:** Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as practicable, as judged by Architect. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.
 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged pipe covering to its original condition.
 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch, corner to corner of wall and edge to edge of ceiling. Provide additional coats until patch blends with adjacent surfaces.
 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. **Cleaning:** Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.
3.7 COORDINATION OF OWNER'S PORTION OF THE WORK

A. Site Access: Provide access to Project site for Owner's construction personnel and Owner's separate contractors.
 1. Refer to Section 011000 "Summary" for other requirements for Owner-furnished, Contractor-installed and Owner-furnished, Owner-installed products.

B. Coordination: Coordinate construction and operations of the Work with work performed by Owner's construction personnel and Owner's separate contractors.
 1. Construction Schedule: Inform Owner of Contractor's preferred construction schedule for Owner's portion of the Work. Adjust construction schedule based on a mutually agreeable timetable. Notify Owner if changes to schedule are required due to differences in actual construction progress.
 2. Preinstallation Conferences: Include Owner's construction personnel and Owner's separate contractors at preinstallation conferences covering portions of the Work that are to receive Owner's work. Attend preinstallation conferences conducted by Owner's construction personnel if portions of the Work depend on Owner's construction.

3.8 PROGRESS CLEANING

A. Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F (27 deg C).
 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations. Use containers intended for holding waste materials of type to be stored.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where Work is in progress to the level of cleanliness necessary for proper execution of the Work.
 1. Remove liquid spills promptly.
 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements in Section 017419 "Construction Waste Management and Disposal."

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to ensure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.9 STARTING AND ADJUSTING

A. Coordinate startup and adjusting of equipment and operating components with requirements in Section 019113 "General Commissioning Requirements."

B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Manufacturer's Field Service: Comply with qualification requirements in Section 014000 "Quality Requirements."

3.10 PROTECTION AND REPAIR OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Repair Work previously completed and subsequently damaged during construction period. Repair to like-new condition.

C. Protection of Existing Items: Provide protection and ensure that existing items to remain undisturbed by construction are maintained in condition that existed at commencement of the Work.

D. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 01 7300
SECTION 01 7419 - CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for the following:
 1. Salvaging nonhazardous demolition and construction waste.
 2. Recycling nonhazardous demolition and construction waste.
 3. Disposing of nonhazardous demolition and construction waste.
B. Related Requirements:
 1. Section 042000 "Unit Masonry" for disposal requirements for masonry waste.

1.3 DEFINITIONS
A. Construction Waste: Building, structure, and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
B. Demolition Waste: Building, structure, and site improvement materials resulting from demolition operations.
C. Disposal: Removal of demolition or construction waste and subsequent salvage, sale, recycling, or deposit in landfill, incinerator acceptable to authorities having jurisdiction, or designated spoil areas on Owner’s property.
D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.
E. Salvage: Recovery of demolition or construction waste and subsequent sale or reuse in another facility.
F. Salvage and Reuse: Recovery of demolition or construction waste and subsequent incorporation into the Work.

1.4 MATERIALS OWNERSHIP
A. Unless otherwise indicated, demolition and construction waste becomes property of Contractor.
1.5 ACTION SUBMITTALS

A. Waste Management Plan: Submit plan within 7 days of date established for the Notice to Proceed.

1.6 INFORMATIONAL SUBMITTALS

A. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.

B. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.

C. Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

D. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

E. Qualification Data: For refrigerant recovery technician.

F. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.7 QUALITY ASSURANCE

A. Waste Management Coordinator Qualifications: Experienced firm, or individual employed and assigned by General Contractor, with a record of successful waste management coordination of projects with similar requirements. Superintendent may serve as Waste Management Coordinator.

B. Refrigerant Recovery Technician Qualifications: Universal certified by EPA-approved certification program.

C. Regulatory Requirements: Comply with transportation and disposal regulations of authorities having jurisdiction.

1.8 WASTE MANAGEMENT PLAN

A. General: Develop a waste management plan according to requirements in this Section. Plan shall consist of waste identification, waste reduction work plan, and cost/revenue analysis. Distinguish between demolition and construction waste. Indicate quantities by weight or volume, but use same units of measure throughout waste management plan.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION
A. General: Implement approved waste management plan. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.

B. Waste Management Coordinator: Engage a waste management coordinator to be responsible for implementing, monitoring, and reporting status of waste management work plan. Coordinator shall be present at Project site full time for duration of Project.

C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work.

D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

3.2 SALVAGING DEMOLITION WASTE
A. Comply with requirements in Section 024119 "Selective Demolition" for salvaging demolition waste.

B. Salvaged Items for Reuse in the Work: Salvage items for reuse and handle as follows:
 1. Clean salvaged items.
 2. Store items in a secure area until installation.
 3. Protect items from damage during transport and storage.
 4. Install salvaged items to comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make items functional for use indicated.

C. Salvaged Items for Sale: Not permitted on Project site.

D. Doors and Hardware: Brace open end of door frames. Except for removing door closers, leave door hardware attached to doors.

E. Equipment: Drain tanks, piping, and fixtures. Seal openings with caps or plugs. Protect equipment from exposure to weather.

F. Electrical Devices: Separate switches, receptacles, switchgear, transformers, meters, panelboards, circuit breakers, and other devices by type.
3.3 RECYCLING DEMOLITION AND CONSTRUCTION WASTE, GENERAL

A. General: Recycle paper and beverage containers used by on-site workers.

B. Recycling Incentives: Revenues, savings, rebates, tax credits, and other incentives received for recycling waste materials shall accrue to Contractor.

C. Preparation of Waste: Prepare and maintain recyclable waste materials according to recycling or reuse facility requirements. Maintain materials free of dirt, adhesives, solvents, petroleum contamination, and other substances deleterious to the recycling process.

D. Procedures: Separate recyclable waste from other waste materials, trash, and debris. Separate recyclable waste by type at Project site to the maximum extent practical according to approved construction waste management plan.
 1. Provide appropriately marked containers or bins for controlling recyclable waste until removed from Project site. Include list of acceptable and unacceptable materials at each container and bin. Inspect containers and bins for contamination and remove contaminated materials if found.
 2. Stockpile processed materials on-site without intermixing with other materials. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 3. Stockpile materials away from construction area. Do not store within drip line of remaining trees.
 4. Store components off the ground and protect from the weather.
 5. Remove recyclable waste from Owner's property and transport to recycling receiver or processor as often as required to prevent overfilling bins.

3.4 RECYCLING DEMOLITION WASTE

A. Asphalt Paving: Break up and transport paving to asphalt-recycling facility.

B. Concrete: Remove reinforcement and other metals from concrete and sort with other metals.
 1. Pulverize concrete to maximum 4-inch (100-mm) size.

C. Wood Materials: Sort and stack members according to size, type, and length. Separate lumber, engineered wood products, panel products, and treated wood materials.

D. Metals: Separate metals by type.
 1. Structural Steel: Stack members according to size, type of member, and length.
 2. Remove and dispose of bolts, nuts, washers, and other rough hardware.

E. Gypsum Board: Stack large clean pieces on wood pallets or in container and store in a dry location. Remove edge trim and sort with other metals. Remove and dispose of fasteners.

F. Acoustical Ceiling Panels and Tile: Stack large clean pieces on wood pallets and store in a dry location.

G. Metal Suspension System: Separate metal members, including trim and other metals from acoustical panels and tile, and sort with other metals.
H. Piping: Reduce piping to straight lengths and store by material and size. Separate supports, hangers, valves, sprinklers, and other components by material and size.

I. Conduit: Reduce conduit to straight lengths and store by material and size.

3.5 RECYCLING CONSTRUCTION WASTE

A. Packaging:
 1. Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.
 3. Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.
 4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Wood Materials:
 1. Clean Cut-Offs of Lumber: Grind or chip into small pieces.
 2. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.

C. Gypsum Board: Stack large clean pieces on wood pallets or in container and store in a dry location. Clean Gypsum Board: Grind scraps of clean gypsum board using small mobile chipper or hammer mill. Screen out paper after grinding.

D. Paint: Seal containers and store by type.

3.6 DISPOSAL OF WASTE

A. General: Except for items or materials to be salvaged or recycled, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
 1. Except as otherwise specified, do not allow waste materials that are to be disposed of to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. General: Except for items or materials to be salvaged or recycled, remove waste materials and legally dispose of at designated spoil areas on Owner’s property.

C. Burning: Do not burn waste materials.

D. Burning: Burning of waste materials is permitted only at designated areas on Owner's property, provided required permits are obtained. Provide full-time monitoring for burning materials until fires are extinguished.

END OF SECTION 01 7419
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.

B. Related Requirements:
 1. Section 01 2900 “Payment Procedures” for requirements for Applications for Payment for Substantial Completion and Final Completion.
 2. Section 017823 "Operation and Maintenance Data" for additional operation and maintenance manual requirements.
 3. Section 017839 "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
 4. Section 017900 “Demonstration and Training” for requirements to train the Owner's maintenance personnel to adjust, operate, and maintain products, equipment, and systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of cleaning agent.

B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.

C. Certified List of Incomplete Items: Final submittal at final completion.

1.4 CLOSEOUT SUBMITTALS

A. Certificates of Release: From authorities having jurisdiction.

B. Certificate of Insurance: For continuing coverage.
1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.
 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number.
 a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Architect's signature for receipt of submittals.
 5. Submit testing, adjusting and balancing records.
 6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 1. Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
 2. Results of completed inspection will form the basis of requirements for final completion.

1.7 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
1. Submit a final Application for Payment according to Section 01 2900 "Payment Procedures."

2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.

3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.

B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.8 **LIST OF INCOMPLETE ITEMS (PUNCH LIST)**

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize list of spaces in sequential order.

2. Include the following information at the top of each page:

 a. Project name.
 b. Date.
 c. Name of Architect.
 d. Name of Contractor.
 e. Page number.

3. Submit list of incomplete items in the following format:

 a. Three paper copies. Architect will return two copies.

1.9 **SUBMITTAL OF PROJECT WARRANTIES**

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial Completion, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Partial Occupancy: Submit properly executed warranties within 15 days of completion of designated portions of the Work that are completed and occupied or used by Owner during construction period by separate agreement with Contractor.

C. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.

D. Warranties in Paper Form:
1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch (215-by-280-mm) paper.

2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.

3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.

E. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are not planted, mulched, or paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 g. Remove labels that are not permanent.
 h. Leave Project clean and ready for occupancy.

The Club at Woodbridge
INDOOR ICE RINK
CLOSE-OUT PROCEDURES

TVC Project No.: 18-27904 01 7700 - 4
3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair, or remove and replace, defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

3.3 EXTENDED CONTRACTOR MAINTENANCE

A. Contractor shall perform maintenance, for a period of one visit every three (3) months, during a two (2) year period, on all components within the following systems:
 1. Refrigeration system.
 2. Dehumidification system.
 3. Mechanical system.
 4. Electrical system.

B. Maintenance shall include verification that each system is operating within the parameters defined within the specification sections governing each system, and within manufacturer’s written parameters and factory settings.

C. Two (2) year maintenance period shall commence upon the date established on the Certificate of Substantial Completion.

END OF SECTION 01 7700
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including product maintenance manuals.

B. Related Requirements: Section 013300 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.

1.3 CLOSEOUT SUBMITTALS

A. Submit operation and maintenance manuals indicated. Provide content for each manual as specified in individual Specification Sections, and as reviewed and approved at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.

B. Format: Submit O&M manuals as two paper copies. Architect will return one copy.

C. Manual Submittal: Submit manual in final form prior to requesting inspection for Substantial Completion. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments.

D. Comply with Section 01 7700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

1.4 FORMAT OF OPERATION AND MAINTENANCE MANUALS

A. Manuals, Paper Copy: Submit manuals in the form of hard-copy, bound and labeled volumes.

1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUALs," Project title or name, subject matter of contents. Indicate volume number for multiple-volume sets.
1.5 PRODUCT MAINTENANCE MANUALS

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

B. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

C. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

D. Product Information: Include the following, as applicable:
 1. Product name and model number.
 2. Manufacturer's name.
 3. Color, pattern, and texture.
 5. Reordering information for specially manufactured products.

E. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

F. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds. Include procedures to follow and required notifications for warranty claims.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 7823
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for project record documents, including the following:
 1. Record Drawings.
 2. Record Specifications.
 3. Record Product Data.
 4. Miscellaneous record submittals.

B. Related Requirements:
 1. Section 017700 "Closeout Procedures" for general closeout procedures.
 2. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS

A. Record Drawings: Submit one set of marked-up record prints.

B. Record Specifications: Submit one paper copy of Project's Specifications, including addenda and contract modifications.

C. Record Product Data: Submit one paper copy of each submittal.
 1. Where record Product Data are required as part of operation and maintenance manuals, submit duplicate marked-up Product Data as a component of manual.

D. Miscellaneous Record Submittals: See other Specification Sections for miscellaneous record-keeping requirements and submittals in connection with various construction activities. Submit one paper copy of each submittal.

1.4 RECORD DRAWINGS

A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.

a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Accurately record information in an acceptable drawing technique.
 c. Record data as soon as possible after obtaining it.
 d. Record and check the markup before enclosing concealed installations.
 e. Cross-reference record prints to corresponding photographic documentation.

2. Content: Types of items requiring marking include, but are not limited to, the following:

a. Dimensional changes to Drawings.
 b. Revisions to details shown on Drawings.
 c. Actual equipment locations.
 d. Locations of concealed internal utilities.
 e. Changes made by Change Order or Construction Change Directive.
 f. Changes made following Architect's written orders.
 g. Details not on the original Contract Drawings.
 h. Field records for variable and concealed conditions.
 i. Record information on the Work that is shown only schematically.

3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

5. Mark important additional information that was either shown schematically or omitted from original Drawings.

6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2. Identification: As follows:

a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.
1.5 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
4. For each principal product, indicate whether record Product Data has been submitted in operation and maintenance manuals instead of submitted as record Product Data.
5. Note related Change Orders, record Product Data, and record Drawings where applicable.

1.6 RECORD PRODUCT DATA

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.

B. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
3. Note related Change Orders, record Specifications, and record Drawings where applicable.

1.7 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

B. Format: Submit miscellaneous record submittals as paper copy.

1. Include miscellaneous record submittals directory organized by Specification Section number and title, electronically linked to each item of miscellaneous record submittals.

1.8 MAINTENANCE OF RECORD DOCUMENTS

A. Maintenance of Record Documents: Store record documents in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible
condition, protected from deterioration and loss. Provide access to project record documents for
Architect's reference during normal working hours.

PART 2 - PRODUCTS

PART 3 - EXECUTION

END OF SECTION 01 7839
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 1. Instruction in operation and maintenance of systems, subsystems, and equipment, including but not limited, to the following:
 a. All HVAC related equipment.
 b. All ice rink related refrigeration equipment.
 c. All ice rink related dehumidification equipment.
 d. All battery, charging equipment, dedicated to the ice resurfacing vehicle (Zamboni).
 e. All electrically operated, overhead doors.
 f. All electronic scoreboard related equipment.
 2. Demonstration and training video recordings.

1.3 INFORMATIONAL SUBMITTALS

A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. Indicate proposed training modules using manufacturer-produced demonstration and training video recordings for systems, equipment, and products in lieu of video recording of live instructional module.

B. Qualification Data: For facilitator, instructor and videographer.

C. Attendance Record: For each training module, submit list of participants and length of instruction time.

D. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.

1.4 CLOSEOUT SUBMITTALS

A. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.
1. Identification: On each copy, provide an applied label with the following information:

 a. Name of Project.
 b. Name and address of videographer.
 c. Name of Architect.
 d. Name of Construction Manager.
 e. Name of Contractor.
 f. Date of video recording.

2. Transcript: Prepared and bound in format matching operation and maintenance manuals. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding video recording. Include name of Project and date of video recording on each page.

3. Transcript: Prepared in PDF electronic format. Include a cover sheet with same label information as the corresponding video recording and a table of contents with links to corresponding training components. Include name of Project and date of video recording on each page.

4. At completion of training, submit complete training manual(s) for Owner's use prepared in same paper and PDF file format required for operation and maintenance manuals specified in Section 017823 "Operation and Maintenance Data."

1.5 QUALITY ASSURANCE

A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Section 014000 "Quality Requirements," experienced in operation and maintenance procedures and training.

C. Videographer Qualifications: A professional videographer who is experienced photographing demonstration and training events similar to those required.

D. Pre-instruction Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination."
 1. Inspect and discuss locations and other facilities required for instruction.
 2. Review and finalize instruction schedule and verify availability of educational materials, instructors' personnel, audiovisual equipment, and facilities needed to avoid delays.
 3. Review required content of instruction.
 4. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.

1.6 COORDINATION

A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations and to ensure availability of Owner's personnel.
B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.

C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data have been reviewed and approved by Architect.

1.7 INSTRUCTION PROGRAM

A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections.

B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.
 h. Performance curves.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Systems and equipment operation manuals.
 c. Systems and equipment maintenance manuals.
 d. Product maintenance manuals.
 e. Project Record Documents.
 f. Identification systems.
 g. Warranties and bonds.
 h. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Instructions on stopping.
 c. Shutdown instructions for each type of emergency.
 d. Operating instructions for conditions outside of normal operating limits.
 e. Sequences for electric or electronic systems.
 f. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Equipment or system break-in procedures.
c. Routine and normal operating instructions.
d. Regulation and control procedures.
e. Control sequences.
f. Safety procedures.
g. Instructions on stopping.
h. Normal shutdown instructions.
i. Operating procedures for emergencies.
j. Operating procedures for system, subsystem, or equipment failure.
k. Seasonal and weekend operating instructions.
l. Required sequences for electric or electronic systems.
m. Special operating instructions and procedures.

5. Adjustments: Include the following:
 a. Alignments.
b. Checking adjustments.
c. Noise and vibration adjustments.
d. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
b. Types of cleaning agents to be used and methods of cleaning.
c. List of cleaning agents and methods of cleaning detrimental to product.
d. Procedures for routine cleaning.
e. Procedures for preventive maintenance.
f. Procedures for routine maintenance.
g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
b. Repair instructions.
c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
d. Instructions for identifying parts and components.
e. Review of spare parts needed for operation and maintenance.

1.8 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Section 017823 "Operation and Maintenance Data."

B. Set up instructional equipment at instruction location.
1.9 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 1. Owner will furnish Contractor with names and positions of participants.

C. Scheduling: Provide instruction at mutually agreed-on times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with Owner, through Architect, with at least seven days' advance notice.

D. Training Location and Reference Material: Conduct training on-site in the completed and fully operational facility using the actual equipment in-place. Conduct training using final operation and maintenance data submittals.

E. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of a demonstration performance-based test.

F. Cleanup: Collect used and leftover educational materials and give to Owner. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

1.10 DEMONSTRATION AND TRAINING VIDEO RECORDINGS

A. General: Engage a qualified commercial videographer to record demonstration and training video recordings. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.

B. Digital Video Recordings: Provide high-resolution, digital video in MPEG format, produced by a digital camera with minimum sensor resolution of 12 megapixels and capable of recording in full HD mode with vibration reduction technology.
 1. Submit video recordings on CD-ROM or thumb drive.
 2. File Hierarchy: Organize folder structure and file locations according to Project Manual table of contents. Provide complete screen-based menu.
 3. File Names: Utilize file names based on name of equipment generally described in video segment, as identified in Project specifications.
 4. Contractor and Installer Contact File: Using appropriate software, create a file for inclusion on the equipment demonstration and training recording that describes the following for each Contractor involved on the Project, arranged according to Project Manual table of contents:
 a. Name of Contractor/Installer.
 b. Business address.
 c. Business phone number.
 d. Point of contact.
 e. Email address.
C. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to adequately cover area of demonstration and training. Display continuous running time.
 1. Film training session(s) in segments not to exceed 15 minutes.
 a. Produce segments to present a single significant piece of equipment per segment.
 b. Organize segments with multiple pieces of equipment to follow order of Project Manual table of contents.
 c. Where a training session on a particular piece of equipment exceeds 15 minutes, stop filming and pause training session. Begin training session again upon commencement of new filming segment.

D. Light Levels: Verify light levels are adequate to properly light equipment. Verify equipment markings are clearly visible prior to recording. Furnish additional portable lighting as required.

E. Narration: Describe scenes on video recording by audio narration by microphone while video recording is recorded. Include description of items being viewed.

F. Transcript: Provide a transcript of the narration. Display images and running time captured from videotape opposite the corresponding narration segment.

G. Preproduced Video Recordings: Provide video recordings used as a component of training modules in same format as recordings of live training.

PART 2 - PRODUCTS

PART 3 - EXECUTION

END OF SECTION 01 7900
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.
 2. Salvage of existing items to be reused or recycled.

B. Related Requirements:
 1. Section 011000 "Summary" for restrictions on use of the premises, Owner-occupancy requirements, and phasing requirements.
 2. Section 017300 "Execution" for cutting and patching procedures.

1.3 DEFINITIONS
A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged or reinstalled.

B. Remove and Reinstall: Detach items from existing construction, in a manner to prevent damage, prepare for reuse, and reinstall where indicated.

C. Existing to Remain: Leave existing items that are not to be removed and that are not otherwise indicated to be salvaged or reinstalled.

D. Dismantle: To remove by disassembling or detaching an item from a surface, using gentle methods and equipment to prevent damage to the item and surfaces; disposing of items unless indicated to be salvaged or reinstalled.

1.4 MATERIALS OWNERSHIP
A. Unless otherwise indicated, demolition waste becomes property of Contractor.

1.5 PREINSTALLATION MEETINGS
A. Pre-demolition Conference: Conduct conference at Project site.
 1. Inspect and discuss condition of construction to be selectively demolished.
2. Review structural load limitations of existing structure.
3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
5. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS

A. Proposed Protection Measures: Submit report, including Drawings, that indicates the measures proposed for protecting individuals and property, for dust control. Indicate proposed locations and construction of barriers.

B. Schedule of Selective Demolition Activities: Indicate the following:
 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's building manager's on-site operations are uninterrupted.
 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 3. Coordination for shutoff, capping, and continuation of utility services.
 4. Coordination of Owner's continuing occupancy of portions of existing building.

C. Pre-demolition Photographs or Video: Show existing conditions of adjoining construction, including finish surfaces, that might be misconstrued as damage caused by demolition operations. Comply with Section 013233 "Photographic Documentation." Submit before Work begins.

D. Warranties: Documentation indicating that existing warranties are still in effect after completion of selective demolition.

1.7 CLOSEOUT SUBMITTALS

A. Inventory: Submit a list of items that have been removed and salvaged.

1.8 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Storage or sale of removed items or materials on-site is not permitted.
E. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations. Maintain fire-protection facilities in service during selective demolition operations.

1.9 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials and using approved contractors so as not to void existing warranties. Notify warrantor before proceeding. Existing warranties include the following:
 1. Snow Guards and Liquid Coating on exterior roof and wall panels; installation by:
 a. VMG Group; 288 Cox Street; Roselle, New Jersey 07203.

B. Notify warrantor on completion of selective demolition, and obtain documentation verifying that existing system has been inspected and warranty remains in effect. Submit documentation at Project closeout.

1.10 COORDINATION

A. Arrange selective demolition schedule so as not to interfere with Owner's operations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

B. Review Project Record Documents of existing construction or other existing condition and hazardous material information provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.

C. Steel Rigid Frame Tie-Rods: Locate, and mark-out if concealed, steel rigid frame tie-rods. Do not cut, or alter in any manner, steel rigid frame tie-rods.
D. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs or video. Comply with requirements specified in Section 013233 "Photographic Documentation." Inventory and record the condition of items to be removed and salvaged. Provide photographs or video of conditions that might be misconstrued as damage caused by salvage operations.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.
 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 2. Arrange to shut off utilities with utility companies.
 3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.

 4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated on Drawings to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material and leave in place.
 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material and leave in place.

3.3 PROTECTION

A. Temporary Protection: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 4. Cover and protect furniture, furnishings, and equipment that have not been removed.
5. Comply with requirements for temporary enclosures, dust control, heating, and cooling specified in Section 015000 "Temporary Facilities and Controls."

B. Temporary Shoring: Design, provide, and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 1. Strengthen or add new supports when required during progress of selective demolition.

C. Remove temporary barricades and protections where hazards no longer exist.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
 5. Maintain fire watch during and for at least one hour after flame-cutting operations.
 7. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 8. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
 9. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 10. Dispose of demolished items and materials promptly.

B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

C. Removed and Reinstalled Items:
 1. Clean and repair items to functional condition adequate for intended reuse.
 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
 3. Protect items from damage during transport and storage.
4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, and then remove concrete between saw cuts.

B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.

C. Roofing: Remove no more existing roofing than what can be covered in one day by new roofing and so that building interior remains watertight and weathertight. See Section 07-4113 “Formed Metal Roof Panels” for new roofing requirements.
 1. Remove existing roof panels, flashings, copings, and roof accessories.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.
 1. Do not allow demolished materials to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn demolished materials.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 02 4119
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Concrete masonry units.
 2. Mortar and grout.
 3. Steel reinforcing bars.
 5. Miscellaneous masonry accessories.

B. Related Requirements:
 1. Section 07-6200 "Sheet Metal Flashing and Trim" for exposed sheet metal flashing.

1.3 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For the following:
 1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
 2. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.
 3. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Material Certificates: For each type and size of the following:
 1. Masonry units.
 a. Include data on material properties.
b. For masonry units, include data and calculations establishing average net-area compressive strength of units.

2. Cementitious materials. Include name of manufacturer, brand name, and type.

3. Mortar admixtures.

4. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.

5. Grout mixes. Include description of type and proportions of ingredients.

6. Reinforcing bars.

7. Joint reinforcement.

8. Anchors, ties, and metal accessories.

C. Mix Designs: For each type of mortar. Include description of type and proportions of ingredients.

1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C109/C109M for compressive strength, ASTM C1506 for water retention, and ASTM C91/C91M for air content.

2. Include test reports, according to ASTM C1019, for grout mixes required to comply with compressive strength requirement.

D. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to TMS 602/ACI 530.1/ASCE 6.

E. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM C1093 for testing indicated.

B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.

1. Build mockups for typical exterior and interior walls in sizes approximately 48 inches (1200 mm) long by 48 inches (1200 mm) high by full thickness, including face and backup wythes and accessories.

 a. Include a sealant-filled joint at least 16 inches (400 mm) long in exterior wall mockup.

 b. Include lower corner of window opening at upper corner of exterior wall mockup. Make opening approximately 12 inches (300 mm) wide by 16 inches (400 mm) high.

 c. Include through-wall flashing installed for a 24-inch (600-mm) length in corner of exterior wall mockup approximately 16 inches (400 mm) down from top of mockup, with a 12-inch (300-mm) length of flashing left exposed to view (omit masonry above half of flashing).

3. Protect accepted mockups from the elements with weather-resistant membrane.

4. Approval of mockups is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; and aesthetic qualities of workmanship.

 a. Approval of mockups is also for other material and construction qualities specifically approved by Architect in writing.
b. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

5. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.

D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.

E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.8 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.
 1. Extend cover a minimum of 24 inches (600 mm) down both sides of walls, and hold cover securely in place.

B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 2. Protect sills, ledges, and projections from mortar droppings.
 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.
D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.
 1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F (4 deg C) and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.

B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.

2.3 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6 except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work and will be within 20 feet (6 m) vertically and horizontally of a walking surface.

C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.
2.4 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 2. Provide bullnose units for outside corners unless otherwise indicated.

B. CMUs: ASTM C90.
 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2150 psi (14.8 MPa).
 2. Density Classification: Medium weight.
 3. Size (Width): Manufactured to dimensions 3/8 inch (10 mm) less-than-nominal dimensions.

2.5 CONCRETE AND MASONRY LINTELS

A. General: Provide one of the following:

B. Concrete Lintels: ASTM C1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.

C. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.6 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated. Alkali content shall not be more than 0.1 percent when tested according to ASTM C114.

B. Hydrated Lime: ASTM C207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

D. Masonry Cement: ASTM C91/C91M.

E. Mortar Cement: ASTM C1329/C1329M.

F. Aggregate for Mortar: ASTM C144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4 inch (6 mm) thick, use aggregate graded with 100 percent passing the No. 16 (1.18-mm) sieve.
 3. White-Mortar Aggregates: Natural white sand or crushed white stone.
4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

H. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C494/C494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.

I. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs containing integral water repellent from same manufacturer.

J. Water: Potable.

2.7 REINFORCEMENT

A. Uncoated Steel Reinforcing Bars: ASTM A615/A615M or ASTM A996/A996M, Grade 60 (Grade 420).

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch (3.77-mm) steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

C. Masonry-Joint Reinforcement, General: Ladder type complying with ASTM A951/A951M.
 1. Interior Walls: Hot-dip galvanized carbon steel.
 2. Exterior Walls: Hot-dip galvanized carbon steel.
 3. Wire Size for Side Rods: 0.148-inch (3.77-mm) diameter.
 4. Wire Size for Cross Rods: 0.148-inch (3.77-mm) diameter.
 5. Spacing of Cross Rods: Not more than 16 inches (407 mm) o.c.
 6. Provide in lengths of not less than 10 feet (3 m), with prefabricated corner and tee units.

2.8 TIES AND ANCHORS

A. General: Ties and anchors shall extend at least 1-1/2 inches (38 mm) into masonry but with at least a 5/8-inch (16-mm) cover on outside face.

B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
 2. Galvanized-Steel Sheet: ASTM A653/A653M, Commercial Steel, G60 (Z180) zinc coating.
 4. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
C. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch- (6.35-mm-) diameter, hot-dip galvanized steel wire.
 2. Tie Section: Triangular-shaped wire tie made from 0.187-inch- (4.76-mm-) diameter, hot-dip galvanized steel wire.

D. Adjustable Anchors for Connecting to Concrete: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 1. Tie Section: Triangular-shaped wire tie made from 0.187-inch- (4.76-mm-) diameter, hot-dip galvanized steel wire.
 2. Corrugated-Metal Ties: Metal strips not less than 7/8 inch (22 mm) wide with corrugations having a wavelength of 0.3 to 0.5 inch (7.6 to 12.7 mm) and an amplitude of 0.06 to 0.10 inch (1.5 to 2.5 mm) made from 0.060-inch- (1.52-mm-) thick steel sheet, galvanized after fabrication with dovetail tabs for inserting into dovetail slots in concrete.

E. Partition Top Anchors: 0.105-inch- (2.66-mm-) thick metal plate with a 3/8-inch- (9.5-mm-) diameter metal rod 6 inches (152 mm) long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.

F. Rigid Anchors: Fabricate from steel bars bent to configuration indicated.
 1. Corrosion Protection: Hot-dip galvanized to comply with ASTMA 153/A153M.

2.9 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Pre-molded filler strips complying with ASTM D1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D2000, Designation M2AA-805 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D226/D226M, Type I (No. 15 asphalt felt).

2.10 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 1. Do not use calcium chloride in mortar or grout.
 2. Use portland cement-lime mortar unless otherwise indicated.
 3. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.
B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

C. Mortar for Unit Masonry: Comply with ASTM C270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated or needed to provide required compressive strength of masonry.
 1. For masonry below grade or in contact with earth, use Type S.
 2. For reinforced masonry, use Type S.
 3. For mortar parge coats, use Type S.
 4. For exterior, above-grade, load-bearing and nonload-bearing walls and parapet walls; for interior load-bearing walls; for interior nonload-bearing partitions; and for other applications where another type is not indicated, use Type S.

D. Grout for Unit Masonry: Comply with ASTM C476.
 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
 2. Proportion grout in accordance with ASTM C476, Table 1.
 3. Provide grout with a slump of 8 to 11 inches (200 to 280 mm) as measured according to ASTM C143/C143M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 2. Verify that foundations are within tolerances specified.
 3. Verify that reinforcing dowels are properly placed.
 4. Verify that substrates are free of substances that would impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Build chases and recesses to accommodate items specified in this and other Sections.

B. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.

C. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp,
unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:
 1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch (12 mm) or minus 1/4 inch (6 mm).
 2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch (12 mm).
 3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch (6 mm) in a story height or 1/2 inch (12 mm) total.

B. Lines and Levels:
 1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
 3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet (3 mm in 3 m), 1/4 inch in 20 feet (6 mm in 6 m), or 1/2-inch (12-mm) maximum.
 5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet (6 mm in 3 m), 3/8 inch in 20 feet (9 mm in 6 m), or 1/2-inch (12-mm) maximum.
 6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet (6 mm in 3 m), or 1/2-inch (12-mm) maximum.
 7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch (1.5 mm).

C. Joints:
 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm), with a maximum thickness limited to 1/2 inch (12 mm).
 2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch (3 mm).
 3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch (9 mm) or minus 1/4 inch (6 mm).
 4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch (3 mm).

3.4 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 4 inches (100 mm). Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal 4-inch (100-mm) horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

H. Fill cores in hollow CMUs with grout 24 inches (600 mm) under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

I. Build non-load-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
 1. Install compressible filler in joint between top of partition and underside of structure above.
 2. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 07-8443 “Joint Firestopping.”

3.5 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:
 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.

B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
3.6 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch (16 mm) on exterior side of walls, 1/2 inch (13 mm) elsewhere. Lap reinforcement a minimum of 6 inches (150 mm).
 1. Space reinforcement not more than 16 inches (406 mm) o.c.
 2. Space reinforcement not more than 8 inches (203 mm) o.c. in foundation walls and parapet walls.
 3. Provide reinforcement not more than 8 inches (203 mm) above and below wall openings and extending 12 inches (305 mm) beyond openings in addition to continuous reinforcement.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

3.7 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:
 1. Provide an open space not less than 1/2 inch (13 mm) wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 3. Space anchors as indicated, but not more than 24 inches (610 mm) o.c. vertically and 36 inches (915 mm) o.c. horizontally.

3.8 CONTROL AND EXPANSION JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

B. Form control joints in concrete masonry as follows: Fit bond-breaker strips into hollow contour in ends of CMUs on one side of control joint. Fill resultant core with grout, and rake out joints in exposed faces for application of sealant.

3.9 LINTELS

A. Provide concrete or masonry lintels where shown and where openings of more than 24 inches (610 mm) for block-size units are shown without structural steel or other supporting lintels.

B. Provide minimum bearing of 8 inches (200 mm) at each jamb unless otherwise indicated.

The Club at Woodbridge
INDOOR ICE RINK
CONCRETE UNIT MASONRY

TVC Project No.: 18-27905

04 2200 - 11
3.10 FLASHING

A. General: Install embedded flashing at ledges and other obstructions to downward flow of water in wall where indicated.

B. Install flashing as follows unless otherwise indicated:
 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 2. At lintels, extend flashing a minimum of 6 inches (150 mm) into masonry at each end. At heads and sills, extend flashing 6 inches (150 mm) at ends and turn up not less than 2 inches (50 mm) to form end dams.
 3. Interlock end joints of ribbed sheet metal flashing by overlapping ribs not less than 1-1/2 inches (38 mm) or as recommended by flashing manufacturer, and seal lap with elastomeric sealant complying with requirements in Section 079200 "Joint Sealants" for application indicated.
 4. Install metal drip edges and sealant stops with ribbed sheet metal flashing by interlocking hemmed edges to form hooked seam. Seal seam with elastomeric sealant complying with requirements in Section 07-9200 "Joint Sealants" for application indicated.

C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer's written instructions. Install CMU cell pans with upturned edges located below face shells and webs of CMUs above and with weep spouts aligned with face of wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

D. Install nailers for flashing and other related construction where they are shown to be built into masonry.

3.11 REINFORCED UNIT MASONRY

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.

B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
2. Limit height of vertical grout pours to not more than 60 inches (1520 mm).

3.12 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Inspections: Special inspections according to Level B in TMS 402/ACI 530/ASCE 5.
 1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 3. Place grout only after inspectors have verified proportions of site-prepared grout.

C. Testing Prior to Construction: One set of tests.

D. Testing Frequency: One set of tests for each 5000 sq. ft. (464 sq. m) of wall area or portion thereof.

E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C140 for compressive strength.

F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C780.

G. Mortar Test (Property Specification): For each mix provided, according to ASTM C780. Test mortar for mortar air content and compressive strength.

H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C1019.

I. Prism Test: For each type of construction provided, according to ASTM C1314 at 28 days.

3.13 PARGING

A. Parge exterior faces of below-grade masonry walls, where indicated, in two uniform coats to a total thickness of 3/4 inch (19 mm). Dampen wall before applying first coat, and scarify first coat to ensure full bond to subsequent coat.

B. Use a steel-trowel finish to produce a smooth, flat, dense surface with a maximum surface variation of 1/8 inch per foot (3 mm per 300 mm). Form a wash at top of parging and a cove at bottom.

C. Damp-cure parging for at least 24 hours and protect parging until cured.
3.14 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 3. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.15 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

B. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.

C. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 04-2200
1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes wall caps.
B. Related Requirements: Section 04 2200 "Concrete Unit Masonry", for mortar requirements.

1.3 ACTION SUBMITTALS
A. Product Data: For cast stone units, include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
B. Shop Drawings: Show fabrication and installation details for cast stone units. Include dimensions, details of reinforcement and anchorages if any, and indication of finished faces.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Coordinate delivery of cast stone with unit masonry work to avoid delaying the Work and to minimize the need for on-site storage.
B. Pack, handle, and ship cast stone units in suitable packs or pallets.
 1. Lift with wide-belt slings; do not use wire rope or ropes that might cause staining. Move cast stone units if required, using dollies with wood supports.
 2. Store cast stone units on wood skids or pallets with nonstaining, waterproof covers, securely tied. Arrange to distribute weight evenly and to prevent damage to units. Ventilate under covers to prevent condensation.
C. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
D. Store mortar aggregates where grading and other required characteristics can be maintained and contamination can be avoided.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Cast Stone: Obtain cast stone units from single source from single manufacturer.

2.2 CAST STONE MATERIALS

A. General: Comply with ASTM C1364.

B. Fine Aggregates: Natural sand or crushed stone complying with ASTM C33/C33M, gradation and colors as needed to produce required cast stone textures and colors.

C. Color Pigment: ASTM C979/C979M, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, free of carbon black, nonfading, and resistant to lime and other alkalis.

D. Reinforcement: Deformed steel bars complying with ASTM A615/A615M, Grade 40 (Grade 280). Use galvanized or epoxy-coated reinforcement when covered with less than 1-1/2 inches (38 mm) of cast stone material. Galvanized Coating: ASTM A767/A767M.

E. Embedded Anchors and Other Inserts: Fabricated from steel complying with ASTM A36/A36M and hot-dip galvanized to comply with ASTM A123/A123M.

2.3 CAST STONE UNITS

A. Cast Stone Units: Comply with ASTM C1364.

1. Units shall be manufactured using the manufacturer's selected method.

2. Trim units including wall caps.

B. Fabricate units with sharp arris and accurately reproduced details, with indicated texture on all exposed surfaces unless otherwise indicated.

C. Fabrication Tolerances:

1. Variation in Cross Section: Do not vary from indicated dimensions by more than 1/8 inch (3 mm).

2. Variation in Length: Do not vary from indicated dimensions by more than 1/360 of the length of unit or 1/8 inch (3 mm), whichever is greater, but in no case by more than 1/4 inch (6 mm).

3. Warp, Bow, and Twist: Not to exceed 1/360 of the length of unit or 1/8 inch (3 mm), whichever is greater.

D. Cure Units in enclosed, moist curing room at 95 percent relative humidity and temperature of 100 deg F (38 deg C) for 12 hours or 70 deg F (21 deg C) for 16 hours.

The Club At Woodbridge
INDOOR ICE RINK
CAST STONE MASONRY

TVC Project No.: 18-27905
E. Colors and Textures: Match color of concrete unit masonry.

2.4 MORTAR MATERIALS
A. Provide mortar materials that comply with Section 042000 "Unit Masonry."

2.5 ACCESSORIES
A. Dowels: 1/2-inch- (12-mm-) diameter round bars, fabricated from steel complying with ASTM A36/A36M and hot-dip galvanized to comply with ASTM A123/A123M.

2.6 MORTAR MIXES
A. Comply with requirements in Section 042000 "Unit Masonry" for mortar mixes.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SETTING CAST STONE IN MORTAR
A. Set cast stone as indicated in TMS 604.

3.3 INSTALLATION TOLERANCES
A. Variation from Plumb: Do not exceed 1/8 inch in 10 ft. (3 mm in 3 m) maximum.
B. Variation from Level: Do not exceed 1/8 inch in 10 ft. (3 mm in 3 m) maximum.
C. Variation in Joint Width: Do not vary joint thickness more than 1/8 inch in 36 inches (3 mm in 900 mm) or one-fourth of nominal joint width, whichever is less.
D. Variation in Plane between Adjacent Surfaces (Lipping): Do not vary from flush alignment with adjacent units or adjacent surfaces indicated to be flush with units by more than 1/16 inch (1.5 mm), except where variation is due to warpage of units within tolerances specified.
3.4 ADJUSTING AND CLEANING

A. Remove and replace stained and otherwise damaged units and units not matching approved Samples. Cast stone may be repaired if methods and results are approved by Architect.

B. Replace units in a manner that results in cast stone matching approved Samples, complying with other requirements, and showing no evidence of replacement.

C. Final Cleaning: After mortar is thoroughly set and cured, clean exposed cast stone as follows:
 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.

END OF SECTION 04 7200
SECTION 05-5000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Steel framing and supports for overhead coiling doors.
 2. Steel framing and supports for restroom countertops.
 3. Steel framing and supports for mechanical and electrical equipment.
 4. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 5. Steel girders for supporting exterior metal wall panels.
 6. Slotted channel framing.
 7. Metal ladders.
 8. Metal floor open grate and supports.
 9. Snow melt pit sump covers.
 10. Metal downspout boots.
 11. Loose bearing and leveling plates for applications where they are not specified in other Sections.

B. Products furnished, but not installed, under this Section include the following:
 1. Loose steel lintels.
 2. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
 3. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

C. Related Requirements:
 1. Section 042000 "Unit Masonry" for installing loose lintels, anchor bolts, and other items built into unit masonry.

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers’ written instructions to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves.
concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Fasteners.
 2. Shop primers.
 3. Shrinkage-resisting grout.
 4. Slotted channel framing.
 5. Metal ships' ladders.
 6. Metal downspout boots.

B. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:
 1. Steel framing and supports for overhead coiling doors.
 2. Steel framing and supports for countertops.
 3. Steel framing and supports for mechanical and electrical equipment.
 4. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 5. Metal ladders.
 6. Metal floor open grate plate and supports.
 7. Snow melt pit sump covers.

1.5 INFORMATIONAL SUBMITTALS

A. Mill Certificates: Signed by stainless steel manufacturers, certifying that products furnished comply with requirements.

B. Welding certificates.

C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

D. Research Reports: For post-installed anchors.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls, floor slabs, decks, and other construction contiguous with metal fabrications by field measurements before fabrication.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.

2.2 METALS

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

C. Stainless Steel Sheet, Strip, and Plate: ASTM A240/A240M or ASTM A666, Type 304.

D. Stainless Steel Bars and Shapes: ASTM A276/A276M, Type 304.

E. Rolled-Steel Floor Plate: ASTM A786/A786M, rolled from plate complying with ASTM A36/A36M or ASTM A283/A283M, Grade C or D.

F. Rolled-Stainless Steel Floor Plate: ASTM A793.

G. Steel Tubing: ASTM A500/A500M, cold-formed steel tubing.

H. Steel Pipe: ASTM A53/A53M, Standard Weight (Schedule 40) unless otherwise indicated.

I. Slotted Channel Framing: Cold-formed metal box channels (struts) complying with MFMA-4.
 1. Size of Channels: As indicated.
 2. Material: Galvanized steel, ASTM A653/A653M, structural steel, Grade 33 (Grade 230), with G90 (Z275) coating; 0.108-inch (2.8-mm) nominal thickness.

2.3 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B633 or ASTM F1941/F1941M, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A307, Grade A (ASTM F568M, Property Class 4.6); with hex nuts, ASTM A563 (ASTM A563M); and, where indicated, flat washers.

C. Anchor Bolts: ASTM F1554, Grade 36, of dimensions indicated; with nuts, ASTM A563 (ASTM A563M); and, where indicated, flat washers. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.
D. Anchors, General: Capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing in accordance with ASTM E488/E488M, conducted by a qualified independent testing agency.

E. Cast-in-Place Anchors in Concrete: Either threaded or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A47/A47M malleable iron or ASTM A27/A27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F2329/F2329M.

F. Post-Installed Anchors: Torque-controlled expansion anchors.
 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941/F1941M, Class Fe/Zn 5, unless otherwise indicated.

G. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA 1-5/8 by 7/8 inches (41 by 22 mm) by length indicated with anchor straps or studs not less than 3 inches (75 mm) long at not more than 8 inches (200 mm) o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B633, Class Fe/Zn 5, as needed for fastening to inserts.

2.4 MISCELLANEOUS MATERIALS

A. Shop Primers: Provide primers that comply with Section 099113 "Exterior Painting." And Section 099123 "Interior Painting."

B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.

C. Water-Based Primer: Emulsion type, anticorrosive primer for mildly corrosive environments that is resistant to flash rusting when applied to cleaned steel, complying with MPI#107 and compatible with topcoat.

D. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.

E. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.

F. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

G. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

H. Shrinkage-Resistant Grout: Factory-packaged, nonmetallic, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.
I. Concrete: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained concrete with a minimum 28-day compressive strength of 3000 psi (20 MPa).

2.5 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.

E. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

J. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated.
2.6 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 1. Fabricate units from slotted channel framing where indicated.
 2. Furnish inserts for units installed after concrete is placed.

C. Galvanize miscellaneous framing and supports where indicated.

2.7 METAL LADDERS

A. General: Comply with ANSI A14.3.

B. Steel Ladders:
 1. Siderails: Continuous, steel flat bars, with eased edges.
 2. Rungs: 3/4-inch- (19-mm-) diameter, steel bars.
 3. Fit rungs in centerline of siderails; plug-weld and grind smooth on outer rail faces.
 4. Provide nonslip surfaces on top of each rung, either by coating rung with aluminum-oxide granules set in epoxy-resin adhesive or by using a type of manufactured rung filled with aluminum-oxide grout.
 5. Source Limitations: Obtain nonslip surfaces from single source from single manufacturer.
 6. Provide platforms as indicated fabricated from welded or pressure-locked steel bar grating, supported by steel angles. Limit openings in gratings to no more than 3/4 inch (19 mm) in least dimension.
 7. Galvanize and prime ladders, including brackets.

2.8 METAL FLOOR PLATE

A. Fabricate from rolled-steel floor plate of thickness shown on drawings.

B. Provide grating sections where indicated, fabricated from welded or pressure-locked steel bar grating. Limit openings in gratings to no more than 1 inch (25 mm) in least dimension.

C. Provide galvanized steelangle supports as indicated.

D. Include galvanized steel angle stiffeners, and fixed and removable sections as indicated.

2.9 SNOW MELT PIT SUMP COVERS

A. Fabricate from welded or pressure-locked steel bar grating. Limit openings in gratings to no more than 1 inch (25 mm) in least dimension.

B. Provide steel angle supports unless otherwise indicated.
2.10 LOOSE STEEL LINTELS

A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.

B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span, but not less than 8 inches (200 mm) unless otherwise indicated.

C. Galvanize loose steel lintels located in exterior walls.

2.11 GENERAL FINISH REQUIREMENTS

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.12 STEEL FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A153/A153M for steel and iron hardware and with ASTM A123/A123M for other steel and iron products.

1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.

B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean galvanized surfaces of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:
1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

3.2 INSTALLATION OF MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

B. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
 1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.

C. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installation of Bearing and Leveling Plates" Article.
 1. Grout baseplates of columns supporting steel girders after girders are installed and leveled.

3.3 REPAIRS

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A780/A780M.

END OF SECTION 05 5000
SECTION 05 5213 - PIPE AND TUBE RAILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Aluminum pipe and tube railings.
 2. Steel pipe and tube railings.

B. Related Requirements:
 1. Section 05 7300 “Decorative Metal Railings” for ornamental railings fabricated from pipes and tubes and wire guard-infill metals.
 2. Section 09 9113 “Exterior Painting” for steel pipe guard rails installed at roof top equipment which is within 10 feet of the roof edge.

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of anchorages for railings. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

C. Schedule installation so wall attachments are made only to completed walls. Do not support railings temporarily by any means that do not satisfy structural performance requirements.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Manufacturer's product lines of mechanically connected railings.
 2. Railing brackets.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

C. Samples: For each type of exposed finish required.
1. Sections of each distinctly different linear railing member, including handrails, top rails, posts, and balusters, including finish.
2. Fittings and brackets.
3. Assembled Sample of railing system, made from full-size components, including top rail, post, handrail, and infill. Sample need not be full height.
 a. Show method of connecting members at intersections.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.
B. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers certifying that shop primers are compatible with topcoats.
C. Evaluation Reports: For post-installed anchors, from ICC-ES.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according with the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code – Steel”.
 2. AWS D1.2/D1.2M, "Structural Welding Code – Aluminum”.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

1.8 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of railing from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Structural Performance: Railings, including attachment to building construction, shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 1. Handrails and Top Rails of Guards:
a. Uniform load of 50 lbf/ft. (0.73 kN/m) applied in any direction.
b. Concentrated load of 200 lbf (0.89 kN) applied in any direction.
c. Uniform and concentrated loads need not be assumed to act concurrently.

B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.3 METALS, GENERAL

A. Metal Surfaces, General: Provide materials with smooth surfaces, without seam marks, roller marks, rolled trade names, stains, discolorations, or blemishes.

B. Brackets, Flanges, and Anchors: Cast or formed metal of same type of material and finish as supported rails unless otherwise indicated.

2.4 STEEL AND IRON

A. Tubing: ASTM A500 (cold formed) or ASTM A513.

B. Pipe: ASTM A53/A53M, Type F or Type S, Grade A, Standard Weight (Schedule 40), unless another grade and weight are required by structural loads. Provide galvanized finish for exterior installations and where indicated.

C. Plates, Shapes, and Bars: ASTM A36/A36M.

D. Cast Iron: Either gray iron, ASTM A48/A48M, or malleable iron, ASTM A47/A47M, unless otherwise indicated.

2.5 ALUMINUM RAILINGS

A. Source Limitations: Obtain each type of railing from single source from single manufacturer.

B. Aluminum, General: Provide alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with not less than the strength and durability properties of alloy and temper designated below for each aluminum form required.

 1. Provide Standard Weight (Schedule 40) pipe unless otherwise indicated.

D. Drawn Seamless Tubing: ASTM B210/B210M, Alloy 6063-T832.

2.6 FASTENERS

A. General: Provide the following:
 1. Hot-Dip Galvanized Railings: Type 304 stainless-steel or hot-dip zinc-coated steel fasteners complying with ASTM A153/A153M or ASTM F2329 for zinc coating.
 2. Provide exposed fasteners with finish matching appearance, including color and texture, of railings.
 3. Aluminum Railing Components: Type 304 stainless steel fasteners.
 4. Finish exposed fasteners to match appearance, including color and texture, of railings.

B. Fasteners for Anchoring Railings to Other Construction: Select fasteners of type, grade, and class required to produce connections suitable for anchoring railings to other types of construction indicated and capable of withstanding design loads.

C. Fasteners for Interconnecting Railing Components:
 1. Provide concealed fasteners for interconnecting railing components and for attaching them to other work, unless exposed fasteners are unavoidable or are the standard fastening method for railings indicated.
 2. Provide square or hex socket flat-head machine screws for exposed fasteners unless otherwise indicated.

D. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors capable of sustaining, without failure, a load equal to 6 times the load imposed when installed in unit masonry and 4 times the load imposed when installed in concrete, as determined by testing according to ASTM E488/E488M, conducted by a qualified independent testing agency.
 1. Material for Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B633 or ASTM F1941 (ASTM F1941M), Class Fe/Zn 5, unless otherwise indicated.

2.7 MISCELLANEOUS MATERIALS

A. Handrail Brackets: Cast aluminum, center of handrail 3 inches (76.2mm) from wall.

B. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
 1. For aluminum railings, provide type and alloy as recommended by producer of metal to be welded and as required for color match, strength, and compatibility in fabricated items.

C. Etching Cleaner for Galvanized Metal: Complying with MPI#25.

D. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

E. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.

F. Intermediate Coats and Topcoats: Provide products that comply with Section 099113 "Exterior Painting".
G. Bituminous Paint: Cold-applied asphalt emulsion, complying with ASTM D1187/D1187M

H. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.8 FABRICATION

A. General: Fabricate railings to comply with requirements indicated for design, dimensions, member sizes and spacing, details, finish, and anchorage, but not less than that required to support structural loads.

B. Shop assemble railings to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation. Use connections that maintain structural value of joined pieces.

C. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

D. Form work true to line and level with accurate angles and surfaces.

E. Fabricate connections that are exposed to weather in a manner that excludes water. Provide weep holes where water may accumulate.

F. Cut, reinforce, drill, and tap as indicated to receive finish hardware, screws, and similar items.

G. Connections: Fabricate railings with welded connections unless otherwise indicated.

H. Welded Connections: Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove flux immediately.
 4. At exposed connections, finish exposed surfaces smooth and blended so no roughness shows after finishing and welded surface matches contours of adjoining surfaces.

I. Welded Connections for Aluminum Pipe: Fabricate railings to interconnect members with concealed internal welds that eliminate surface grinding, using manufacturer's standard system of sleeve and socket fittings.

J. Nonwelded Connections: Connect members with concealed mechanical fasteners and fittings. Fabricate members and fittings to produce flush, smooth, rigid, hairline joints.
 1. Fabricate splice joints for field connection using an epoxy structural adhesive if this is manufacturer's standard splicing method.

K. Form Changes in Direction as Follows:
 1. As detailed.
2. By bending or by inserting prefabricated elbow fittings.

L. For changes in direction made by bending, use jigs to produce uniform curvature for each repetitive configuration required. Maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.

M. Bend members in jigs to produce uniform curvature for each configuration required. Maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.

N. Close exposed ends of railing members with prefabricated end fittings.

O. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated. Close ends of returns unless clearance between end of rail and wall is 1/4 inch (6 mm) or less.

P. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, flanges, miscellaneous fittings, and anchors to interconnect railing members to other work unless otherwise indicated.

Q. Provide inserts and other anchorage devices for connecting railings to concrete or masonry work. Fabricate anchorage devices capable of withstanding loads imposed by railings. Coordinate anchorage devices with supporting structure.

2.9 STEEL AND IRON FINISHES

A. Galvanized Railings:
 1. Hot-dip galvanize exterior steel railings, including hardware, after fabrication.
 2. Comply with ASTM A123/A123M for hot-dip galvanized railings.
 4. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
 5. Fill vent and drain holes that are exposed in the finished Work, unless indicated to remain as weep holes, by plugging with zinc solder and filing off smooth.

B. For galvanized railings, provide hot-dip galvanized fittings, brackets, fasteners, sleeves, and other ferrous components.

C. Preparing Galvanized Railings for Shop Priming: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with etching cleaner.

D. Primer Application: Apply shop primer to prepared surfaces of railings unless otherwise indicated. Comply with requirements in SSPC-PA 1, "Shop, Field, and Maintenance Painting of Steel," for shop painting. Primer need not be applied to surfaces to be embedded in concrete or masonry.
 1. Shop prime uncoated railings with universal shop primer unless indicated.
 2. Do not apply primer to galvanized surfaces.
2.10 ALUMINUM FINISHES

A. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine plaster and gypsum board assemblies, where reinforced to receive anchors, to verify that locations of concealed reinforcements are clearly marked for Installer. Locate reinforcements and mark locations if not already done.

3.2 INSTALLATION, GENERAL

A. Fit exposed connections together to form tight, hairline joints.

B. Perform cutting, drilling, and fitting required for installing railings. Set railings accurately in location, alignment, and elevation; measured from established lines and levels and free of rack.
 1. Do not weld, cut, or abrade surfaces of railing components that are coated or finished after fabrication and that are intended for field connection by mechanical or other means without further cutting or fitting.
 2. Set posts plumb within a tolerance of 1/16 inch in 3 feet (2 mm in 1 m).
 3. Align rails so variations from level for horizontal members and variations from parallel with rake of steps and ramps for sloping members do not exceed 1/4 inch in 12 feet (6 mm in 3.5 m).

C. Control of Corrosion: Prevent galvanic action and other forms of corrosion by insulating metals and other materials from direct contact with incompatible materials.
 1. Coat concealed surfaces of aluminum that will be in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint Adjust railings before anchoring to ensure matching alignment at abutting joints.

D. Fastening to In-Place Construction: Use anchorage devices and fasteners where necessary for securing railings and for properly transferring loads to in-place construction.

3.3 RAILING CONNECTIONS

A. Nonwelded Connections: Use mechanical or adhesive joints for permanently connecting railing components. Use wood blocks and padding to prevent damage to railing members and fittings. Seal recessed holes of exposed locking screws, using plastic cement filler colored to match finish of railings.

The Club at Woodbridge
INDOOR ICE RINK
PIPE AND TUBE RAILINGS

TVC Project No.: 18-27905
B. Welded Connections: Use fully welded joints for permanently connecting railing components. Comply with requirements for welded connections in "Fabrication" Article whether welding is performed in the shop or in the field.

C. Expansion Joints: Install expansion joints at locations indicated but not farther apart than required to accommodate thermal movement. Provide slip-joint internal sleeve extending 2 inches (50 mm) beyond joint on either side, fasten internal sleeve securely to one side, and locate joint within 6 inches (150 mm) of post.

3.4 ANCHORING POSTS

A. Anchor posts to metal surfaces with oval flanges, angle type, or floor type as required by conditions, connected to posts and to metal supporting members. Weld flanges to post and bolt to metal supporting surfaces.

3.5 ADJUSTING AND CLEANING

A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas, and repair galvanizing to comply with ASTM A780/A780M.

B. Form or core-drill holes not less than 5 inches (125 mm) deep and 3/4 inch (20 mm) larger than OD of post for installing posts in concrete. Clean holes of loose material, insert posts, and fill annular space between post and concrete with non-shrink, non-metallic grout, mixed and placed to comply with anchoring material manufacturer's written instructions.

C. Cover anchorage joint with flange of same metal as post, attached to post with setscrews.

3.6 CLEANING

A. Clean aluminum by washing thoroughly with clean water and soap and rinsing with clean water.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas, and repair galvanizing to comply with ASTM A780/A780M.

3.7 PROTECTION

A. Protect finishes of railings from damage during construction period with temporary protective coverings approved by railing manufacturer. Remove protective coverings at time of Substantial Completion.

END OF SECTION 05 5213
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes interior aluminum decorative railings with stainless-steel wire-rope guard infill.

B. Related Requirements: Section 06 1053 "Miscellaneous Rough Carpentry" for wood blocking for anchoring railings.

C. This is a performance based specification, with Delegated-Design requirements.

1.3 DEFINITIONS

A. Railings: Guards, handrails, and similar devices used for protection of occupants at open-sided floor areas and for pedestrian guidance and support, visual separation, or wall protection.

1.4 COORDINATION AND SCHEDULING

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written instructions to ensure that shop primers and topcoats are compatible.

B. Coordinate installation of anchorages for railings. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver items to Project site in time for installation.

C. Schedule installation so wall attachments are made only to completed walls. Do not support railings temporarily by any means that do not meet structural performance requirements.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
1.6 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Manufacturer’s product lines of railings assembled from standard components.
 2. Grout, anchoring cement, and paint products.

B. Shop Drawings: Include plans, elevations, sections, and attachment details.

C. Samples for Initial Selection: For products involving selection of color, texture, or design, including mechanical finishes.

D. Samples for Verification: For each type of exposed finish required.
 1. Sections of each distinctly different linear railing member, including handrails, top rails, posts, and balusters.
 2. Fittings and brackets.
 3. Welded connections.
 5. Assembled Samples of railing systems, made from full-size components, including top rail, post, handrail, and infill. Show method of finishing members at intersections. Samples need not be full height.

E. Delegated-Design Submittal: For installed products indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.7 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer and testing agency.

B. Mill Certificates: Signed by manufacturers of stainless-steel products certifying that products furnished comply with requirements.

C. Welding certificates.

D. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, according to ASTM E 894 and ASTM E 935.

E. Preconstruction test reports.

F. Evaluation Reports: For post-installed anchors, from ICC-ES.

G. Structural design calculations, signed and sealed by the Delegated-Design Professional, documenting that the railing components will withstand the design loads imposed upon them.
1.8 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
 2. AWS D1.6/D1.6M, "Structural Welding Code - Stainless Steel."

B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation. Build mockups for each form and finish of railing consisting of two posts, top rail, infill area, and anchorage system components that are full height and are not less than 24 inches (600 mm) in length.

1.9 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on laboratory mockups. Payment for these services will be made by Contractor. Retesting of products that fail to meet specified requirements shall be done at Contractor's expense.
 1. Build laboratory mockups at testing agency facility; use personnel, materials, and methods of construction that will be used at Project site.
 2. Test railings according to ASTM E 894 and ASTM E 935.
 3. Notify Architect seven days in advance of the dates and times when laboratory mockups will be tested.

1.10 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with railings by field measurements before fabrication and indicate measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of railing from single source from single manufacturer.

B. Product Options: Information on Drawings and in Specifications establishes requirements for system's aesthetic effects and performance characteristics. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods, including structural analysis, preconstruction testing, field testing, and in-service performance.
 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to Architect for review.
2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design railings, including attachment to building construction.

B. General: In engineering railings to withstand structural loads indicated, determine allowable design working stresses of railing materials based on the following:
 1. Aluminum: The lesser of minimum yield strength divided by 1.65 or minimum ultimate tensile strength divided by 1.95.
 2. Stainless Steel: 60 percent of minimum yield strength.

C. Structural Performance: Railings, including attachment to building construction, shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 1. Handrails and Top Rails of Guards:
 a. Uniform load of 50 lbf/ft. (0.73 kN/m) applied in any direction.
 b. Concentrated load of 200 lbf (0.89 kN) applied in any direction.
 c. Uniform and concentrated loads need not be assumed to act concurrently.
 2. Infill of Guards:
 a. Concentrated load of 50 lbf (0.22 kN) applied horizontally on an area of 1 sq. ft. (0.093 sq. m).
 b. Infill load and other loads need not be assumed to act concurrently.

2.3 METALS, GENERAL

A. Metal Surfaces, General: Provide materials with smooth surfaces, without seam marks, roller marks, rolled trade names, stains, discolorations, or blemishes.

B. Brackets, Flanges, and Anchors: Same metal and finish as supported rails unless otherwise indicated. Provide extruded-aluminum brackets with interlocking pieces that conceal anchorage. Locate set screws on bottom of bracket.

2.4 ALUMINUM

A. Aluminum, General: Provide alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated, and with strength and durability properties for each aluminum form required not less than that of alloy and temper designated below.

 1. Provide Standard Weight (Schedule 40) pipe unless otherwise indicated.

D. Drawn Seamless Tubing: ASTM B 210 (ASTM B 210M), Alloy 6063-T832.

E. Plate and Sheet: ASTM B 209 (ASTM B 209M), Alloy 5005-H32.

2.5 STAINLESS STEEL

A. Castings: ASTM A 743/A 743M, Grade CF 8 or CF 20.

B. Wire Rope and Fittings:
 1. Wire Rope: 1-by-19 wire rope made from wire complying with ASTM A 492, Type 316.
 2. Wire-Rope Fittings: Connectors of types indicated, fabricated from stainless steel, and with capability to sustain, without failure, a load equal to minimum breaking strength of wire rope with which they are used.

2.6 SWING GATE

A. Gate Configuration: Single-leaf.

B. Gate Height: Match height of adjacent guard rail top rail.

C. Gate Opening Width: 36 inches.

D. Hinges: Self-closing, 180-degree swing, limited to above mezzanine surface only.

E. Latch: Operated from either side of gate, and capable of accommodating Owner provided padlock.

2.7 FASTENERS

A. Fastener Materials: Unless otherwise indicated, provide the following:
 1. Aluminum Components: Type 304 stainless-steel fasteners.
 2. Stainless-Steel Components: Type 304 stainless-steel fasteners.
 3. Dissimilar Metals: Type 304 stainless-steel fasteners.

B. Fasteners for Anchoring to Other Construction: Select fasteners of type, grade, and class required to produce connections suitable for anchoring railings to other types of construction indicated and capable of withstanding design loads.

C. Provide concealed fasteners for interconnecting railing components and for attaching railings to other work unless exposed fasteners are unavoidable. Provide square or hex socket flat-head machine screws for exposed fasteners unless otherwise indicated.

2.8 MISCELLANEOUS MATERIALS

A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded. For aluminum railings, provide type and alloy as recommended by producer of metal to be welded and as required for color match, strength, and compatibility in fabricated items.

The Club at Woodbridge
INDOOR ICE RINK
DECORATIVE METAL RAILINGS

TVC Project No.: 18-27905
B. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.

2.9 FABRICATION

A. General: Fabricate railings to comply with requirements indicated for design, dimensions, member sizes and spacing, details, finish, and anchorage, but not less than that required to support structural loads.

B. Assemble railings in the shop to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation. Use connections that maintain structural value of joined pieces.

C. Make up wire-rope assemblies in the shop to field-measured dimensions with fittings machine swaged. Minimize amount of turnbuckle take-up used for dimensional adjustment so maximum amount is available for tensioning wire ropes. Tag wire-rope assemblies and fittings to identify installation locations and orientations for coordinated installation.

D. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

E. Form work true to line and level with accurate angles and surfaces.

F. Fabricate connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate. Locate weep holes in inconspicuous locations.

G. Cut, reinforce, drill, and tap as indicated to receive finish hardware, screws, and similar items.

H. Connections: Fabricate railings with welded or nonwelded connections.

I. Welded Connections: Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove flux immediately.
 4. At exposed connections, finish exposed welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Type 1 welds; no evidence of a welded joint.

J. Welded Connections for Aluminum Pipe: Fabricate railings to interconnect members with concealed internal welds that eliminate surface grinding, using manufacturer's standard system of sleeve and socket fittings.

K. Mechanical Connections: Connect members with concealed mechanical fasteners and fittings. Fabricate members and fittings to produce flush, smooth, rigid, hairline joints.
 1. Fabricate splice joints for field connection using an epoxy structural adhesive if this is manufacturer's standard splicing method.
L. At the swing gate, form changes in direction by bending to smallest radius that will not result in distortion of railing member.

M. Bend members in jigs to produce uniform curvature for each configuration required; maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.

N. Close exposed ends of hollow railing members with prefabricated end fittings.

O. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated. Close ends of returns, unless clearance between end of rail and wall is 1/4 inch (6 mm) or less.

P. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, flanges, miscellaneous fittings, and anchors to interconnect railing members to other work unless otherwise indicated.
 1. At brackets and fittings fastened to plaster or gypsum board partitions, provide crush-resistant fillers, or other means to transfer loads through wall finishes to structural supports and to prevent bracket or fitting rotation and crushing of substrate.

Q. Provide inserts and other anchorage devices for connecting railings to concrete or masonry work. Fabricate anchorage devices capable of withstanding loads imposed by railings. Coordinate anchorage devices with supporting structure.

R. Toe Rails: Where indicated, provide toe rails at railings around openings and at edge of open-sided floors and platforms. Fabricate to dimensions and details indicated.

2.10 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipment.

C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Provide exposed fasteners with finish matching appearance, including color and texture, of railings.

2.11 ALUMINUM FINISHES

A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.

B. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.
2.12 STAINLESS STEEL FINISHES

A. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine plaster and gypsum board assemblies, where reinforced to receive anchors, to verify that locations of concealed reinforcements have been clearly marked for Installer. Locate reinforcements and mark locations if not already done.

3.2 INSTALLATION, GENERAL

A. Fit exposed connections together to form tight, hairline joints.

B. Perform cutting, drilling, and fitting required for installing railings. Set railings accurately in location, alignment, and elevation; measured from established lines and levels and free of rack.
 1. Do not weld, cut, or abrade surfaces of railing components that have been coated or finished after fabrication and that are intended for field connection by mechanical or other means without further cutting or fitting.
 2. Set posts plumb within a tolerance of 1/16 inch in 3 feet (2 mm in 1 m).
 3. Align rails so variations from level for horizontal members and variations from parallel with rake of steps and ramps for sloping members do not exceed 1/4 inch in 12 feet (5 mm in 3 m).

C. Control of Corrosion: Prevent galvanic action and other forms of corrosion by insulating metals and other materials from direct contact with incompatible materials.
 1. Coat concealed surfaces of aluminum that will be in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint.

D. Adjust railings before anchoring to ensure matching alignment at abutting joints.

E. Fastening to In-Place Construction: Use anchorage devices and fasteners where necessary for securing railings and for properly transferring loads to in-place construction.

3.3 RAILING CONNECTIONS

A. Nonwelded Connections: Use mechanical or adhesive joints for permanently connecting railing components. Use wood blocks and padding to prevent damage to railing members and fittings. Seal recessed holes of exposed locking screws using plastic cement filler colored to match finish of railings.
B. Welded Connections: Use fully welded joints for permanently connecting railing components. Comply with requirements for welded connections in “Fabrication” Article whether welding is performed in the shop or in the field.

C. Expansion Joints: Install expansion joints at locations indicated but not farther apart than required to accommodate thermal movement. Provide slip-joint internal sleeve extending 2 inches (50 mm) beyond joint on either side, fasten internal sleeve securely to one side, and locate joint within 6 inches (150 mm) of post.

3.4 ANCHORING POSTS

A. Cover anchorage joint with flange of same metal as post, attached to post with set screws.

B. Leave anchorage joint exposed with anchoring material flush with adjacent surface.

C. Anchor posts to metal surfaces with flanges, angle type, or floor type as required by conditions, connected to posts and to metal supporting members. For aluminum railings, attach posts as indicated using fittings designed and engineered for this purpose.

3.5 ATTACHING RAILINGS

A. Anchor railing ends to metal surfaces with flanges bolted to metal surfaces and connected to railing ends using nonwelded connections.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and to prepare test reports.

B. Extent and Testing Methodology: Testing agency will randomly select completed railing assemblies for testing that are representative of different railing designs and conditions in the completed Work. Test railings according to ASTM E 894 and ASTM E 935 for compliance with performance requirements.

C. Remove and replace railings where test results indicate that they do not comply with specified requirements unless they can be repaired in a manner satisfactory to Architect and comply with specified requirements.

D. Perform additional testing and inspecting, at Contractor's expense, to determine compliance of replaced or additional work with specified requirements.

3.7 CLEANING

A. Clean aluminum and stainless steel by washing thoroughly with clean water and soap, rinsing with clean water, and wiping dry.
3.8 PROTECTION

A. Protect finishes of railings from damage during construction period with temporary protective coverings approved by railing manufacturer. Remove protective coverings at time of Substantial Completion.

B. Restore finishes damaged during installation and construction period so no evidence remains of correction work. Return items that cannot be refinished in the field to the shop; make required alterations and refinish entire unit, or provide new units.

END OF SECTION 05 7300
SECTION 06 1053 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Wood blocking and nailers.
 2. Furring.
 3. Plywood backing panels.

1.3 DEFINITIONS

A. Boards or Strips: Lumber of less than 2 inches nominal (38 mm actual) size in least dimension.

B. Dimension Lumber: Lumber of 2 inches nominal (38 mm actual) or greater size but less than 5 inches nominal (114 mm actual) size in least dimension.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.

 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.

1.5 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For the following, from ICC-ES:

 1. Preservative-treated wood.
 2. Power-driven fasteners.
 3. Post-installed anchors.
 4. Metal framing anchors.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated. Factory mark each piece of lumber with grade stamp of grading agency.

B. Maximum Moisture Content of Lumber: 15 percent for 2-inch nominal (38-mm actual) thickness or less, 19 percent for more than 2-inch nominal (38-mm actual) thickness unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground.

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat all miscellaneous carpentry unless otherwise indicated.

2.3 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:

1. Blocking.
2. Nailers.
3. Furring.

B. Dimension Lumber Items: Construction or No. 2 grade lumber of any species.
C. Concealed Boards: 19 percent maximum moisture content of any of the following species and grades:
 1. Mixed southern pine or southern pine, No. 2 grade; SPIB.
 2. Eastern softwoods, No. 2 Common grade; NeLMA.
 3. Northern species, No. 2 Common grade; NLGA.

D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

F. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.4 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exterior, C-C Plugged in thickness indicated or, if not indicated, not less than 1/2-inch (13-mm) nominal thickness.

2.5 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

B. Nails, Brads, and Staples: ASTM F1667.

C. Screws for Fastening to Metal Framing: ASTM C1002, length as recommended by screw manufacturer for material being fastened.

D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

2.6 METAL FRAMING ANCHORS

A. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A653/A653M, G60 (Z180) coating designation. Use for interior locations unless otherwise indicated.

B. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 (Z550) coating designation; and not less than 0.036 inch (0.9 mm) thick. Use for wood-preservative-treated lumber and where indicated.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry accurately to other construction. Locate furring, nailers, blocking, and similar supports to comply with requirements for attaching other construction.

C. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels.

D. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

E. Do not splice structural members between supports unless otherwise indicated.

F. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches (406 mm) o.c.

G. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:
 1. Fire block furred spaces of walls, at each floor level, at ceiling, and at not more than 96 inches (2438 mm) o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.

H. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

I. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

J. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

K. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
2. ICC-ES evaluation report for fastener.

L. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING AND NAILER INSTALLATION

A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

C. Provide permanent grounds of dressed, pressure-preservative-treated, key-beveled lumber not less than 1-1/2 inches (38 mm) wide and of thickness required to bring face of ground to exact thickness of finish material. Remove temporary grounds when no longer required.

3.3 WOOD FURRING INSTALLATION

A. Install level and plumb with closure strips at edges and openings. Shim with wood as required for tolerance of finish work.

B. Furring to Receive Plywood or Hardboard Paneling: Install 1-by-3-inch nominal- (19-by-63-mm actual-) size furring vertically at 24 inches (610 mm) o.c.

C. Furring to Receive Gypsum Board: Install 1-by-2-inch nominal- (19-by-38-mm actual-) size furring vertically at 16 inches (406 mm) o.c.

3.4 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
SECTION 07 0001 – MINOR MODIFICATIONS TO EXISTING ROOF COATING SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes manufacturer’s requirements related to modifications executed on their existing roof covering systems currently covered under their warranty.

B. Existing Metal Roof Coating Manufacturer:
 1. GAF – United Coatings Roof Mate Coating.
 2. Manufacturer warranty expires in June 2034.

C. Existing Metal Roof Coating Installer:
 1. VMG Group, Inc., 288 Cox Street, Roselle, NJ 07203.
 2. Telephone: (908) 298-1130
 3. Email: vmg@vmggroupinc.com
 4. Contact: Vane Bojcev.

PART 2 - PRODUCTS – NOT USED

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions with manufacturers’ local representative present, for compliance with manufacturer’s current warranty requirements.

3.2 PREPARATION

A. Mask or otherwise protect adjoining exposed surfaces from being stained, spotted, or coated with new roofing materials. Prevent new roofing materials from entering and clogging drains.

B. Verify that all gutters and leaders are clear of debris.
3.3 APPLICATION, GENERAL
 A. Comply with manufacturer's written instructions for modifications to their warranted product.

3.4 CLEANING
 A. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended in writing by manufacturer holding warranty.

END OF SECTION 07 0001
SECTION 07 1113 - BITUMINOUS DAMPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cold-applied, cut-back-asphalt dampproofing.

B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for bituminous vapor retarders under slabs-on-grade.
 2. Section 042200 "Concrete Unit Masonry" for mortar parge coat on masonry surfaces.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 FIELD CONDITIONS

A. Weather Limitations: Proceed with application only when existing and forecasted weather conditions permit dampproofing to be performed according to manufacturers' written instructions.

B. Ventilation: Provide adequate ventilation during application of dampproofing in enclosed spaces. Maintain ventilation until dampproofing has cured.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain primary dampproofing materials and primers from single source from single manufacturer. Provide protection course and auxiliary materials recommended in writing by manufacturer of primary materials.

2.2 COLD-APPLIED, CUT-BACK-ASPHALT DAMPROOFING

A. Trowel Coats: ASTM D4586/D4586M, Type I, Class 1, fibered.
B. Brush and Spray Coats: ASTM D4479/D4479M, Type I, fibered.

2.3 AUXILIARY MATERIALS

A. Furnish auxiliary materials recommended in writing by dampproofing manufacturer for intended use and compatible with bituminous dampproofing.

B. Cut-Back-Asphalt Primer: ASTM D41/D41M.

C. Asphalt-Coated Glass Fabric: ASTM D1668/D1668M, Type I.

D. Patching Compound: Type recommended in writing by dampproofing manufacturer.

E. Protection Course: ASTM D6506, semirigid sheets of fiberglass or mineral-reinforced-asphaltic core, pressure laminated between two asphalt-saturated fibrous liners.
 1. Thickness: Nominal 1/8 inch (3 mm).
 2. Adhesive: Rubber-based solvent type recommended in writing by waterproofing manufacturer for protection course type.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for surface smoothness, maximum surface moisture content, and other conditions affecting performance of the Work.

B. Proceed with application only after substrate construction and penetrating work have been completed and unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean, prepare, and treat substrates according to manufacturer's written instructions. Provide clean, dust-free, and dry substrates for dampproofing application.

B. Mask or otherwise protect adjoining exposed surfaces from being stained, spotted, or coated with dampproofing. Prevent dampproofing materials from entering and clogging weep holes and drains.

C. Clean substrates of projections and substances detrimental to dampproofing work; fill voids, seal joints, and remove bond breakers if any.

D. Apply patching compound to patch and fill tie holes, honeycombs, reveals, and other imperfections.
3.3 APPLICATION, GENERAL

A. Comply with manufacturer's written instructions for dampproofing application, cure time between coats, and drying time before backfilling unless otherwise indicated.
 1. Apply dampproofing to provide continuous plane of protection.
 2. Apply additional coats if recommended in writing by manufacturer or to achieve a smooth surface and uninterrupted coverage.

B. Where dampproofing footings and foundation walls, apply from finished-grade line to top of footing; extend over top of footing and down a minimum of 6 inches (150 mm) over outside face of footing.
 1. Extend dampproofing 12 inches (300 mm) onto intersecting walls and footings, but do not extend onto surfaces exposed to view when Project is completed.
 2. Install flashings and corner protection stripping at internal and external corners, changes in plane, construction joints, cracks, and where indicated as "reinforced," by embedding an 8-inch- (200-mm-) wide strip of asphalt-coated glass fabric in a heavy coat of dampproofing. Dampproofing coat for embedding fabric is in addition to other coats required.

C. Where dampproofing exterior face of inner wythe of exterior masonry cavity walls, lap dampproofing at least 1/4 inch (6 mm) onto flashing, masonry reinforcement, veneer ties, and other items that penetrate inner wythe.
 1. Extend dampproofing over outer face of structural members and concrete slabs that interrupt inner wythe.
 2. Lap dampproofing at least 1/4 inch (6 mm) onto shelf angles supporting veneer.

3.4 COLD-APPLIED, CUT-BACK-ASPHALT DAMPPROOFING

A. Concrete Foundations and Parged Masonry Foundation Walls: Apply two brush or spray coats at not less than 1.25 gal./100 sq. ft. (0.5 L/sq. m) for first coat and 1 gal./100 sq. ft. (0.4 L/sq. m) for second coat.

B. Unexposed Face of Concrete Retaining Walls: Apply one brush or spray coat at not less than 1.25 gal./100 sq. ft. (0.5 L/sq. m).

C. Unexposed Face of Masonry Retaining Walls: Apply primer and one brush or spray coat at not less than 1.25 gal./100 sq. ft. (0.5 L/sq. m).

3.5 PROTECTION COURSE INSTALLATION

A. Install protection course over completed-and-cured dampproofing. Comply with dampproofing-material and protection-course manufacturers’ written instructions for attaching protection course.
 1. Support protection course over cured coating with spot application of adhesive type recommended in writing by protection-board manufacturer.
 2. Install protection course on same day of dampproofing installation (while coating is tacky) to ensure adhesion.
3.6 PROTECTION

A. Protect installed insulation drainage panels from damage due to UV light, harmful weather exposures, physical abuse, and other causes. Provide temporary coverings where panels are subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

B. Correct dampproofing that does not comply with requirements; repair substrates, and reapply dampproofing.

END OF SECTION 07 1113
SECTION 07 2100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. The product identified as the “Reflective Insulation / Vapor Barrier” is a proprietary product as
 required by the Owner. Substitutions are not permitted. Remaining products identified in this
 Section are non-proprietary.

 B. Section Includes:
 1. Polyisocyanurate foam-plastic board insulation.
 2. Glass-fiber blanket insulation.
 4. Loose-fill insulation.
 5. Reflective insulation / vapor barrier.

1.3 ACTION SUBMITTALS
 A. Product Data: For the products identified in this section.

1.4 INFORMATIONAL SUBMITTALS
 A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Protect insulation materials from physical damage and from deterioration due to moisture,
 soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's
 written instructions for handling, storing, and protecting during installation.

 B. Protect foam-plastic board insulation:
 1. Do not expose to sunlight except to necessary extent for period of installation and con-
 cealment.
 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project
 site until just before installation time.
 3. Quickly complete installation and concealment of foam-plastic board insulation in each
 area of construction.
PART 2 - PRODUCTS

2.1 POLYISOCYANURATE FOAM-PLASTIC BOARD INSULATION

A. Polyisocyanurate Board Insulation, Glass-Fiber-Mat Faced: ASTM C1289, glass-fiber-mat faced, Type II, Class 2.
 1. Basis-Of-Design Manufacturer: Firestone Building Products: ISO 95+ GL.
 2. Alternate manufacturers include, but are not limited to the following:
 a. Carlisle SynTec; Insulbase.
 b. Hunter; H-Shield.
 3. Installed thickness above roof deck: Manufacturer recommended thickness to obtain minimum R-30 insulation value.
 4. Installed thickness behind foundation walls and below new floor slabs: Manufacturer recommended thickness to obtain minimum R-10 insulation value.
 5. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches (305 mm) and wider in width.

2.2 GLASS-FIBER BLANKET INSULATION

A. Glass-Fiber Blanket Insulation, Foil Faced: ASTM C665, Type III (reflective faced), Class A (faced surface with a flame-spread index of 25 or less); Category 1 (membrane is a vapor barrier), faced with reinforced foil laminate scrim.
 1. Basis-Of-Design Manufacturer: Owens-Corning; Eco-Touch FSK-25 Foil Faced Batts.
 2. Alternate manufacturers include, and are limited to the following:
 b. Knauf-Insulation; Eco-Batt Insulation, FSK-25 Faced.
 3. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches (305 mm) and wider in width.

2.3 MINERAL-WOOL BLANKET INSULATION

A. Mineral-Wool Blanket Insulation, Unfaced: ASTM C665, Type IA (blankets without membrane facing); consisting of fibers; passing ASTM E136 for combustion characteristics.
 1. This product is field-cut and installed within fire-rated, hollow-metal, door frames.
 2. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
 3. Smoke-Developed Index: Not more than 50 when tested in accordance with ASTM E84.
 4. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches (305 mm) and wider in width.

2.4 REFLECTIVE INSULATION

A. Reflective Insulation: ASTM C1224, with one or more low-emittance surfaces with emittance value of 0.1 or less as measured per ASTM C1371.
 1. Proprietary Manufacturer: Energie Innovation, Inc., 2970 Halpern Street, Saint-Laurent, Quebec, Canada H4S 1R2.
 a. Product: Astro-Shield White, Reflective Ceiling.
c. Contact: Robert Baljak, Director Of Operations; Office Phone: (514) 334-3783.

3. Surface-Burning Characteristics: Maximum flame spread and smoke developed indexes of zero (0) and fifteen (15), respectively when tested in accordance with ASTM E84.

2.5 ACCESSORIES

A. Adhesive for Bonding Insulation: Product compatible with insulation and air and water barrier materials, and with demonstrated capability to bond insulation securely to substrates without damaging insulation and substrates.
 1. Adhesive for Reflective Insulation: Recommended by reflective insulation manufacturer.

B. Wire Mesh for Securing Blanket Insulation: Galvanized sheet, 3 inch x 6 inch x 10 gauge welded wire mesh.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Install insulation with manufacturer's R-value label exposed after insulation is installed.

D. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

E. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF SLAB INSULATION

A. On vertical slab edge and foundation surfaces, set insulation units using manufacturer's recommended adhesive according to manufacturer's written instructions.
 1. If not otherwise indicated, extend insulation a minimum of 24 inches (610 mm) below exterior grade line.
B. On horizontal surfaces, loosely lay insulation units according to manufacturer’s written instructions. Stagger end joints and tightly abut insulation units.

3.4 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:
 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
 3. Maintain 3-inch (76-mm) clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
 4. For metal-framed wall cavities where cavity heights exceed 96 inches (2438 mm), support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.
 5. Vapor-Retarder-Faced Blankets: Tape joints and ruptures in vapor-retarder facings, and seal each continuous area of insulation to ensure airtight installation.

B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
 1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft. (40 kg/cu. m).

3.5 INSTALLATION OF REFLECTIVE INSULATION

A. Install sheet reflective insulation according to ASTM C727 and manufacturer requirements.

B. Obtain written approval of final installation, from manufacturer’s representative, prior to requesting Architect to punch list the work.

3.6 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 07 2100
SECTION 07 4113 - FORMED METAL ROOF PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes exposed-fastener, lap-seam, metal roof panels, with profile to match existing.
 1. Exposed-fastener, lap-seam, metal roof panels are used at the following conditions:
 a. Extend existing exposed-fastener, lap-seam, metal roof panels above 2-hour fire rated masonry partition.
 b. Patch and flash new penetrations within existing exposed-fastener, lap-seam, metal roof panels.

B. Related Section includes 07 0001 “Minor Modifications to Existing Roof Coating System” where penetrations are required within existing exposed-fastener, lap-seam, metal roof panels.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. Meet with Owner, Architect, metal panel Installer, and installers whose work interfaces with or affects metal panels.
 2. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 3. Review methods and procedures related to metal panel installation, including manufacturer's written instructions.
 4. Examine support conditions for compliance with requirements, including alignment between and attachment to structural members.
 5. Review structural loading limitations of purlins during and after roofing.
 6. Review flashings, special details, drainage, penetrations, equipment curbs, and condition of other construction that affect metal panels.
 7. Review governing regulations and requirements for insurance, certificates, and tests and inspections if applicable.
 8. Review temporary protection requirements for metal panel systems during and after installation.
 10. Document proceedings, including corrective measures and actions required, and furnish copy of record to each participant.

The Club at Woodbridge
INDOOR ICE RINK
FORMED METAL ROOF PANELS

TVC Project No.: 18-27905

07 4113 - 1
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

B. Shop Drawings: Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.

C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes. Include similar Samples of trim and accessories involving color selection.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal panels to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. UL-Certified, Portable Roll-Forming Equipment: UL-certified, portable roll-forming equipment capable of producing metal panels warranted by manufacturer to be the same as factory-formed products. Maintain UL certification of portable roll-forming equipment for duration of work.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.

B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.

C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.

D. Retain strippable protective covering on metal panels during installation.
1.9 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.10 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

B. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.11 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including rupturing, cracking, or puncturing.
 b. Deterioration of metals and other materials beyond normal weathering.
 2. Warranty Period: Two years from date of Substantial Completion.

B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta E units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Finish Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:
 1. Wind Loads: As indicated on Drawings.
 2. Deflection Limits: For wind loads, no greater than 1/240 of the span.

B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. (0.3 L/s per sq. m) when tested according to ASTM E1680 at Test-Pressure Difference: 1.57 lbf/sq. ft. (75 Pa).

C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E1646 at Test-Pressure Difference: 2.86 lbf/sq. ft. (137 Pa).

The Club at Woodbridge
INDOOR ICE RINK
FORMED METAL ROOF PANELS

TVC Project No.: 18-27905

07 4113 - 3
D. Hydrostatic-Head Resistance: No water penetration when tested according to ASTM E2140.

E. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class Uplift Rating: UL 30.

F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

2.2 EXPOSED-FASTENER, LAP-SEAM, METAL ROOF PANELS

A. Provide factory-formed metal roof panels designed to be installed by lapping side edges of adjacent panels and mechanically attaching panels to supports using exposed fasteners in side laps. Include accessories required for weathertight installation.

B. Corrugated-Profile, Exposed-Fastener Metal Roof Panels with material, thickness and profile to match existing panels.
 1. Metallic-Coated Steel Sheet: Zinc-coated (galvanized) steel sheet complying with ASTM A653/A653M, G90 (Z275) coating designation, or aluminum-zinc alloy-coated steel sheet complying with ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation; structural quality.
 2. Shop paint or Field Paint panels with GAF; United Coatings Roof Elastomeric Coating. a. Color shall be white, to match existing.

2.3 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Subframing and Furring: ASTM C645; cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 (Z275 hot-dip galvanized) coating designation or ASTM A792/A792M, Class AZ50 (Class AZM150) aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.

B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal panels.
 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch (25-mm) thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.

C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

The Club at Woodbridge
INDOOR ICE RINK
FORMED METAL ROOF PANELS

TVC Project No.: 18-27905
07 4113 - 4
D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.

E. Panel Sealants: Provide sealant types recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
 2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weather-tight; and as recommended in writing by metal panel manufacturer.

2.4 FABRICATION

A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.

B. On-Site Fabrication: Subject to compliance with requirements of this Section, metal panels may be fabricated on-site using UL-certified, portable roll-forming equipment if panels are of same profile and warranted by manufacturer to be equal to factory-formed panels. Fabricate according to equipment manufacturer's written instructions and to comply with details shown.

C. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

D. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

E. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 2. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
 3. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
 4. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
 5. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
2.5 FINISHES

A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.

B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.3 INSTALLATION OF METAL ROOF PANELS

A. Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 1. Shim or otherwise plumb substrates receiving metal panels.
 2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air or water-resistant barriers and flashings that are concealed by metal panels are installed.
 3. Install screw fasteners in predrilled holes.
 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 5. Install flashing and trim as metal panel work proceeds.
 6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 7. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.

B. Fasteners: Steel Panels: Use stainless steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.

D. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal panel manufacturer; or, if not indicated, provide types recommended in writing by metal panel manufacturer

E. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level. Install work with laps, joints, and seams that are permanently watertight.
 1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and achieve waterproof performance.
 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (610 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints).

F. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to metal roof panels as recommended by manufacturer.

3.4 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.5 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 07-4113
SECTION 07 4113.16 – INDOOR STANDING-SEAM METAL ROOF PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes “indoor” standing-seam metal roof panels.

1.3 ACTION SUBMITTALS
 A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

 B. Shop Drawings: Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details. Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches (1:10).

 C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes. Include similar Samples of trim and accessories involving color selection.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For metal panels to include in maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.

 B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.

 C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.

 D. Retain strippable protective covering on metal panels during installation.
1.6 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

B. Coordinate metal panel installation with trim, construction of soffits, and other adjoining work to provide a noncorrosive installation.

1.7 WARRANTY

A. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 STANDING-SEAM METAL ROOF PANELS

A. Manufacturers include, but are not limited, to the following:
 1. Centria, Inc.
 2. Englert, Inc.
 4. Petersen Aluminum Corp.

B. Provide factory-formed metal roof panels designed to be installed by lapping and interconnecting raised side edges of adjacent panels with joint type indicated and mechanically attaching panels to supports using concealed clips in side laps. Include clips, cleats, pressure plates, and accessories required for weathertight installation.

C. Vertical-Rib, Snap-Joint, Standing-Seam Metal Roof Panels: Formed with vertical ribs at panel edges and a flat pan between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels, engaging opposite edge of adjacent panels, and snapping panels together.
 1. Metallic-Coated Steel Sheet: Zinc-coated (galvanized) steel sheet complying with ASTM A653/A653M, G90 (Z275) coating designation, or aluminum-zinc alloy-coated steel sheet complying with ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation; structural quality. Prepainted by the coil-coating process to comply with ASTM A755/A755M.
 a. Nominal Thickness: 0.022 inch (0.56 mm).
 c. Color: As selected by Architect from manufacturer's full range.
 2. Clips: One-piece fixed to accommodate thermal movement.
 a. Material: 0.028-inch- (0.71-mm-) nominal thickness, zinc-coated (galvanized) steel sheet.
 3. Panel Coverage: 12 inches (305 mm).
 4. Panel Height: 1.0 inch (25 mm).

The Club At Woodbridge
INDOOR ICE RINK

INDOOR STANDING SEAM METAL ROOF PANELS

TVC Project No.: 18-27905 07 4113.16 - 2
2.2 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Subframing and Furring: ASTM C645; cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 (Z275 hot-dip galvanized) coating designation or ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.

B. Panel Accessories: Provide components required for a complete, panel system including trim, copings, fasciae, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal panels.
 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.

C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

E. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.

2.3 FABRICATION

A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes. Comply with indicated profiles and with dimensional and structural requirements.

B. On-Site Fabrication: Subject to compliance with requirements of this Section, metal panels may be fabricated on-site using UL-certified, portable roll-forming equipment if panels are of same profile and warranted by manufacturer to be equal to factory-formed panels. Fabricate according to equipment manufacturer's written instructions and to comply with details shown.

C. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

D. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a seal and prevent metal-to-metal contact, and that minimize noise from movements.

E. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
2. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
3. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
4. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
5. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.

2.4 FINISHES

A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
C. Steel Panels and Accessories: Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
1. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer.
2. Examine solid roof sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.
B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION
 A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.3 INSTALLATION OF STANDING SEAM METAL ROOF PANELS
 A. Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 1. Shim or otherwise plumb substrates receiving metal panels.
 2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws.
 3. Install screw fasteners in predrilled holes.
 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 5. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 6. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws.

 B. Fasteners: Use stainless steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

 C. Anchor Clips: Anchor metal roof panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

 D. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.

3.4 ERECTION TOLERANCES
 A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.5 CLEANING AND PROTECTION
 A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

 B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 07 4113.16
SECTION 07 4213 - INSULATED METAL WALL PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes non-fire rated, foamed-insulation-core metal wall panels.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. Meet with Owner, Architect, Owner's insurer if applicable, metal panel Installer, metal panel manufacturer's representative, structural-support Installer, and installers whose work interfaces with or affects metal panels, including installers of doors, windows, and louvers.
 2. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 3. Review methods and procedures related to metal panel installation, including manufacturer's written instructions.
 4. Examine support conditions for compliance with requirements, including alignment between and attachment to structural members.
 5. Review flashings, special siding details, wall penetrations, openings, and condition of other construction that affect metal panels.
 6. Review governing regulations and requirements for insurance, certificates, and tests and inspections if applicable.
 7. Review temporary protection requirements for metal panel assembly during and after installation.
 9. Document proceedings, including corrective measures and actions required, and furnish copy of record to each participant.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.

B. Shop Drawings: Architect’s drawings show metal clad insulated metal panels mounted directly onto concrete masonry units. If manufacturer prohibits that installation approach, show all
conditions where additional required mounting members will affect overall distance between metal insulated panel exterior surface and concrete masonry unit exterior surface.

1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.

2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches (1:10).

C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes. Include similar Samples of trim and accessories involving color selection.

D. Samples for Verification: For each type of exposed finish, prepared on Samples of size indicated below. Metal Panels: 12 inches (305 mm) long by actual panel width. Include fasteners, closures, and other metal panel accessories.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each product, tests performed by a qualified testing agency.

C. Field quality-control reports.

D. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal panels to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Build mockup of typical metal panel assembly as shown on Drawings, including corner, supports, attachments, and accessories.

2. Water-Spray Test: Conduct water-spray test of metal panel assembly mockup, testing for water penetration according to AAMA 501.2.

3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.

B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.

C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.

D. Retain strippable protective covering on metal panels during installation.

1.9 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.10 COORDINATION

A. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.11 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including rupturing, cracking, or puncturing.
 b. Deterioration of metals and other materials beyond normal weathering.
 2. Warranty Period: Two years from date of Substantial Completion.

B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Finish Warranty Period: 20 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-Of-Design Manufacturer: Centria, Formawall, FWDS – vertical profile.
 1. Alternate manufacturers include, but are not limited, to the following:
 b. Metl-Span, CFA Vertical Wall Panel.

2.2 PERFORMANCE REQUIREMENTS

A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E72:
 1. Wind Loads: As indicated on Drawings.
 2. Other Design Loads: As indicated on Drawings.
 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.

B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. (0.3 L/s per sq. m) when tested according to ASTM E283 at the following test-pressure difference: 6.24 lbf/sq. ft.

C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E331 at the following test-pressure difference: 10.00 lbf/sq. ft.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

E. Fire-Test-Response Characteristics: Provide metal wall panels and system components with the following fire-test-response characteristics, as determined by testing identical panels and system components per test method indicated below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify products with appropriate markings of applicable testing agency.
 2. Radiant Heat Exposure: No ignition when tested according to NFPA 268.
 3. Potential Heat: Acceptable level when tested according to NFPA 259.
 4. Surface-Burning Characteristics: Provide wall panels with a flame-spread index of 25 or less and a smoke-developed index of 450 or less, per ASTM E84.
2.3 FOAMED-INSULATION-CORE METAL WALL PANELS

A. General: Provide factory-formed and assembled metal wall panels fabricated from two metal facing sheets and insulation core foamed in place during fabrication, and with joints between panels designed to form weathertight seals. Include accessories required for weathertight installation.

1. Insulation Core: Modified isocyanurate or polyurethane foam using a non-CFC blowing agent, with maximum flame-spread and smoke-developed indexes of 25 and 450, respectively.
 a. Closed-Cell Content: 90 percent when tested according to ASTM D6226.
 b. Density: 2.0 to 2.6 lb/cu. ft. (32 to 42 kg/cu. m) when tested according to ASTM D1622.
 c. Compressive Strength: Minimum 20 psi (140 kPa) when tested according to ASTM D1621.
 d. Shear Strength: 26 psi (179 kPa) when tested according to ASTM C273/C273M.

B. Concealed-Fastener, Foamed-Insulation-Core Metal Wall Panels: Formed with tongue-and-groove panel edges; designed for sequential installation by interlocking panel edges and mechanically attaching panels to supports using concealed clips or fasteners.

1. Basis-Of-Design Manufacturer: Centria; FormaWall Dimension Series; 3T Panel.
2. Alternate Manufacturers are limited to the following:
 1) All Weather Insulated Panel; Mesa DM45.
 2) Kingspan; Designwall 4000.
3. Metallic-Coated Steel Sheet: Facings of zinc-coated (galvanized) steel sheet complying with ASTM A653/A653M, G90 (Z275) coating designation, or aluminum-zinc-alloy-coated steel sheet complying with ASTM A792/A792M, Class AZ50 (Class AZM150) coating designation; structural quality. Prepainted by the coil-coating process to comply with ASTM A755/A755M.
 a. Nominal Thickness: 26 gauge; 0.028 inch (0.71 mm).
 1) Color: As selected by Architect from manufacturer’s full range.
 c. Interior Finish: Siliconized polyester.
 1) Color: Manufacturer’s standard White.
4. Panel Coverage: 36 inches (914 mm) nominal.
5. Panel Thickness: 2.75 inches (70 mm).
6. Thermal-Resistance Value (R-Value): R-20 according to ASTM C1363.

2.4 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Subframing and Furring: ASTM C645, cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 (Z275 hot-dip galvanized) coating designation or ASTM A792/A792M, Class AZ50 (Class AZM150) aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer’s standard sections as required for support and alignment of metal panel system.

B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, Mullions, sills, corner units, clips, flashings, sealants, gaskets,
fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.

1. Closures: Provide closures at eaves and rakes, fabricated of same metal as metal panels.
2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- (25-mm-) thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.

C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, bases, drips, sills, jambs, corners, endwalls, framed openings, rakes, fasciae, parapet caps, soffits, reveals, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.

E. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
 2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.

2.5 FABRICATION

A. General: Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.

B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

C. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

D. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
2. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
3. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
4. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
5. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 a. Size: As recommended by SMACNA’s "Architectural Sheet Metal Manual" or metal wall panel manufacturer for application but not less than thickness of metal being secured.

2.6 FINISHES

A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

C. Steel Panels and Accessories:
 1. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 2. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 1. Examine wall framing to verify that girts, angles, channels, studs, and other structural panel support members and anchorage have been installed within alignment tolerances required by metal wall panel manufacturer.
B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.3 METAL PANEL INSTALLATION

A. General: Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.

1. Shim or otherwise plumb substrates receiving metal panels.
2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal panels are installed.
3. Install screw fasteners in predrilled holes.
4. Locate and space fastenings in uniform vertical and horizontal alignment.
5. Install flashing and trim as metal panel work proceeds.
6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
7. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.

B. Steel Panel Fasteners: Use stainless-steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.

D. Joint Sealers: Install gaskets, joint fillers, and sealants where indicated and where required for weathertight performance of metal wall panel assemblies. Provide types of gaskets, fillers, and sealants indicated by metal panel manufacturer; or, if not indicated, provide types recommended by metal wall panel manufacturer.

1. Seal metal wall panel end laps with double beads of tape or sealant, full width of panel. Seal side joints where recommended by metal wall panel manufacturer.
2. Prepare joints and apply sealants to comply with requirements in Section 07 9200 "Joint Sealants."
3.4 INSULATED METAL WALL PANEL INSTALLATION

A. General: Apply continuous ribbon of sealant to panel joint on concealed side of insulated metal wall panels as vapor seal; apply sealant to panel joint on exposed side of panels for weather seal.
 1. Fasten foamed-insulation-core metal wall panels to supports with fasteners at each lapped joint at location and spacing and with fasteners recommended by manufacturer.
 2. Apply panels and associated items true to line for neat and weathertight enclosure. Avoid "panel creep" or application not true to line.
 3. Provide metal-backed washers under heads of exposed fasteners on weather side of insulated metal wall panels.
 4. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.
 5. Provide sealant tape at lapped joints of insulated metal wall panels and between panels and protruding equipment, vents, and accessories.
 6. Apply a continuous ribbon of sealant tape to panel side laps and elsewhere as needed to make panels weathertight.

B. Foamed-Insulation-Core Metal Wall Panels: Fasten metal wall panels to supports with concealed clips at each joint at location and spacing and with fasteners recommended by manufacturer. Fully engage tongue and groove of adjacent panels.
 1. Install clips to supports with self-tapping fasteners.

C. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.
 1. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal panel manufacturer; or, if not indicated, provide types recommended by metal panel manufacturer.

D. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level. Install work with laps, joints, and seams that are permanently watertight.
 1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to achieve waterproof performance.
 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (610 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints).

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Water-Spray Test: After installation, test area of assembly shown on Drawings for water penetration according to AAMA 501.2.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect completed metal wall panel installation, including accessories.

D. Metal wall panels will be considered defective if they do not pass test and inspections.

E. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.

F. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

B. After metal panel installation, clear weep holes and drainage channels of obstructions, dirt, and sealant.

C. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 07 4213
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Adhered ethylene-propylene-diene-terpolymer (EPDM) roofing system.
 2. Cover board.

B. Related Requirements:
 1. Section 06-1053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking.
 2. Section 07-2100 “Thermal Insulation” for polyisocyanurate foam-plastic board insulation.
 3. Section 07-6200 “Sheet Metal Flashing and Trim”.

1.3 DEFINITIONS

A. Roofing Terminology: Definitions in ASTM D 1079 and glossary of NRCA's "The NRCA Roofing Manual: Membrane Roof Systems" apply to work of this Section.

1.4 PREINSTALLATION MEETINGS

A. Preliminary Roofing Conference: Before starting roof deck construction, conduct conference at Project site.
 1. Meet with Owner, Architect, roofing Installer, roofing system manufacturer's representa-
 tive, deck Installer, and installers whose work interfaces with or affects roofing; including
 installers of roof accessories and roof-mounted equipment.
 2. Review methods and procedures related to roofing installation, including manufacturer's
 written instructions.
 3. Review and finalize construction schedule, and verify availability of materials, Installer's
 personnel, equipment, and facilities needed to make progress and avoid delays.
 4. Review deck substrate requirements for conditions and finishes, including flatness and fast-
 tening.
 5. Review structural loading limitations of roof deck during and after roofing.
 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment
 curbs, and condition of other construction that affects roofing system.
 7. Review governing regulations and requirements for insurance and certificates if applicable.
 8. Review temporary protection requirements for roofing system during and after installation.

The Club at Woodbridge
INDOOR ICE RINK

ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING

TVC Project No.: 18-27905

07 5323 - 1
9. Review roof observation and repair procedures after roofing installation.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Include roof plans, sections, details, and attachments to other work, including the following:
 1. Layout and thickness if insulation.
 2. Base flashings and membrane terminations.
 3. Flashing details at penetrations.
 4. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.

C. Samples for Verification: For roof membrane and flashings of color required.

D. Wind Uplift Resistance Submittal: For roofing system, indicating compliance with wind uplift performance requirements as indicated on the drawings.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and manufacturer.

B. Manufacturer Certificates:
 2. Special Warranty Certificate: Signed by roof membrane manufacturer, certifying that all materials supplied under this Section are acceptable for special warranty.

C. Sample Warranties: For manufacturer's special warranties.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing system to include in maintenance manuals.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by roofing system manufacturer to install manufacturer's product and that is eligible to receive manufacturer's special warranty.
1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components.

B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid material from direct sunlight. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.

C. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer's written instructions for handling, storing, and protecting during installation.

D. Handle and store roofing materials, and place equipment in a manner to avoid permanent deflection of deck.

1.10 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of roofing system that fail in materials or workmanship within specified warranty period.
 1. Special warranty includes roof membrane, base flashings, cover boards, and other components of roofing system.
 2. Warranty Period: 20 years from Date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Installed roofing system and base flashings shall withstand specified uplift pressures, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Roofing and flashings shall remain watertight.

B. Material Compatibility: Roofing materials shall be compatible with one another and adjacent materials under conditions of service and application required, as demonstrated by roof membrane manufacturer based on testing and field experience.
C. Wind Uplift Resistance: Design roofing system to resist the wind uplift pressures as indicated on the drawings.

D. Exterior Fire-Test Exposure: ASTM E 108 or UL 790, Class A; for application and roof slopes indicated; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

2.2 ETHYLENE-PROPYLENE-DIENE-TERPOLYMER (EPDM) ROOFING

A. EPDM Sheet: ASTM D 4637/D 4637M, Type I, non-reinforced, EPDM sheet.
 1. Thickness: 60 mils (1.5 mm), nominal.
 2. Exposed Face Color: Black.
 3. Source Limitations: Obtain components for roofing system from roof membrane manufacturer or manufacturers approved by roof membrane manufacturer.

B. Basis-Of-Design Manufacturer: Firestone Building Products: RubberGard EPDM.

C. Alternate manufacturers include Carlisle SynTec; Sure-Seal EPDM and GenFlex; EPDM.

2.3 AUXILIARY ROOFING MATERIALS

A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with other roofing components. Comply with VOC limits of authorities having jurisdiction.

B. Sheet Flashing: 60-mil- (1.5-mm-) thick EPDM, partially cured or cured, according to application.

C. Slip Sheet: Manufacturer's standard, of thickness required for application.

D. Prefabricated Pipe Flashings: As recommended by roof membrane manufacturer.

E. Roof Vents: As recommended by roof membrane manufacturer, but not less than 4-inch diameter.

F. Bonding Adhesive: Manufacturer's standard, water based.

G. Seaming Material: Manufacturer's standard, synthetic-rubber polymer primer and 3-inch- (75-mm-) wide minimum, butyl splice tape with release film.

H. Lap Sealant: Manufacturer's standard, single-component sealant, colored to match membrane roofing.

I. Water Cutoff Mastic: Manufacturer's standard butyl mastic sealant.

J. Metal Termination Bars: Manufacturer’s standard, predrilled stainless steel or aluminum bars, approximately 1 by 1/8 inch (25 by 3 mm) thick; with anchors.
K. Metal Battens: Manufacturer’s standard, aluminum-zinc-alloy-coated or zinc-coated steel sheet, approximately 1 inch wide by 0.05 inch thick (25 mm wide by 1.3 mm thick), prepunched.

L. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening components to substrate, and acceptable to roofing system manufacturer.

M. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, molded pipe boot flashings, preformed inside and outside corner sheet flashings, reinforced EPDM securement strips, T-joint covers, in-seam sealants, termination reglets, cover strips, and other accessories.

N. Liquid Coating: Product specifically formulated for coating EPDM membrane roofing:
 1. Type: Acrylic emulsion complying with ASTM D 6083.
 2. Color: Black.

2.4 SUBSTRATE BOARDS

A. Substrate Board: ASTM C 1177/C 1177M, glass-mat, water-resistant gypsum board.
 1. Thickness: 1/4 inch (6 mm).

2.5 ASPHALT MATERIALS

A. Roofing Asphalt: ASTM D 312/D 312M, Type III or Type IV.

B. Asphalt Primer: ASTM D 41/D 41M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 1. Verify that roof openings and penetrations are in place, curbs are set and braced, and roof-drain bodies are securely clamped in place.
 2. Verify that wood blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing system installation according to roofing system manufacturer's written instructions. Remove sharp projections.

B. Perform fastener-pullout tests according to roof system manufacturer's written instructions.
 1. Submit test result within 24 hours of performing tests.
 a. Include manufacturer's requirements for any revision to previously submitted fastener patterns required to achieve specified wind uplift requirements.

3.3 ROOFING INSTALLATION, GENERAL

A. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at end of workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.

B. Install roof membrane and auxiliary materials to tie into existing roofing to maintain

3.4 SUBSTRATE BOARD INSTALLATION

A. Install substrate board with long joints in continuous straight lines, with end joints staggered not less than 24 inches (610 mm) in adjacent rows. Tightly butt substrate boards together. Cut substrate board to fit tight around penetrations and projections, and to fit tight to intersecting sloping roof decks.

3.5 ADHERED ROOFING INSTALLATION

A. Adhere roof membrane over area to receive roofing according to roofing system manufacturer's written instructions.

B. Unroll membrane roof membrane and allow to relax before installing.

C. Start installation of roofing in presence of roofing system manufacturer's technical personnel.

D. Accurately align roof membrane and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.

E. Bonding Adhesive: Apply to substrate and underside of roof membrane at rate required by manufacturer and allow to partially dry before installing roof membrane. Do not apply to splice area of roof membrane.

F. In addition to adhering, mechanically fasten roof membrane securely at terminations, penetrations, and perimeters.

G. Apply roof membrane with side laps shingled with slope of roof deck where possible.
H. Adhesive Seam Installation: Clean both faces of splice areas, apply splicing cement.
 1. Firmly roll side and end laps of overlapping roof membrane to ensure a watertight seam installation.
 2. Apply lap sealant and seal exposed edges of roofing terminations.
 3. Apply a continuous bead of in-seam sealant before closing splice if required by roofing system manufacturer.

I. Tape Seam Installation: Clean and prime both faces of splice areas, apply splice tape.
 1. Firmly roll side and end laps of overlapping roof membrane to ensure a watertight seam installation.
 2. Apply lap sealant and seal exposed edges of roofing terminations.

J. Repair tears, voids, and lapped seams in roof membrane that do not comply with requirements.

K. Spread sealant or mastic bed over deck-drain flange at roof drains, and securely seal roof membrane in place with clamping ring.

L. Adhere protection sheet over roof membrane at locations indicated.

3.6 BASE FLASHING INSTALLATION

A. Install sheet flashings and preformed flashing accessories, and adhere to substrates according to roofing system manufacturer's written instructions.

B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate, and allow to partially dry. Do not apply to seam area of flashing.

C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.

D. Clean splice areas, apply splicing cement, and firmly roll side and end laps of overlapping sheets to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of sheet flashing terminations.

E. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.7 PROTECTING AND CLEANING

A. Protect roofing system from damage and wear during remainder of construction period. When remaining construction does not affect or endanger roofing system, inspect roofing system for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
B. Correct deficiencies in or remove roofing system that does not comply with requirements, repair substrates, and repair or reinstall roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.

C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.
3.8 ROOFING INSTALLER'S WARRANTY

A. WHEREAS ____________________________, herein called the "Roofing Installer," has performed roofing and associated work ("work") on the following project:

1. Owner: Woodbridge Township.
2. Address: 1 Main Street, Woodbridge, NJ 07095
3. Building Name/Type: The Club at Woodbridge
4. Address: 585 Main Street, Woodbridge, NJ 07095.
5. Area of Work: Various areas of the building interior.
6. Acceptance Date: _____________.
7. Warranty Period: _____________.
8. Expiration Date: _____________.

B. AND WHEREAS Roofing Installer has contracted (either directly with Owner or indirectly as a subcontractor) to warrant said work against leaks and faulty or defective materials and workmanship for designated Warranty Period,

C. NOW THEREFORE Roofing Installer hereby warrants, subject to terms and conditions herein set forth, that during Warranty Period Roofing Installer will, at Roofing Installer's own cost and expense, make or cause to be made such repairs to or replacements of said work as are necessary to correct faulty and defective work and as are necessary to maintain said work in a watertight condition.

D. This Warranty is made subject to the following terms and conditions:

1. Specifically excluded from this Warranty are damages to work and other parts of the building, and to building contents, caused by:
 a. lightning;
 b. peak gust wind speed exceeding _____;
 c. fire;
 d. failure of roofing system substrate, including cracking, settlement, excessive deflection, deterioration, and decomposition;
 e. faulty construction of parapet walls, copings, chimneys, skylights, vents, equipment supports, and other edge conditions and penetrations of the work;
 f. vapor condensation on bottom of roofing; and
 g. activity on roofing by others, including construction contractors, maintenance personnel, other persons, and animals, whether authorized or unauthorized by Owner.

2. When work has been damaged by any of foregoing causes, Warranty shall be null and void until such damage has been repaired by Roofing Installer and until cost and expense thereof have been paid by Owner or by another responsible party so designated.

3. Roofing Installer is responsible for damage to work covered by this Warranty but is not liable for consequential damages to building or building contents resulting from leaks or faults or defects of work.
4. During Warranty Period, if Owner allows alteration of work by anyone other than Roofing Installer, including cutting, patching, and maintenance in connection with penetrations, attachment of other work, and positioning of anything on roof, this Warranty shall become null and void on date of said alterations, but only to the extent said alterations affect work covered by this Warranty. If Owner engages Roofing Installer to perform said alterations, Warranty shall not become null and void unless Roofing Installer, before starting said work, shall have notified Owner in writing, showing reasonable cause for claim, that said alterations would likely damage or deteriorate work, thereby reasonably justifying a limitation or termination of this Warranty.

5. During Warranty Period, if original use of roof is changed and it becomes used for, but was not originally specified for, a promenade, work deck, spray-cooled surface, flooded basin, or other use or service more severe than originally specified, this Warranty shall become null and void on date of said change, but only to the extent said change affects work covered by this Warranty.

6. Owner shall promptly notify Roofing Installer of observed, known, or suspected leaks, defects, or deterioration and shall afford reasonable opportunity for Roofing Installer to inspect work and to examine evidence of such leaks, defects, or deterioration.

7. This Warranty is recognized to be the only warranty of Roofing Installer on said work and shall not operate to restrict or cut off Owner from other remedies and resources lawfully available to Owner in cases of roofing failure. Specifically, this Warranty shall not operate to relieve Roofing Installer of responsibility for performance of original work according to requirements of the Contract Documents, regardless of whether Contract was a contract directly with Owner or a subcontract with Owner’s General Contractor.

E. IN WITNESS THEREOF, this instrument has been duly executed this ___________ day of __________________, ________________.

1. Authorized Signature: ________________________________.
2. Name: ____________________________________.
3. Title: ________________________________.

END OF SECTION 07 5323
SECTION 07-6200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Formed roof-drainage sheet metal fabrications.
 2. Formed low-slope roof sheet metal fabrications.
 3. Formed wall sheet metal fabrications.
 4. Formed equipment support flashing.
B. Related Requirements: Section 06-1053 "Miscellaneous Rough Carpentry" for wood nailers and blocking.

1.3 COORDINATION
A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.
B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.
 1. Review construction schedule. Verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 2. Review special roof details, roof drainage, roof-penetration flashing, equipment curbs, and condition of other construction that affect sheet metal flashing and trim.
 3. Review requirements for insurance and certificates if applicable.
 4. Review sheet metal flashing observation and repair procedures after flashing installation.

1.5 ACTION SUBMITTALS
A. Product Data: For each of the following:
 1. Underlayment materials.
 2. Elastomeric sealant.
 3. Butyl sealant.
4. Epoxy seam sealer.

B. Shop Drawings: For sheet metal flashing and trim.
 1. Include plans, elevations, sections, and attachment details.
 2. Detail fabrication and installation layouts, and keyed details. Distinguish between shop- and field-assembled Work.
 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 4. Include details for forming, including profiles, shapes, seams, and dimensions.
 5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 6. Include details of termination points and assemblies.
 7. Include details of roof-penetration flashing.
 8. Include details of edge conditions, including eaves, rakes, crickets, flashings, and counter-flashings.
 9. Include details of special conditions.
 10. Include details of connections to adjoining work.
 11. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches (1:10).

C. Samples: For each exposed product and for each color and texture specified, 12 inches (300 mm) long by actual width.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

B. Product Certificates: For each type of coping and roof edge flashing that is ANSI/SPRI/FM 4435/ES-1 tested.

C. Product Test Reports: For each product, for tests performed by a qualified testing agency.

E. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.

B. Warranty.

1.8 QUALITY ASSURANCE

A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.
1. For copings and roof edge flashings that are ANSI/SPRI/FM 4435/ES-1 tested, shop shall be listed as able to fabricate required details as tested and approved.

B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.
 1. Build mockup of typical roof eave, including fascia trim, apron flashing, approximately 10 feet (3.0 m) long, including supporting construction cleats, seams, attachments, and accessories.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Owner specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.
 1. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
 2. Protect stored sheet metal flashing and trim from contact with water.

B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.10 WARRANTY

A. Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta E units when tested in accordance with ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sheet metal flashing and trim assemblies, including cleats, anchors, and fasteners, shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.
B. Sheet Metal Standard for Flashing and Trim: Comply with SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. SPRI Wind Design Standard: Manufacture and install coping and roof edge flashings tested in accordance with ANSI/SPRI/FM 4435/ES-1 and capable of resisting the following design pressure as indicated on Drawings.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

2.2 SHEET METALS

A. Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.

B. Aluminum Sheet: ASTM B209 (ASTM B209M), alloy as standard with manufacturer for finish required, with temper as required to suit forming operations and performance required; with smooth, flat surface.
 1. Color Anodic Finish, Coil Coated: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker. Color shall be White.
 a. Color Range: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
 2. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil (0.013 mm).

2.3 UNDERLAYMENT MATERIALS

A. Felt: ASTM D226/D226M, Type II (No. 30), asphalt-saturated organic felt; nonperforated.

B. Slip Sheet: Rosin-sized building paper, 3 lb/100 sq. ft. (0.16 kg/sq. m) minimum.

2.4 MISCELLANEOUS MATERIALS

A. Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal unless otherwise indicated.

B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal.
 1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
b. Blind Fasteners: High-strength aluminum or stainless steel rivets suitable for metal being fastened.

2. Fasteners for Aluminum Sheet: Aluminum or Series 300 stainless steel.

C. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.

D. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.

E. Bituminous Coating: Cold-applied asphalt emulsion in accordance with ASTM D1187/D1187M.

F. Asphalt Roofing Cement: ASTM D4586, asbestos free, of consistency required for application.

2.5 FABRICATION, GENERAL

A. Custom fabricate sheet metal flashing and trim to comply with details indicated and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required.

1. Fabricate sheet metal flashing and trim in shop to greatest extent possible.

2. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.

3. Verify shapes and dimensions of surfaces to be covered and obtain field measurements for accurate fit before shop fabrication.

4. Form sheet metal flashing and trim to fit substrates without excessive oil-canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.

5. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances:

1. Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.

D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal in accordance with cited sheet metal standard to provide for proper installation of elastomeric sealant.
E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

F. Fabricate cleats and attachment devices of sizes as recommended by cited sheet metal standard for application, but not less than thickness of metal being secured.

G. Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints where necessary for strength.

H. Do not use graphite pencils to mark metal surfaces.

2.6 ROOF-DRAINAGE SHEET METAL FABRICATIONS

A. Hanging Gutters:
 1. Fabricate to cross section required, complete with end pieces, outlet tubes, and other accessories as required.
 2. Fabricate in minimum 96-inch (2400-mm) long sections.
 3. Furnish flat-stock gutter brackets and flat-stock gutter spacers and straps fabricated from same metal as gutters, of size recommended by cited sheet metal standard, but with thickness not less than twice the gutter thickness.
 4. Fabricate expansion joints, expansion-joint covers, gutter bead reinforcing bars, and gutter accessories from same metal as gutters.
 5. Gutter Profile: As indicated on drawings.
 8. Gutters with Girth up to 15 Inches (380 mm): 0.032 inch (0.81 mm) thick.

B. Downspouts: Fabricate rectangular downspouts to dimensions indicated on Drawings, complete with mitered elbows. Furnish with metal hangers from same material as downspouts and anchors.
 1. Fabricated Hanger Style: Fig. 1-35B in accordance with SMACNA's "Architectural Sheet Metal Manual."
 2. Fabricate from Aluminum: 0.024 inch (0.61 mm) thick.

2.7 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Roof Edge Flashing (Gravel Stop): Fabricate in minimum 96-inch (2400-mm) long, but not exceeding 12-foot (3.6-m) long sections. Furnish with 6-inch (150-mm) wide, joint cover plates.
 1. Joint Style: Butted with expansion space and 6-inch (150-mm) wide, concealed backup plate.
 2. Fabricate from Aluminum: 0.050 inch (1.27 mm) thick.

B. Copings: Fabricate in minimum 96-inch (2400-mm) long, but not exceeding 12-foot (3.6-m) long, sections. Fabricate joint plates of same thickness as copings. Furnish with continuous cleats to support edge of external leg and drill elongated holes for fasteners on interior leg. Miter corners, fasten and seal watertight.
 1. Coping Profile: As shown on Drawings.
2. Joint Style: Butted with expansion space and 6-inch- (150-mm-) wide, concealed backup plate.
3. Fabricate from Aluminum: 0.050 inch (1.27 mm) thick.

C. Roof-to-Wall Transition Cover: Fabricate from Aluminum: 0.050 inch (1.27 mm) thick.

D. Base Flashing: Fabricate from Aluminum: 0.040 inch (1.02 mm) thick.

E. Counterflashing: Fabricate from Aluminum: 0.032 inch (0.81 mm) thick.

F. Flashing Receivers: Fabricate from Aluminum: 0.032 inch (0.81 mm) thick.

G. Roof-Penetration Flashing: Fabricate from Stainless Steel: 0.0188 inch (0.477 mm) thick.

2.8 WALL SHEET METAL FABRICATIONS

A. Opening Flashings in Frame Construction: Fabricate head, sill, and similar flashings to extend 4 inches (100 mm) beyond wall openings. Form head and sill flashing with 2-inch- (50-mm-) high, end dams. Fabricate from Aluminum: 0.032 inch (0.81 mm) thick.

2.9 MISCELLANEOUS SHEET METAL FABRICATIONS

A. Equipment Support Flashing: Fabricate from Stainless Steel: 0.0188 inch (0.477 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF UNDERLAYMENT

A. Felt Underlayment: Install felt underlayment, wrinkle free, using adhesive to minimize use of mechanical fasteners under sheet metal flashing and trim. Install in shingle fashion to shed water. Lap joints not less than 2 inches (50 mm).
B. Install slip sheet, wrinkle free, over underlayment before installing sheet metal flashing and trim. Install in shingle fashion to shed water. Lapp joints not less than 4 inches (100 mm).

3.3 INSTALLATION, GENERAL

A. Install sheet metal flashing and trim to comply with details indicated and recommendations of cited sheet metal standard that apply to installation characteristics required unless otherwise indicated on Drawings.
 1. Install fasteners, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 2. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of sealant.
 3. Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement.
 4. Install sheet metal flashing and trim to fit substrates and to result in watertight performance.
 5. Space individual cleats not more than 12 inches (300 mm) apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
 6. Install exposed sheet metal flashing and trim with limited oil-canning, and free of buckling and tool marks.
 7. Do not field cut sheet metal flashing and trim by torch.
 8. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.
 1. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim.
 1. Space movement joints at maximum of 10 feet (3 m) with no joints within 24 inches (600 mm) of corner or intersection.
 2. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.

D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction.
 1. Use sealant-filled joints unless otherwise indicated.
 a. Embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant.
 b. Form joints to completely conceal sealant.
 c. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way.
d. Adjust setting proportionately for installation at higher ambient temperatures.
 1) Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).

2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

3.4 INSTALLATION OF ROOF-DRAINAGE SYSTEM

A. Install sheet metal roof-drainage items to produce complete roof-drainage system in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.

B. Hanging Gutters:
 1. Join sections with joints sealed with sealant.
 2. Provide for thermal expansion.
 3. Attach gutters at eave or fascia to firmly anchor them in position.
 4. Provide end closures and seal watertight with sealant.
 5. Slope to downspouts.
 6. Fasten gutter spacers to front and back of gutter.
 7. Generally, retain only one of first two subparagraphs below.
 8. Anchor back of gutter that extends onto roof deck with cleats spaced not more than 24 inches (600 mm) apart.
 a. Anchor gutter with gutter brackets spaced not more than 30 inches (760 mm) apart to roof deck unless otherwise indicated, and loosely lock to front gutter bead.

C. Downspouts:
 1. Join sections with 1-1/2-inch (38-mm) telescoping joints.
 2. Provide hangers with fasteners designed to hold downspouts securely to walls.
 3. Locate hangers at top and bottom and at approximately 60 inches (1500 mm) o.c.
 4. Connect downspouts to underground drainage system.

3.5 INSTALLATION OF ROOF FLASHINGS

A. Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard.
 1. Provide concealed fasteners where possible, and set units true to line, levels, and slopes.
 2. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Roof Edge Flashing:
 1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
 2. Anchor to resist uplift and outward forces in accordance with recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch (75-mm) centers.

C. Copings: Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.

D. Pipe or Post Counterflexing: Install counterflexing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending minimum of 4 inches (100 mm) over base flashing. Install stainless steel draw band and tighten.
E. Counterflashing: Coordinate installation of counterflashing with installation of base flashing.
 1. Insert counterflashing in reglets or receivers and fit tightly to base flashing.
 2. Extend counterflashing 4 inches (100 mm) over base flashing.
 3. Lap counterflashing joints minimum of 4 inches (100 mm).
 4. Secure in waterproof manner by means of interlocking folded seam or blind rivets and
 sealant unless otherwise indicated.

F. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation
 of roofing and other items penetrating roof. Seal with butyl sealant and clamp flashing to pipes
 that penetrate roof.

3.6 INSTALLATION OF WALL FLASHINGS

A. Install sheet metal wall flashing to intercept and exclude penetrating moisture in accordance
 with cited sheet metal standard unless otherwise indicated. Coordinate installation of wall
 flashing with installation of wall-opening components such as windows, doors, and louvers.

B. Opening Flashings in Frame Construction: Install continuous head, sill, and similar flashings to
 extend 4 inches (100 mm) beyond wall openings.

3.7 INSTALLATION OF MISCELLANEOUS FLASHING

A. Equipment Support Flashing: Coordinate installation of equipment support flashing with
 installation of roofing and equipment. Seal flashing with elastomeric sealant to equipment
 support member.

3.8 INSTALLATION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance
 of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and
 within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.9 CLEANING

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and
 weathering.

B. Clean off excess sealants.

3.10 PROTECTION

A. Remove temporary protective coverings and strippable films as sheet metal flashing and trim
 are installed unless otherwise indicated in manufacturer's written installation instructions.

B. On completion of sheet metal flashing and trim installation, remove unused materials and clean
 finished surfaces as recommended in writing by sheet metal flashing and trim manufacturer.

The Club at Woodbridge
INDOOR ICE RINK
SHEET METAL FLASHING AND TRIM

TVC Project No.: 18-27905
C. Maintain sheet metal flashing and trim in clean condition during construction.

D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures, as determined by Architect.

END OF SECTION 07-6200
SECTION 07 9200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Silicone joint sealants.
 2. Urethane joint sealants.
 3. Sealant tape for metal panel lap joints.

1.3 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product.

B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.

C. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- (13-mm-) wide joints formed between two 6-inch- (150-mm-) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

D. Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Product Test Reports: For each kind of joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.

C. Preconstruction Laboratory Test Reports: From sealant manufacturer, indicating the following:
 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.

E. Field-Adhesion-Test Reports: For each sealant application tested.

F. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.
 1. Testing Agency Qualifications: Qualified according to ASTM C1021 to conduct the testing indicated.

C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.6 PRECONSTRUCTION TESTING

A. Preconstruction Laboratory Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants.
 1. Adhesion Testing: Use ASTM C794 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.
 2. Compatibility Testing: Use ASTM C1087 to determine sealant compatibility when in contact with glazing and gasket materials.
 3. Submit manufacturer's recommended number of pieces of each type of material, including joint substrates, joint-sealant backings, and miscellaneous materials.
 4. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
 5. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures, including use of specially formulated primers.
 6. Testing will not be required if joint-sealant manufacturers submit data that are based on previous testing, not older than 24 months, of sealant products for adhesion to, staining of, and compatibility with joint substrates and other materials matching those submitted.

B. Preconstruction Field-Adhesion Testing: Before installing sealants, field test their adhesion to Project joint substrates as follows:
 1. Locate test joints where indicated on Project or, if not indicated, as directed by Architect.
 2. Conduct field tests for each kind of sealant and joint substrate.
 3. Notify Architect seven days in advance of dates and times when test joints will be erected.
 4. Arrange for tests to take place with joint-sealant manufacturer's technical representative present.
1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.

b. Report whether sealant failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
c. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

1.7 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.8 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 1. Warranty Period: One year from date of Substantial Completion.

B. Warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer’s written specifications for sealant elongation and compression.
 2. Disintegration of joint substrates from causes exceeding design specifications.
 3. Mechanical damage caused by individuals, tools, or other outside agents.
 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.
2.2 NONSTAINING SILICONE JOINT SEALANTS

A. Silicone, S, NS, 50, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 50, Use NT.
 1. Basis-Of-Design: Sika Corporation; Sikasil WS-295; or equal.

2.3 URETHANE JOINT SEALANTS

A. Urethane, S, NS, 100/50, T, NT: Single-component, nonsag, plus 100 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type S, Grade NS, Class 100/50, Uses T and NT.
 1. Basis-Of-Design (excluding Snow Melt Pit): Sika Corporation; Sikaflex 15LM; or equal.
 2. Basis-Of-Design at Snow Melt Pit only: Sika Corporation; Sikaflex -1C SL; or equal.

2.4 SELF-ADHERING POLYMERIC RUBBERIZED TAPE

A. Self-adhering polymeric rubberized tape with plastic release liner on underside and woven polyester facer top side.
 1. Basis-Of-Design: Sika Corporation; Sika Joint Tape SA; or equal.
 2. Tape width: 3 inches.
 3. Tape thickness: 30 mils.

B. Prior to applying above product, prime existing wall and roof panels with the following:
 1. Basis-Of-Design: Sika Corporation; Sika Joint Tape SA Primer; or equal.

2.5 JOINT-SEALANT BACKING

A. Sealant Backing Material, General: Non-staining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C1330, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.6 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Non-staining, non-absorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.
 c. Exterior insulation and finish systems.
 d. Fiberglass infused gypsum wallboard.
 3. Remove laitance and form-release agents from concrete.
 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 3. Provide concave joint profile per Figure 8A in ASTM C1193 unless otherwise indicated.

3.4 FIELD QUALITY CONTROL

A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 1. Extent of Testing: Test completed and cured sealant joints as follows:
 a. Perform 10 tests for the first 1000 feet (300 m) of joint length for each kind of sealant and joint substrate.
a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.

3. Inspect tested joints and report on the following:
 a. Whether sealants filled joint cavities and are free of voids.
 b. Whether sealant dimensions and configurations comply with specified requirements.
 c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion complies with sealant manufacturer's field-adhesion hand-pull test criteria.

4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant material, sealant configuration, and sealant dimensions.

5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.

B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.5 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.6 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.7 JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Interior face of roof and wall lap seams; JS-01.
 1. Joint Sealant: Sikaflex Sika Joint Tape SA.

B. Joint-Sealant Application: Interior face of roof and wall panels and covering joint tape; JS-02.
 1. Joint Sealant: Sikalastic 641 Lo-VOC.
C. Joint-Sealant Application: Interior junction at metal wall panel and top of concrete wall; **JS-03**.
 1. Joint Sealant: Sika Boom; One Component Polyurethane Foam.

D. Joint-Sealant Application: Interior junction at gypsum walls and concrete floor; **JS-04**.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

E. Joint-Sealant Application: Exterior Personnel Door and Window Frame Perimeters; **JS-05**.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

F. Joint-Sealant Application: Interior Personnel Door and Window Frame Perimeters; **JS-06**.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

G. Joint-Sealant Application: Exterior and Interior Coiling Overhead Doors; **JS-07**.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

H. Joint-Sealant Application: Exterior wall utility penetrations; **JS-08**.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

I. Joint-Sealant Application: Interior wall utility penetrations, and interior joints between solid surfacing material and adjacent materials; **JS-09**.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

J. Joint-Sealant Application: Horizontal joint between concrete underpinning at existing footing and concrete slab at Snow Melt Pit; (refer to detail 8/A2.5); **JS-10**.

END OF SECTION 07 9200
SECTION 08-1113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes fire-rated, interior, steel doors and frames.

B. Related Requirements:
 1. Section 08-7100 “Door Hardware” for hollow metal doors.
 2. Section 08-8000 “Glazing” for glazing in fire-rated door assemblies.
 3. Section 09-9123 “Interior Painting” for interior fire-rated door assemblies.

1.3 COORDINATION

A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.

B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of anchorages, joints, field splices, and connections.
 7. Details of accessories.
 8. Details of moldings and glazing.
C. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data for fire-rated door inspector: Submit documentation of compliance with NFPA 80, Section 5.2.3.1, include copy of DHI Fire and Egress Door Assembly Inspector (FDAI) certificate.

B. Product Test Reports: For each type of fire-rated hollow-metal door and frame assembly for tests performed by a qualified testing agency indicating compliance with performance requirements.

C. Field quality control reports.

1.7 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.8 QUALITY ASSURANCE

A. Fire-Rated Door Inspector Qualifications: Inspector for field quality control inspections of fire-rated door assemblies shall meet the qualifications set forth in NFPA 80, section 5.2.3.1 and Door and Hardware Institute Fire and Egress Door Assembly Inspector (FDAI) certification.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch- (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection
ratings indicated on Drawings, based on testing at positive pressure according to NFPA 252 or UL 10C.

2.2 INTERIOR STANDARD STEEL DOORS AND FRAMES

A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty, Fire-Rated, Doors and Frames: ANSI/SDI A250.8, Level 2; ANSI/SDI A250.4, Level B.
 1. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/4 inches (44.5 mm).
 c. Face: Uncoated steel sheet, minimum thickness of 0.042 inch (1.0 mm).
 d. Edge Construction: Model 1, Full Flush.
 e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 f. Fire-Rated Core: Manufacturer's standard laminated mineral board core for fire-rated doors.
 2. Frames:
 a. Materials: Uncoated steel sheet, minimum thickness of 0.042 inch (1.0 mm).
 b. Construction: Full profile welded.

2.3 FRAME ANCHORS

A. Jamb Anchors:
 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches (610 mm) of frame height above 7 feet (2.1 m).
 3. Post-installed Expansion Anchor: Minimum 3/8-inch- (9.5-mm-) diameter bolts with expansion shields or inserts, with manufacturer's standard pipe spacer.

B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.

C. Floor Anchors for Concrete Slabs with Underlayment: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at top of underlayment.

D. Material: ASTM A879/A879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized. For anchors built into exterior walls, steel sheet complying with ASTM A1008/A1008M or ASTM A1011/A1011M; hot-dip galvanized according to ASTM A153/A153M, Class B.
2.4 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B.

D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A153/A153M.

E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.

F. Mineral-Fiber Insulation: ASTM C665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E136 for combustion characteristics.

G. Glazing: Comply with requirements in Section 08-8000 "Glazing."

2.5 FABRICATION

A. Door Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch (19 mm) beyond edge of door on which astragal is mounted or as required to comply with published listing of qualified testing agency.

B. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
 1. Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by welding.
 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 3. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

C. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to ANSI/SDI A250.6, the Door Hardware Schedule, and templates.
 1. Reinforce doors and frames to receive non-templated, mortised, and surface-mounted door hardware.
 2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.
D. Glazed Lites: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with mitered hairline joints.
 1. Provide stops and moldings flush with face of door, and with beveled stops unless otherwise indicated.
 2. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. Provide loose stops and moldings on inside of hollow-metal doors and frames.
 3. Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches (230 mm) o.c. and not more than 2 inches (51 mm) o.c. from each corner.

2.6 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.

B. Drill and tap doors and frames to receive non-templated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

A. Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.

B. Hollow-Metal Frames: Comply with ANSI/SDI A250.11.
 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 2. Fire-Rated Openings: Install frames according to NFPA 80.
 3. Floor Anchors: Secure with post-installed expansion anchors.
 4. Solidly pack mineral-fiber insulation inside frames.
 5. In-Place Concrete or Masonry Construction: Secure frames in place with post-installed expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
 6. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.
 1. Fire-Rated Doors: Install doors with clearances according to NFPA 80.

D. Glazing: Comply with installation requirements in Section 08-8000 "Glazing" and with hollow-metal manufacturer's written instructions.

3.3 FIELD QUALITY CONTROL

A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.

B. Inspections: Fire-Rated Door Inspections: Inspect each fire-rated door according to NFPA 80, Section 5.2.

C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.

D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

E. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80.

3.4 REPAIR

A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

B. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

C. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 08-1113
PART 1 GENERAL

1.01 Related Documents: Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 Section includes FRP/Aluminum Hybrid Door installed in Thermally Broken Aluminum Framing.

1.03 Manufacturer is Owner’s site standard. Substitutions are not permitted.

1.04 Related Sections: 08-7100 Door Hardware.

1.05 SUBMITTALS

A. Product Data: Submit manufacturer’s product data sheets, catalog pages illustrating the products, description of materials, components, fabrication, finishes, installation instructions, and applicable test reports.

B. Shop Drawings: Submit manufacturer’s shop drawings, including elevations, sections, and details indicating dimensions, tolerances, materials, fabrication, doors, panels, framing, hardware schedule, and finish.

C. Close-Out Submittals:
 a. Submit manufacturer’s maintenance and cleaning instructions for doors and frames, including maintenance and operating instructions for hardware.
 2. Warranty Documentation.
 a. Submit manufacturer’s standard warranty.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Deliver materials to site in manufacturer’s original, unopened, containers and packaging. Include labels clearly identifying opening, door mark, and manufacturer.

B. Storage: Store materials in a clean, dry area, indoors in accordance with manufacturer’s instructions.

C. Handling: Protect materials and finish from damage during handling and installation.

1.07 WARRANTY

A. Warrant doors, frames, and factory installed hardware against failure in materials and workmanship, including excessive deflection, faulty operation, defects in hardware installation, and deterioration of finish or construction in excess of normal weathering.

B. Standard Period: Ten years starting on date of substantial completion.

C. Limited lifetime: Covers failure of corner joinery, core deterioration, and delamination or bubbling of door skin and corrosion of all-fiberglass products while the door is in its specified application in its original installation.
D. Finish
 1. FRP face sheets: 5 years.
 2. Anodized, aluminum: 10 years.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Special-Lite, Inc.; SL-17; Exterior Panel = Light Grey FRP; Interior Panel = Blue FRP.

2.02 ALUMINUM FRAMES
A. Exterior Doors: Model SL-600TB w/ thermally broken frame.
 B. Interior Doors: Model SL-600.

2.03 MATERIALS
A. Fasteners: All exposed fasteners will have a finish to match material being fastened.

2.04 FABRICATION
A. Factory Assembly.
 1. Required size for door and frame units, shall be as indicated on the drawings.
 2. Complete cutting, fitting, forming, drilling, and grinding of metal before assembly.
 3. All cut edges to be free of burs.
 4. Welding of doors or frames is not acceptable.
 5. Maintain continuity of line and accurate relation of planes and angles.
 6. Secure attachments and support at mechanical joints with hairline fit at contact surfaces.

B. Shop Fabrication
 1. All shop fabrication to be completed in accordance with manufactures process work instructions. Quality control to be performed before leaving each department.

2.05 FINISHES
A. Door: Class 1 clear anodized finish.
 B. Frame: Class 1 clear anodized finish.

2.06 ACCESSORIES
A. Vision Lites: Factory Glazing; type and size as indicated on drawings.
 B. Fixed Louvers: Provide louvers for interior doors, where indicated, as provided by aluminum door manufacturer and factory installed.
 1. Louver sizes as indicated on drawings.
 2. 1 inch thick Y-type fixed blade.
 3. Exterior side of louver shall be free of fasteners.

PART 3 EXECUTION

3.01 EXAMINATION
A. Examine areas to receive doors.
B. Notify architect of conditions that would adversely affect installation or subsequent use.
C. Do not proceed with installation until unsatisfactory conditions are corrected.

3.02 PREPARATION

A. Ensure openings to receive frames are plumb, level, square, and in tolerance.

3.03 ERECTION

A. Install doors in accordance with manufacturer’s instructions.
B. Install doors plumb, level, square, true to line, and without warp or rack.
C. Anchor frames securely in place.
D. Separate aluminum from other metal surfaces with bituminous coatings or other means approved by architect.
E. Set thresholds in bed of mastic and back seal.
F. Install exterior doors to be weathertight in closed position.
G. Repair minor damages to finish in accordance with manufacturer’s instructions and as approved by architect.
H. Remove and replace damaged components that cannot be successfully repaired as determined by architect.

3.04 FIELD QUALITY CONTROL

A. Manufacturer’s Field Services: Manufacturer’s representative shall provide technical assistance and guidance for installation of doors.

3.05 ADJUSTING

A. Adjust doors, hinges, and locksets for smooth operation without binding.

3.06 CLEANING

A. Clean doors promptly after installation in accordance with manufacturer’s instructions.
B. Do not use harsh cleaning materials or methods that would damage finish.

3.07 PROTECTION

A. Protect installed doors to ensure that, except for normal weathering, doors will be without damage or deterioration at time of substantial completion.

END OF SECTION 08 1743

The Club at Woodbridge
BUILDING INTERIOR REHABILITATION
FRP / ALUMINUM HYBRID DOORS
TVC Project No.: 18-27902
SECTION 08 3113 - ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes access doors and frames for walls and ceilings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Samples: For each type of access door and frame and for each finish specified, complete assembly minimum 6 by 6 inches (150 by 150 mm) in size.

C. Product Schedule: For access doors and frames.

PART 2 - PRODUCTS

2.1 ACCESS DOORS AND FRAMES

A. Ceiling Mounted Flush Access Doors with Concealed Flanges:
 1. Basis-Of-Design Manufacturer: Acudor; Model DW-5040; or equal.
 2. Description: Face of door flush with frame; with concealed flange for gypsum board installation and concealed hinge.
 3. Door Size: As indicated on drawings.
 4. Uncoated Steel Sheet for Door: Nominal 0.040 inch (1.02 mm), 20 gage, factory finished, satin coat.
 5. Frame Material: Nominal 0.021 inch (0.53 mm), 26 gage, factory primed.
 6. Manufacturer’s standard latch and lock: Cam latch, screwdriver operated.

B. Wall Mounted Flush Access Doors with Exposed Flanges:
 1. Basis-Of-Design Manufacturer: Acudor; Model SF-2000; or equal.
 2. Description: Face of door flush with frame; with exposed flange for masonry installation and exposed hinge.
 3. Door Size: As indicated on drawings.
 4. Uncoated Steel Sheet for Door: Nominal 0.040 inch (1.02 mm), 16 gage, factory finished, satin coat.
5. Frame Material: Nominal 0.021 inch (0.53 mm), 16 gage, factory primed.
6. Manufacturer’s standard latch and lock: Cam latch, screwdriver operated.

2.2 MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A879/A879M, with cold-rolled steel sheet substrate complying with ASTM A1008/A1008M, Commercial Steel (CS), exposed.
C. Frame Anchors: Same material as door face.
D. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A153/A153M or ASTM F2329.

2.3 FABRICATION

A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.
B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure access doors to types of supports indicated.
 1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to perimeter of frames.

2.4 FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
D. Painted Finishes: Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 1. Factory Primed: Apply manufacturer's standard, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

3.3 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.

END OF SECTION 08 3113
SECTION 08-3313 - COILING COUNTER DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes counter door assemblies.

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of coiling counter door and accessory. Include construction details, material descriptions, dimensions of individual components, profiles for slats, and finishes.

B. Shop Drawings: For each installation and for special components not dimensioned or detailed in manufacturer's product data.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies, and indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include points of attachment and their corresponding static and dynamic loads imposed on structure.
 4. Show locations of controls, locking devices, and other accessories.

C. Samples for Initial Selection: Manufacturer's finish charts showing full range of colors and textures available for units with factory-applied finishes. Include similar Samples of accessories involving color selection.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For coiling counter doors to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer for both installation and maintenance of units required for this Project.
 1. Maintenance Proximity: Not more than two hours' normal travel time from Installer's place of business to Project site.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain coiling counter doors from single source from single manufacturer.
 1. Obtain operators and controls from coiling counter door manufacturer.

2.2 INTERIOR COUNTER DOOR ASSEMBLY

A. Counter Door: Coiling counter door formed with curtain of interlocking metal slats.
 1. Acceptable Manufacturers include, but are not limited to, the following:
 a. Clopay; Model CESC20.
 b. CornellCookson, LLC; Model ESC20.
 c. Overhead Door Corp.; Model 657.

B. Operation Cycles: Door components and operators capable of operating for not less than
 10,000. One operation cycle is complete when a door is opened from the closed position to the
 fully open position and returned to the closed position.

C. Door Curtain Material: Manufacturer standard stainless steel.

D. Door Curtain Slats: Flat profile slats of 1-1/4-inch (32-mm) center-to-center height.

E. Bottom Bar: Manufacturer's standard continuous channel or tubular shape, fabricated stainless
 steel extrusion and finished to match door.

F. Curtain Jamb Guides: Stainless steel with exposed finish matching curtain slats. Provide
 continuous integral wear strips to prevent metal-to-metal contact and to minimize operational
 noise.

G. Integral Frame, Hood, and Fascia: Stainless steel.
 1. Mounting: Between jambs.

H. Sill Configuration: Refer to Specification Section 11 4000 “Foodservice Equipment” for
 stainless steel table top that extends under and beyond Coiling Counter Door.

I. Locking Devices: Equip door with dead bolt, accessed from interior side only.

K. Door Finish: Stainless Steel: ASTM A480 No. 4 polished directional satin.

L. Interior Curtain-Slat Finish: Match finish of exterior curtain-slat face.

2.3 DOOR CURTAIN MATERIALS AND FABRICATION

A. Door Curtains: Fabricate coiling counter door curtain of interlocking metal slats in a continuous
 length for width of door without splices. Unless otherwise indicated, provide slats of thickness
and mechanical properties recommended by door manufacturer for performance, size, and type of door indicated, and as follows:

1. Stainless Steel Door Curtain Slats: ASTM A240/A240M or ASTM A666, Type 304; sheet thickness of 0.025 inch (0.64 mm); and as required.

B. Curtain Jamb Guides: Manufacturer’s standard angles or channels and angles of same material and finish as curtain slats unless otherwise indicated, with sufficient depth and strength to retain curtain, to allow curtain to operate smoothly, and to withstand loading. Slot bolt holes for guide adjustment. Provide removable stops on guides to prevent overtravel of curtain.

2.4 HOODS

A. General: Form sheet metal hood to entirely enclose coiled curtain and operating mechanism at opening head. Contour to fit end brackets to which hood is attached. Roll and reinforce top and bottom edges for stiffness. Form closed ends for surface-mounted hoods and fascia for any portion of between-jamb mounting that projects beyond wall face. Equip hood with intermediate support brackets as required to prevent sagging.

1. Stainless Steel: 0.025-inch- (0.64-mm-) thick, stainless steel sheet, Type 304, complying with ASTM A240/A240M or ASTM A666.

B. Integral Frame, Hood and Fascia: Welded sheet metal assembly of stainless steel, type 304, complying with ASTM A240 or ASTM A666.

2.5 LOCKING DEVICES

A. Slide Bolt: Fabricate with side-locking bolts to engage through slots in tracks, located on both left and right jamb sides, operable from coil side.

2.6 COUNTERBALANCE MECHANISM

A. General: Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed bearings or self-lubricating graphite bearings for rotating members.

2.7 MANUAL DOOR OPERATORS

A. General: Equip door with manual door operator by door manufacturer.

B. Push-up Door Operation: Design counterbalance mechanism so that required lift or pull for door operation does not exceed 25 lbf (111 N).

2.8 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM/NOMMA 500 for recommendations for applying and designating finishes.
B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.9 STAINLESS STEEL FINISHES

A. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.

B. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 1. Run grain of directional finishes with long dimension of each piece.
 2. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

C. Bright, Cold-Rolled, Unpolished Finish: ASTM A480/A480M No. 2B.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates areas and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Install coiling counter doors and operating equipment complete with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified.

B. Install coiling counter doors, hoods, controls, and operators at the mounting locations indicated for each door.

3.3 FIELD QUALITY CONTROL

A. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.

B. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.
3.4 ADJUSTING

A. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion.

B. Lubricate bearings and sliding parts as recommended by manufacturer.

C. Adjust seals to provide tight fit around entire perimeter.

3.5 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include six months' full maintenance by skilled employees of coiling-door Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies. Perform maintenance, including emergency callback service, during normal working hours.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain coiling counter doors.

END OF SECTION 08-3313
SECTION 08-3323 - OVERHEAD COILING DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes: Exterior and interior insulated service doors.

B. Related Requirements: Section 05-5000 "Metal Fabrications" for miscellaneous steel supports, door-opening framing, corner guards, and bollards.

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of overhead coiling door and accessory.
 1. Include construction details, material descriptions, dimensions of individual components, profiles for slats, and finishes.
 2. Include description of automatic-closing device and testing and resetting instructions.

B. Shop Drawings: For each installation and for special components not dimensioned or detailed in manufacturer's product data.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies, and indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include points of attachment and their corresponding static and dynamic loads imposed on structure.
 4. For exterior components, include details of provisions for assembly expansion and contraction and for excluding and draining moisture to the exterior.
 5. Show locations of controls, locking devices, and other accessories.

C. Samples for Initial Selection: Manufacturer's finish charts showing full range of colors and textures available for units with factory-applied finishes. Include similar Samples of accessories involving color selection.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.
1.5 CLOSEOUT SUBMITTALS

A. Special warranty.

B. Maintenance Data: For overhead coiling doors to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer for both installation and maintenance of units required for this Project. Maintenance Proximity: Not more than two hours' normal travel time from Installer's place of business to Project site.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of doors that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain overhead coiling doors from single source from single manufacturer. Obtain operators and controls from overhead coiling-door manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Structural Performance, Exterior Doors: Capable of withstanding the following design wind loads:
 2. Testing: According to ASTM E330/E330M.
 3. Deflection Limits: Design overhead coiling doors to withstand design wind load without evidencing permanent deformation or disengagement of door components.

2.3 EXTERIOR DOOR ASSEMBLY

A. Insulated Service Door: Overhead coiling door formed with curtain of interlocking metal slats.
 1. Acceptable Manufacturers include, but are not limited to the following:
 b. CornellCookson, LLC; Model Thermiser ESD20.
 c. Overhead Door Corp.; Model StormTite 625.
B. Operation Cycles: Door components and operators capable of operating for not less than 50,000. One operation cycle is complete when a door is opened from the closed position to the fully open position and returned to the closed position.

C. Air Infiltration: Maximum rate of 0.4 cfm/sq. ft. (2.03 L/s per sq. m) at 15 and 25 mph (24.1 and 40.2 km/h) when tested according to ASTM E283.

D. STC Rating: 26 minimum.

E. Curtain R-Value: 7.5 minimum.

F. Door Curtain Material: Galvanized steel.

G. Door Curtain Slats: Flat profile slats of 2-5/8-inch (67-mm) center-to-center height.
 1. Insulated-Slat Interior Facing: Metal.
 2. Gasket Seal. Manufacturer's standard continuous gaskets between slats.

H. Bottom Bar: Two angles, each not less than 1-1/2 by 1-1/2 by 1/8 inch (38 by 38 by 3 mm) thick; fabricated from hot-dip galvanized steel and finished to match door.

I. Curtain Jamb Guides: Galvanized steel with exposed finish matching curtain slats.

J. Hood: Match curtain material and finish.
 1. Shape: Manufacturer’s standard Round or Square.

K. Locking Devices: Equip door with slide bolt.

L. Electric Door Operator:
 1. Usage Classification: Standard duty, up to 25 cycles per hour and up to 90 cycles per day.
 2. Operator Location: Front of hood.
 3. Safety: Listed according to UL 325 by a qualified testing agency for commercial or industrial use; moving parts of operator enclosed or guarded if exposed and mounted at 8 feet (2.44 m) or lower.
 5. Motor Electrical Characteristics:
 a. Horsepower: 1 hp.
 b. Voltage: 115-V ac, single phase, 60 Hz.
 7. Obstruction-Detection Device: Electric or pneumatic sensor edge on bottom bar.
 a. Sensor Edge Bulb Color: Black.
 8. Control Station(s): Interior mounted.
 9. Other Equipment: Portable radio-control system, capable of being mounted on dashboard of ice re-surfacer vehicle.

M. Curtain Accessories: Equip door with weatherseals.

N. Door Finish:
 1. Baked-Enamel or Powder-Coated Finish: Color as selected by Architect from manufacturer's full range.
 2. Interior Curtain-Slat Facing: Match finish of exterior curtain-slat face.
2.4 DOOR CURTAIN MATERIALS AND CONSTRUCTION

A. Door Curtains: Fabricate overhead coiling-door curtain of interlocking metal slats, designed to withstand wind loading indicated, in a continuous length for width of door without splices. Unless otherwise indicated, provide slats of thickness and mechanical properties recommended by door manufacturer for performance, size, and type of door indicated, and as follows:

1. Steel Door Curtain Slats: Zinc-coated (galvanized), cold-rolled structural-steel sheet complying with ASTM A653/A653M, with G90 (Z275) zinc coating; nominal sheet thickness (coated) of 0.028 inch (0.71 mm); and as required.
2. Insulation: Fill slats for insulated doors with manufacturer's standard thermal insulation complying with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, according to ASTM E84 or UL 723. Enclose insulation completely within slat faces.
3. Metal Interior Curtain-Slat Facing: Match metal of exterior curtain-slat face, with minimum steel thickness of 0.010 inch (0.25 mm).

B. Curtain Jamb Guides: Manufacturer's standard angles or channels and angles of same material and finish as curtain slats unless otherwise indicated, with sufficient depth and strength to retain curtain, to allow curtain to operate smoothly, and to withstand loading. Slot bolt holes for guide adjustment. Provide removable stops on guides to prevent overtravel of curtain, and a continuous bar for holding windlocks.

2.5 HOODS

A. General: Form sheet metal hood to entirely enclose coiled curtain and operating mechanism at opening head. Contour to fit end brackets to which hood is attached. Roll and reinforce top and bottom edges for stiffness. Form closed ends for surface-mounted hoods and fascia for any portion of between-jamb mounting that projects beyond wall face. Equip hood with intermediate support brackets as required to prevent sagging.

1. Galvanized Steel: Nominal 0.028-inch- (0.71-mm-) thick, hot-dip galvanized-steel sheet with G90 (Z275) zinc coating, complying with ASTM A653/A653M.
2. Include automatic drop baffle on fire-rated doors to guard against passage of smoke or flame.

2.6 LOCKING DEVICES

A. Slide Bolt: Fabricate with side-locking bolts to engage through slots in tracks, located on both left and right jamb sides, operable from coil side.

2.7 CURTAIN ACCESSORIES

A. Weatherseals: Equip each door with weatherstripping gaskets fitted to entire perimeter of door for a weather-resistant installation unless otherwise indicated.

1. At door head, use 1/8-inch- (3-mm-) thick, replaceable, continuous-sheet baffle secured to inside of hood or field-installed on the header.
2. At door jambs, use replaceable, adjustable, continuous, flexible, 1/8-inch- (3-mm-) thick seals of flexible vinyl, rubber, or neoprene.
2.8 COUNTERBALANCE MECHANISM

A. General: Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed bearings or self-lubricating graphite bearings for rotating members.

B. Counterbalance Barrel: Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, carbon-steel pipe, of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats and to limit barrel deflection to not more than 0.03 in./ft. (2.5 mm/m) of span under full load.

C. Counterbalance Spring: One or more oil-tempered, heat-treated steel helical torsion springs. Size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs.

1. Fire-Rated Doors: Equip with auxiliary counterbalance spring and prevent tension release from main counterbalance spring when automatic-closing device operates.

D. Torsion Rod for Counterbalance Shaft: Fabricate of manufacturer's standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load.

E. Brackets: Manufacturer's standard mounting brackets of either cast iron or cold-rolled steel plate.

2.9 EMERGENCY MANUAL DOOR OPERATORS

A. General: Equip door with manual door operator by door manufacturer.

B. Chain-Hoist Operator: Consisting of endless steel hand chain, chain-pocket wheel and guard, and gear-reduction unit with a maximum 25-lbf (111-N) force for door operation. Provide alloy-steel hand chain with chain holder secured to operator guide.

2.10 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM/NOMMA 500 for recommendations for applying and designating finishes.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.11 STEEL AND GALVANIZED-STEEL FINISHES

A. Factory Prime Finish: Manufacturer's standard primer, compatible with field-applied finish. Comply with coating manufacturer's written instructions for cleaning, pretreatment, application, and minimum dry film thickness.
B. Baked-Enamel or Powder-Coat Finish: Manufacturer's standard baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for cleaning, pretreatment, application, and minimum dry film thickness.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates areas and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work.

B. Examine locations of electrical connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install overhead coiling doors and operating equipment complete with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified.

B. Install overhead coiling doors, hoods, controls, and operators at the mounting locations indicated for each door.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and to furnish reports to Architect.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative: Inspect each fire-rated door in accordance with NFPA 80, section 5.2.

C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.

D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service. Complete installation and startup checks according to manufacturer's written instructions. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
3.5 ADJUSTING

A. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion. Adjust exterior doors and components to be weather resistant. Lubricate bearings and sliding parts as recommended by manufacturer. Adjust seals to provide tight fit around entire perimeter.

3.6 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of coiling-door Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies. Perform maintenance, including emergency callback service, during normal working hours.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain overhead coiling doors.

END OF SECTION 08-3323
SECTION 08 4313 - ALUMINUM-FRAMED STOREFRONTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes thermally-broken, aluminum framed storefront type glazing assemblies for both exterior and interior applications.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, finishes and colors.

B. Shop Drawings: For aluminum-framed storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 2. Include full-size isometric details of each type of vertical-to-horizontal intersection of aluminum-framed storefronts, showing the following:
 a. Joinery, including concealed welds.
 b. Anchorage.
 c. Glazing.
 d. Flashing and drainage.
 3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.

C. Samples for Initial Selection: For units with factory-applied color finishes.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data for installer.

B. Energy Performance Certificates: For aluminum-framed storefronts, accessories, and components, from manufacturer.
1. Basis for Certification: NFRC-certified energy performance values for each aluminum-framed storefront.

C. Product Test Reports: For aluminum-framed storefronts, for tests performed by manufacturer and witnessed by a qualified testing agency.

D. Field quality-control reports.

E. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed storefronts to include in maintenance manuals.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures, including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.
 2. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty, Anodized Finishes: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of anodized finishes within specified warranty period.
 1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta E units when tested in accordance with ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D 4214.
 c. Cracking, peeling, or chipping.
 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-Of-Design Manufacturer: Kawneer; Tri-Fab 601T Framing System.

B. Alternate manufacturers are limited to:
 1. Tubelite.
 2. YKK AP America.
C. Source Limitations: Obtain all components of aluminum-framed storefront system, including framing and accessories, from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 1. Aluminum-framed storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

B. Structural Loads: Refer to Wind Loads as identified on the Structural Drawings within the T&M Associates Drawing Set.

C. Water Penetration under Static Pressure: Test in accordance with ASTM E331 as follows:
 1. No evidence of water penetration through fixed glazing and framing areas when tested in accordance with a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft. (300 Pa).

D. Energy Performance: Certified and labelled by manufacturer for energy performance as follows:
 1. Thermal Transmittance (U-factor):
 a. Fixed Glazing and Framing Areas: U-factor for the system of not more than 0.36 Btu/sq. ft. x h x deg F as determined in accordance with NFRC 100.
 2. Solar Heat Gain Coefficient (SHGC):
 a. Fixed Glazing and Framing Areas: SHGC for the system of not more than 0.36 as determined in accordance with NFRC 200.
 3. Air Leakage:
 a. Fixed Glazing and Framing Areas: Air leakage for the system of not more than 0.06 cfm/sq. ft. (0.30 L/s per sq. m) at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa) when tested in accordance with ASTM E283.
 4. Condensation Resistance Factor (CRF):
 a. Fixed Glazing and Framing Areas: CRF for the system of not less than 35 as determined in accordance with AAMA 1503.

E. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
2.3 ALUMINUM-FRAMED STOREFRONT SYSTEMS

A. Framing Members: Manufacturer’s extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 1. Exterior and Interior Framing Construction: Thermally broken.
 2. Glazing System: Retained mechanically with gaskets on four sides.
 5. Fabrication Method: Field-fabricated stick system.
 6. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 7. Steel Reinforcement: As required by manufacturer.

B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.4 GLAZING

A. Glazing: Comply with Section 08 8000 "Glazing."

2.5 MATERIALS

A. Sheet and Plate: ASTM B209 (ASTM B209M).

B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B221 (ASTM B221M).

C. Structural Profiles: ASTM B308/B308M.

D. Steel Reinforcement:
 1. Structural Shapes, Plates, and Bars: ASTM A36/A36M.
 2. Cold-Rolled Sheet and Strip: ASTM A1008/A1008M.
 3. Hot-Rolled Sheet and Strip: ASTM A1011/A1011M.

E. Steel Reinforcement Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods in accordance with recommendations in SSPC-SP COM, and prepare surfaces in accordance with applicable SSPC standard.

2.6 ACCESSORIES

A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
2. Reinforce members as required to receive fastener threads.

B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch (25.4 mm) that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A123/A123M or ASTM A153/A153M requirements.

C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.

D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30-mil (0.762-mm) thickness per coat.

E. Rigid PVC Filler.

2.7 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from exterior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

2.8 ALUMINUM FINISHES

A. High-Performance Organic Finish, Two-Coat PVDF: Fluoropolymer finish complying with AAMA 2604 and containing not less than 50 percent PVDF resin by weight in color coat.
 1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 2. Color and Gloss: As selected by Architect from manufacturer's full range.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Comply with manufacturer's written instructions.

B. Do not install damaged components.

C. Fit joints to produce hairline joints free of burrs and distortion.

D. Rigidly secure nonmovement joints.

E. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.

F. Seal perimeter and other joints watertight unless otherwise indicated.

G. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

H. Set continuous sill members and flashing in full sealant bed, as specified in Section 07 9200 "Joint Sealants," to produce weathertight installation.

I. Install joint filler behind sealant as recommended by sealant manufacturer.

J. Install components plumb and true in alignment with established lines and grades.

3.3 INSTALLATION OF GLAZING

A. Install glazing as specified in Section 08 8000 "Glazing."

3.4 ERECTION TOLERANCES

A. Install aluminum-framed storefronts to comply with the following maximum tolerances:
 1. Plumb: 1/8 inch in 10 feet (3.2 mm in 3 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
2. Level: 1/8 inch in 20 feet (3.2 mm in 6 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
3. Location: Limit variation from plane to 1/8 inch in 12 feet (3.2 mm in 3.6 m); 1/2 inch (12.7 mm) over total length.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Field Quality-Control Testing: Perform the following test on representative areas of aluminum-framed storefronts.
 1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested in accordance with AAMA 501.2 and shall not evidence water penetration.
 a. Perform tests in each test area as directed by Architect. Perform at least three tests, prior to 70 percent completion.

C. Aluminum-framed storefronts will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 08 4313
SECTION 08 7100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This is a proprietary specification, matching the Owner’s municipal door hardware standard. Substitutions are not permitted.

B. Section includes mechanical door hardware for swinging doors.

C. Related Requirements:
 1. Section 08 1113 "Hollow Metal Doors and Frames".
 2. Section 08 1743 "FRP Aluminum Hybrid Doors and Frames".

1.3 COORDINATION

A. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.

B. Existing Openings: Where hardware components are scheduled for application to existing construction or where modifications to existing door hardware are required, field verify existing conditions and coordinate installation of door hardware to suit opening conditions and to provide proper door operation.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site. Conference participants shall include Installer's Architectural Hardware Consultant.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Door Hardware Schedule: Prepared by or under the supervision of Installer's Architectural Hardware Consultant. Coordinate door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

The Club at Woodbridge
INDOOR ICE RINK
DOOR HARDWARE

TVC Project No.: 18-27905
08 7100 - 1
1. Submittal Sequence: Submit door hardware schedule concurrent with submissions of Product Data, Samples, and Shop Drawings. Coordinate submission of door hardware schedule with scheduling requirements of other work to facilitate the fabrication of other work that is critical in Project construction schedule.

2. Format: Use same scheduling sequence and format and use same door numbers as in door hardware schedule in the Contract Documents.

3. Content: Include the following information:
 1. Identification number, location, hand, fire rating, size, and material of each door and frame.
 2. Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 3. Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
 4. Fastenings and other installation information.
 5. Explanation of abbreviations, symbols, and designations contained in door hardware schedule.
 6. Mounting locations for door hardware.
 7. List of related door devices specified in other Sections for each door and frame.

C. Keying Schedule: Prepared by or under the supervision of Installer's Architectural Hardware Consultant, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations that are coordinated with the Contract Documents.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Architectural Hardware Consultant.

B. Product Test Reports: For compliance with accessibility requirements, for tests performed by manufacturer and witnessed by a qualified testing agency, for door hardware on doors located in accessible routes.

C. Field quality-control reports.

D. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of door hardware to include in maintenance manuals.

B. Schedules: Final door hardware and keying schedule.

1.8 QUALITY ASSURANCE

A. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as an Architectural Hardware Consultant (AHC).
1.9 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.

B. Tag each item or package separately with identification coordinated with the final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.

C. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.

D. Deliver keys and permanent cores to Owner by registered mail or overnight package service.

1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including excessive deflection, cracking, or breakage.
 b. Faulty operation of doors and door hardware.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 2. Warranty Period: Three years from date of Substantial Completion unless otherwise indicated below:
 a. Exit Devices: 3 years from date of Substantial Completion.
 b. Manual Closers: 25 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of door hardware from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Door Assemblies: Where fire-rated doors are indicated, provide door hardware complying with NFPA 80 that is listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.

B. Means of Egress Doors: Latches do not require more than 15 lbf (67 N) to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.

C. Accessibility Requirements: For door hardware on doors in an accessible route, comply with ICC A117.1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf (22.2 N).
 1. Comply with the following maximum opening-force requirements:

The Club at Woodbridge
INDOOR ICE RINK
DOOR HARDWARE
2. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch (13 mm) high.
3. Adjust door closer sweep periods so that, from an open position of 90 degrees, the door will take at least 5 seconds to move to a position of 12 degrees from the latch.

2.3 HINGES

A. Butt Hinges: Hagar; AB700; 4.5”x4.5”; 3-knuckle; anti-friction bearing; standard weight; 626 finish.
B. Continuous Hinges: Hagar; Roton; 780-112HD, 628 finish.

2.4 MECHANICAL LOCKS AND LATCHES

A. Mortise Lockset (Classroom Type); Schlage; L9070; B rose; 06 lever; 626 finish.
B. Mortise Lockset (Privacy Type); Schlage; L9496 w/ occupied indicator; B rose; 06 lever; 626 finish.
C. Mortise Institution Lockset; Schlage; L9082 w/ deadbolt; B rose; 06 lever; 626 finish.
D. Mortise Lockset (Utility Type); Schlage; L9080; B rose; 06 lever; 626 finish.
E. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 2. Deadbolts: Minimum 1-inch (25-mm) bolt throw.
F. Lock Backset: 2-3/4 inches (70 mm) unless otherwise indicated.
G. Strikes: Provide manufacturer’s standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.

2.5 EXIT DEVICES AND AUXILIARY ITEMS

A. Rim Exit Device: Von Duprin; 99; L escutcheon; 06 lever; 626 finish.
B. Rim Exit Device (fire-rated doors): 99; L-BE escutcheon; 06 lever; 626 finish.
C. Concealed Vertical Rod Exit Device (exterior doors): 9947; L-NL escutcheon; 06 lever; 626 finish.
D. Concealed Vertical Rod Exit Device (fire-rated doors): 9947; L-BE escutcheon; 06 lever; 626 finish.
2.6 LOCK CYLINDERS

A. Lock Cylinders:
 1. Key operated on one side: Schlage; 20-022 cam; 626 finish.
 2. Key operated on either side: Schlage; B500 Series deadbolt, 626 finish.

B. Construction Master Keys: Provide cylinders with feature that permits voiding of construction keys without cylinder removal. Provide 10 construction master keys.

C. Construction Cores: Provide construction cores that are replaceable by permanent cores. Provide 10 construction master keys.

2.7 KEYING

A. Keying System: Factory registered, complying with guidelines in BHMA A156.28, appendix. Provide one extra key blank for each lock. Incorporate decisions made in keying conference.
 1. Existing System: Master key or grand master key locks to Owner's existing system.

2.8 ACCESSORIES FOR PAIRS OF DOORS

A. Coordinators: Ives; Coordinator Bar COR-72-628-FL32-E-36”; 628 finish.

B. Astragals: Special-Lite; AS-4A.

2.9 SURFACE CLOSERS

A. Surface Closers: (All door functions except Utility Type) LCN; 4050-3071 DEL (delayed action) 72MC metal cover; 3077EDA arm; 689 finish.

B. Surface Closers: (Utility Type only) LCN; 4050-3071; 72MC metal cover; 3077 arm; 689 finish.

2.10 MECHANICAL STOPS AND HOLDERS

A. Wall Stops: Rockwood; 400; 626 finish.

2.11 DOOR GASKETING

A. Weatherseal: Pemko; 297-PK; Aluminum mill finish.

B. Bottom Sweep: Pemko; Sealeze C380; Aluminum mill finish.

C. Smoke Seals: Pemko; S88; Black finish.
2.12 KICK PLATES
 A. Kick Plates: Rockwood; K1050; 626 finish.

2.13 THRESHOLDS
 A. Thresholds: National Guard Products; 111 (1/2” high x 6” wide, ADA compliant); Aluminum mill finish.

2.14 FABRICATION
 A. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware unless otherwise indicated.

 1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.

 2. Fire-Rated Applications:
 a. Wood or Machine Screws: For the following:
 1) Hinges mortised to doors or frames; use threaded-to-the-head wood screws for wood doors and frames.
 2) Strike plates to frames.
 3) Closers to doors and frames.
 b. Steel Through Bolts: For the following unless door blocking is provided:
 1) Surface hinges to doors.
 2) Closers to doors and frames.
 3) Surface-mounted exit devices.
 3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
 4. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.

2.15 FINISHES
 A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.

 B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

 C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Steel Doors and Frames: For surface-applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.

3.3 INSTALLATION

A. Mounting Heights: Mount door hardware units at heights indicated on Drawings unless otherwise indicated or required to comply with governing regulations.

B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstalltion of surface protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.
 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.

C. Hinges: Install types and in quantities indicated in door hardware schedule, but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches (750 mm) of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.

D. Intermediate Offset Pivots: Where offset pivots are indicated, provide intermediate offset pivots in quantities indicated in door hardware schedule, but not fewer than one intermediate offset pivot per door and one additional intermediate offset pivot for every 30 inches (750 mm) of door height greater than 90 inches (2286 mm).

E. Lock Cylinders: Install construction cores to secure building and areas during construction period. Replace construction cores with permanent cores as directed by Owner.

F. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 07 9200 "Joint Sealants."

G. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.
H. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame. Do not notch perimeter gasketing to install other surface-applied hardware.

I. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.

J. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.4 FIELD QUALITY CONTROL

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

1. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.

B. Occupancy Adjustment: Approximately six months after date of Substantial Completion, Installer's Architectural Hardware Consultant shall examine and readjust each item of door hardware, including adjusting operating forces, as necessary to ensure function of doors, door hardware, and electrified door hardware.

3.6 CLEANING AND PROTECTION

A. Clean adjacent surfaces soiled by door hardware installation.

B. Clean operating items as necessary to restore proper function and finish.

C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.7 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

B. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include six months' full maintenance by skilled employees of door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door and door hardware operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

[Section 3.8 “Door Hardware Schedule” begins on next page.]

The Club at Woodbridge
INDOOR ICE RINK
DOOR HARDWARE
3.8 DOOR HARDWARE SCHEDULE

Hardware Set 1: Door E01-1
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) rim exit device; Von Duprin; 99; L; 06; 626.
One (1) cylinder; Schlage; 20-022; 626.
One (1) closer; LCN; 4050-3071 DEL; 72MC; 3077EDA; 689.
One (1) kickplate at interior side only; Rockwood; K1050; 626.
One (1) threshold; NGP; 111; Alum. Mill.
One (1) weather seal.; Pemko; 297-PK; Alum. Mill.
One (1) bottom sweep; Pemko; Sealeze C380; Alum. Mill.

Hardware Set 1-A: Door C02-2 (same as Hardware Set 1, but without exterior trim)

Hardware Set 2: Door C04-3, LB01-1 & LB01-2
Two (2) continuous hinges; Hagar; Roton; 780-112HD, 628 finish.
Two (2) concealed vert. rod exit device; 9947; L-NL; 06; 626.
One (1) cylinder; Schlage; 20-022; 626.
Two (2) closer; LCN; 4050-3071 DEL; 72MC; 3077EDA; 689.
One (1) astragal at active leaf only; Special-Lite; AS-4A.
One (1) coordinator; Ives; COR-72-628-FL32-E-36”; 628.
Two (2) kickplates at interior side only; Rockwood; K1050; 626.
One (1) threshold; NGP; 111; Alum. Mill.
Two (2) weather seal; Pemko; 297-PK; Alum. Mill.
Two (2) bottom sweeps; Pemko; Sealeze C380; Alum. Mill.

Hardware Set 2-A: Door C04-2 (same as Hardware Set 2, but without exterior trim)

Hardware Set 3: Doors C01-1, C02-1, C02-3, C02-4, C04-1 & LB01-3
Three (3) butt hinges; Hagar; AB700; 4.5”x4.5”; 626.
One (1) rim exit device; 99; L-BE; 06; 626.
One (1) closer; LCN; 4050-3071; 72MC; 3077EDA; 689.
Two (2) kickplates, one at each side; Rockwood; K1050; 626.
One (1) smoke seal; Pemko; S88; Black.

Hardware Set 4: Doors CS01-1, LK01-1, LK01-2, LK03-1, LK04-1, LK05-1, LK06-1, LK07-1, LRO1-1, LRO1-2, LR04-1 and LR04-2
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) mortise lockset; Schlage; L9070; B; 06; 626.
One (1) cylinder; Schlage; 20-022; 626.
One (1) closer; LCN; 4050-3071 DEL; 72MC; 3077EDA; 689.
One (1) wall stop; Rockwood; 400; 626.
Two (2) kickplates one at each side; Rockwood; K1050; 626.
One (1) weather seal; Pemko; 297-PK; Alum. Mill.
One (1) bottom sweep; Pemko; Sealeze C380; Alum. Mill.
Hardware Set 5: Door LR05-1 and P0-1
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) mortise passage latchset; Schlage: L9010; B; 06; 626.
One (1) closer; LCN; 4050-3071 DEL; 72MC; 3077EDA; 689.
Two (2) kickplates one at each side; Rockwood; K1050; 626.
One (1) weather seal; Pemko; 297-PK; Alum. Mill.
One (1) bottom sweep; Pemko; Sealeze C380; Alum. Mill.

Hardware Set 6: Doors LR02-1, LR03-1, LR06-1, PR01-1 through PR13-1
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) privacy lockset; Schlage; L9496 w/ occupied indicator; B; 06; 626.
One (1) closer; LCN; 4050-3071 DEL; 72MC; 3077EDA; 689.
One (1) wall stop; Rockwood; 400; 626.
Two (2) kickplates one at each side; Rockwood; K1050; 626.
One (1) weather seal; Pemko; 297-PK; Alum. Mill.
One (1) bottom sweep; Pemko; Sealeze C380; Alum. Mill.

Hardware Set 7: Doors E01-2, J01-1 & J02-1
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) utility lockset; Schlage; L9080; B; 06; 626.
One (1) cylinder; Schlage; 20-022; 626.
One (1) closer; LCN; 4050-3071; 72MC; 3077; 689.
One (1) wall stop; Rockwood; 400; 626.
Two (2) kickplates one at each side; Rockwood; K1050; 626.
One (1) weather seal; Pemko; 297-PK; Alum. Mill.
One (1) bottom sweep; Pemko; Sealeze C380; Alum. Mill.

Hardware Set 8: Door VO1-2
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) institution lockset; Schlage; L9082; B; 06; 626.
One (1) deadbolt, dual keyed; Schlage; B500, 626.
One (1) closer; LCN; 4050-3071; 72MC; 3077; 689.
One (1) wall stop; Rockwood; 400; 626.
Two (2) kickplates one at each side; Rockwood; K1050; 626.
One (1) weather seal; Pemko; 297-PK; Alum. Mill.
One (1) bottom sweep; Pemko; Sealeze C380; Alum. Mill.

Hardware Set 9: Door VO1-1
One (1) continuous hinge; Hagar; Roton; 780-112HD, 628.
One (1) rim exit device; Von Duprin; 99; L; 06; 626.
One (1) cylinder; Schlage; 20-022; 626.
One (1) closer; LCN; 4050-3071 DEL; 72MC; 3077EDA; 689.
One (1) wall stop; Rockwood; 400; 626.
Two (2) kickplates one at each side; Rockwood; K1050; 626.
One (1) weather seal; Pemko; 297-PK; Alum. Mill.

END OF SECTION 08 7100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes:
 1. Glass for exterior and interior windows with thermally broken frames.
 2. Glass for exterior and interior doors.

1.3 DEFINITIONS
A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C1036.
D. Interspace: Space between lites of an insulating-glass unit.

1.4 COORDINATION
A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Glass Samples: For insulated glass; 12 inches (300 mm) square.
C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturers of insulating-glass units with sputter-coated, low-E coatings.

B. Product Certificates: For glass.

C. Product Test Reports: For insulating glass, for tests performed by a qualified testing agency.

D. Sample Warranties: For special warranties.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved by coated-glass manufacturer.

B. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

B. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.

1.10 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to
glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS

A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.

B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E1300.
 1. Design Wind Pressures: Refer to Structural Drawings within the T&M Associates Drawing Set.
 2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch (25 mm), whichever is less.

C. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
 1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.
 2. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
 3. U-Factors: Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F (W/sq. m x K).
 4. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
 5. Visible Reflectance: Center-of-glazing values, according to NFRC 300.

2.3 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.

The Club at Woodbridge
INDOOR ICE RINK
GLAZING
B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.

E. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

A. Clear Annealed Float Glass: ASTM C1036, Type I, Class 1 (clear), Quality-Q3.

B. Fire Resistive Glazing: 90 minute rating meeting requirements of ASTM E119 and UL 263.
 2. Alternate Manufacturers include but are not limited to:
 a. Technical Glass Products (TGP); Pilkington PyroStop.
 b. VetrottechUSA (Saint-Gobain); ContraFlam.

C. Fire Resistive Glazing: 45 minute rating meeting requirements of ASTM E119 and UL 263.
 2. Alternate Manufacturers include but are not limited to:
 a. Technical Glass Products (TGP); Pilkington PyroStop.
 b. VetrottechUSA (Saint-Gobain); ContraFlam.

D. Fully Tempered Float Glass: ASTM C1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

E. Heat-Strengthened Float Glass: ASTM C1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

2.5 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E2190.

The Club at Woodbridge
INDOOR ICE RINK
GLAZING

TVC Project No.: 18-27905
1. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
2. Perimeter Spacer: Manufacturer's standard spacer material and construction.

2.6 GLAZING SEALANTS

A. General:
 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.

B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C920, Type S, Grade NS, Class 50, Use NT.

2.7 GLAZING TAPES

A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C1281 and AAMA 800 for products indicated below:
 1. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 2. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
 2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.8 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks: Type recommended by sealant or glass manufacturer.

D. Spacers: Type recommended by sealant or glass manufacturer.

E. Edge Blocks: Type recommended by sealant or glass manufacturer.

The Club at Woodbridge
INDOOR ICE RINK
GLAZING

TVC Project No.: 18-27905
08 8000 - 5
F. Cylindrical Glazing Sealant Backing: ASTM C1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.9 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch (3-mm) minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

I. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

J. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
E. Do not remove release paper from tape until right before each glazing unit is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.6 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.
 1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.
D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.7 GLASS SCHEDULE

A. Glass Type GL-1: Fire Resistive Glazing, with dimensions as indicated on drawings.
 1. Set within fire-rated interior doors.
 2. Thickness equals manufacturer’s standard to meet 1.50-hour fire rating.

B. Glass Type GL-2: Fire Resistive Glazing, with dimensions as indicated on drawings.
 1. Set within fire-rated interior doors.
 2. Thickness equals manufacturer’s standard to meet 0.75-hour fire rating

C. Glass Type GL-3: Clear fully tempered float glass, with dimensions as indicated on drawings.
 1. Set within exterior and interior non-fire rated doors.
 2. Thickness equals 0.25 inches.

D. Glass Type GL-4: Clear insulating, with dimensions as indicated on drawings.
 1. Set within exterior wall glazing assemblies.
 2. Overall thickness equals 1 inch; minimum thickness of each glass lite equals 0.25 inches.
 3. Outdoor Lite: Clear heat-strengthened float glass.
 4. Interspace Content: Argon.
 5. Indoor Lite: Clear Annealed float glass.
 6. U-factor equals 0.36 maximum.

E. Glass Type GL-5: Clear insulating, with dimensions as indicated on drawings.
 1. Set within interior wall glazing assemblies.
 2. Overall thickness equals 1 inch; minimum thickness of each glass lite equals 0.25 inches.
 3. Arena Side Lite: Clear fully tempered float glass.
 4. Interspace Content: Argon.
 5. Upper Lobby Side Lite: Clear fully tempered float glass.
 6. U-factor equals 0.36 maximum.

END OF SECTION 08-8000
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Non-load-bearing steel framing systems for interior partitions.
 2. Suspension systems for interior ceilings and soffits.
B. Related Requirements:
 1. Section 054000 "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; and roof rafters and ceiling joists.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of code-compliance certification for studs and tracks.
B. Evaluation Reports: For embossed, high-strength steel studs and tracks, firestop tracks, post-installed anchors and power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.5 QUALITY ASSURANCE
A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association or the Steel Stud Manufacturers Association.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E119 by an independent testing agency.

B. Horizontal Deflection: For wall assemblies, limited to 1/360 of the wall height based on horizontal loading of 15 lbf/sq. ft.

2.2 FRAMING SYSTEMS

A. Framing Members, General: Comply with ASTM C754 for conditions indicated.
 1. Steel Sheet Components: Comply with ASTM C645 requirements for steel unless otherwise indicated.

B. Studs and Tracks: ASTM C645.
 1. Steel Studs and Tracks:
 a. Minimum Base-Steel Thickness: As indicated on Drawings.
 b. Depth: As indicated on Drawings.

C. Slip-Type Head Joints: Where indicated, provide one of the following:
 1. Single Long-Leg Track System: ASTM C645 top track with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top track and with continuous bridging located within 12 inches (305 mm) of the top of studs to provide lateral bracing.
 2. Double-Track System: ASTM C645 top outer tracks, inside track with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs and fastened to studs, and outer track sized to friction-fit over inner track.
 3. Deflection Track: Steel sheet top track manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.

D. Firestop Tracks: Top track manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

E. Cold-Rolled Channel Bridging: Steel, 0.0538-inch (1.367-mm) minimum base-steel thickness, with minimum 1/2-inch- (13-mm-) wide flanges.
 1. Depth: 1-1/2 inches (38 mm).
 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches (38 by 38 mm), 0.068-inch- (1.72-mm-) thick, galvanized steel.

F. Hat-Shaped, Rigid Furring Channels: ASTM C645.
 1. Minimum Base-Steel Thickness: 0.0179 inch (0.455 mm).
2. Depth: 7/8 inch (22.2 mm).

2.3 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.
 1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide one of the following:
 2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch (3.2 mm) thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.

B. Coordination with Sprayed Fire-Resistive Materials:
 1. Before sprayed fire-resistive materials are applied, attach offset anchor plates or ceiling tracks to surfaces indicated to receive sprayed fire-resistive materials. Where offset anchor plates are required, provide continuous plates fastened to building structure not more than 24 inches (610 mm) o.c.
 2. After sprayed fire-resistive materials are applied, remove them only to extent necessary for installation of non-load-bearing steel framing. Do not reduce thickness of fire-resistive materials below that are required for fire-resistance ratings indicated. Protect adjacent fire-resistive materials from damage.

3.3 INSTALLATION, GENERAL

A. Installation Standard: ASTM C754.
B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.

C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

D. Install bracing at terminations in assemblies.

E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Single-Layer Application: 16 inches (406 mm) o.c unless otherwise indicated.
 2. Multilayer Application: 16 inches (406 mm) o.c. unless otherwise indicated.
 3. Tile Backing Panels: 16 inches (406 mm) o.c. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction. Knockouts within web must be in same elevation above finished floor.

D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch (13-mm) clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.

E. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch (3 mm) from the plane formed by faces of adjacent framing.

END OF SECTION 092216
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes interior wall and ceiling gypsum board.
 B. Related Requirements:
 1. Section 09-2216 "Non-Structural Metal Framing" for non-structural steel framing and sus-
 pension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS
 A. Product Data: For the following:
 1. Gypsum ceiling board.
 2. Abuse, mold and moisture resistant gypsum board.

1.4 DELIVERY, STORAGE AND HANDLING
 A. Store materials inside under cover and keep them dry and protected against weather,
 condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack
 panels flat and supported on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS
 A. Environmental Limitations: Comply with ASTM C840 requirements or gypsum board
 manufacturer's written instructions, whichever are more stringent.
 B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
 C. Do not install panels that are wet, moisture damaged, and mold damaged. Indications that
 panels are wet, or moisture damaged include, but are not limited to, discoloration, sagging, or
 irregular shape. Indications that panels are mold damaged include, but are not limited to, fuzzy
 or splotchy surface contamination and discoloration.
PART 2 - PRODUCTS

2.1 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.2 INTERIOR GYPSUM BOARD

A. Gypsum Ceiling Board: ASTM C1396/C1396M gypsum board, tested according to ASTM C1629/C1629M.
 1. Basis-Of-Design Manufacturer: USG; Sheetrock Brand Glass-Mat Mold Tough; or equal.
 2. Thickness equals 1/2 inch.

B. Abuse-Mold-Moisture-Resistant Gypsum Board: ASTM C1396/C1396M gypsum board, tested according to ASTM C1629/C1629M.
 1. Basis-Of-Design Manufacturer: USG; Sheetrock Brand Mold Tough AR Firecode X; or equal.
 2. Thickness equals 5/8 inch.

2.3 TRIM ACCESSORIES

A. Interior Trim: ASTM C1047.
 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 2. Shapes include Cornerbead, L-Bead and Expansion (control) joint.

2.4 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C475/C475M.

C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound. Use setting-type compound for installing paper-faced metal trim accessories.
 2. Fill Coat: For second coat, use setting-type, sandable topping compound.
 3. Finish Coat: For third coat, use setting-type, sandable topping compound.

2.5 AUXILIARY MATERIALS

A. Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.
B. Steel Drill Screws: ASTM C1002 unless otherwise indicated. Use screws complying with ASTM C954 for fastening panels to steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION AND FINISHING OF PANELS, GENERAL

A. Comply with ASTM C840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.

C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch (1.5 mm) of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

3.3 INSTALLATION OF INTERIOR GYPSUM BOARD

A. Install interior gypsum board as indicated on Drawings.

B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 b. At high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multilayer Application:
 1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches (400 mm) minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.
 2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
 3. Fastening Methods: Fasten base layers and face layers separately to supports with screws.

3.4 INSTALLATION OF TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints at locations indicated on Drawings.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners.
 2. L-Bead: Use where indicated on Drawings.

3.5 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
B. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

C. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated. Primer and its application to surfaces are specified in Section 09-9123 "Interior Painting."

3.6 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged. Indications that panels are wet, or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 09-2900
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes acoustical panels and exposed suspension systems for interior ceilings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Initial Selection: For components with factory-applied finishes.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension-system members.
 2. Structural members to which suspension systems will be attached.
 3. Method of attaching hangers to building structure.
 4. Carrying channels or other supplemental support for hanger-wire attachment where conditions do not permit installation of hanger wires at required spacing.
 5. Size and location of initial access modules for acoustical panels.
 6. Items penetrating finished ceiling and ceiling-mounted items including the following:
 a. Lighting fixtures, diffusers and grilles.
 b. Speakers.
 c. Sprinklers.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 ACOUSTICAL PANELS

A. Basis-Of-Design Manufacturer: Armstrong Ceilings Solutions; Optima Square Lay-In; Fine Texture; or equal

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Color: White.

D. Light Reflectance (LR): Not less than 0.90.

E. Ceiling Attenuation Class (CAC): Not less than 26.

F. Noise Reduction Coefficient (NRC): Not less than 0.95.

G. Articulation Class (AC): Not less than 190.
H. Edge/Joint Detail: Square.

I. Thickness: 1 inch (25.4 mm).

J. Modular Size: 24 by 48 inches (610 by 1220 mm).

K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.

2.3 METAL SUSPENSION SYSTEM

A. Armstrong Ceiling Solutions: Prelude; or equal.

B. Metal Suspension-System Standard: Provide manufacturer's standard, direct-hung, metal suspension system and accessories according to ASTM C635/C635M and designated by type, structural classification, and finish indicated.

1. High-Humidity Finish: Where indicated, provide coating tested and classified for "severe environment performance" according to ASTM C635/C635M.

C. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 (Z90) coating designation; with prefinished 15/16-inch- (24-mm-) wide metal caps on flanges.

2. End Condition of Cross Runners: Override (stepped) type.
3. Face Design: Flat, flush.
5. Coordinate finish in "Cap Finish" Subparagraph below with cap material selected.

2.4 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C635/C635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:

2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C635/C635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.106-inch- (2.69-mm-) diameter wire.

C. Hanger Rods: Mild steel, zinc coated or protected with rust-inhibitive paint.

D. Flat Hangers: Mild steel, zinc coated or protected with rust-inhibitive paint.
E. Angle Hangers: Angles with legs not less than 7/8 inch (22 mm) wide; formed with 0.04-inch- (1-mm-) thick, galvanized-steel sheet complying with ASTM A653/A653M, G90 (Z275) coating designation; with bolted connections and 5/16-inch- (8-mm-) diameter bolts.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated, and comply with layout shown on reflected ceiling plans.

B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION

A. Install acoustical panel ceilings according to ASTM C636/C636M and manufacturer's written instructions.

B. Suspend ceiling hangers from building's structural members and as follows:
 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appro-
appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.

6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.

7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.

8. Do not attach hangers to steel deck tabs.

9. Do not attach hangers to steel roof deck. Attach hangers to structural members.

10. Space hangers not more than 48 inches (1200 mm) o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches (200 mm) from ends of each member.

11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.

C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building’s structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs.

D. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

E. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit. Arrange directionally patterned acoustical panels as indicated on reflected ceiling plans. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.

3.4 ERECTION TOLERANCES

A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet (3 mm in 3.6 m), non-cumulative.

B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet (3 mm in 3.6 m), non-cumulative.

3.5 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.

B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 09 5113
SECTION 09 6200 – SKATE RESISTANT RUBBER FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This is a proprietary specification, matching the Owner’s anti-skate flooring material in their Community Center Ice Skating Arena. Substitutions are not permitted.

B. Section includes, loose-laid, rubber-roll floor finish capable of withstanding foot traffic impact from occupants wearing ice skates.

1.3 REFERENCES

F. ASTM F-2170 “Standard Test Method for Determining Relative Humidity in Concrete Floor Slabs Using In-Situ Probes”.

1.4 ACTION SUBMITTALS

A. Product data for roll rubber flooring.

B. Shop Drawings: Include floor roll layout, edge conditions, columns, doorways, enclosing partitions, indoor metal bleacher assembly, and floor finish transitions.

The Club at Woodbridge
INDOOR ICE RINK
SKATE RESISTANT RUBBER FLOORING

TVC Project No.: 18-27905 09 6200 - 1
C. Samples for Initial Selection: Manufacturer’s standard color palette for initial color selection.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification data for Installer.
B. Product warranty.

1.6 MAINTENANCE MATERIAL SUBMITTAL
A. Furnish extra material, from same product run, that matches products installed and are packaged with manufacturer’s protective covering for storage and identified with labels describing contents. Furnish minimum of 5% of material installed, but not less than one full roll.
B. Include on Operation and Maintenance Manual, submitted during Project Close-Out, rubber flooring manufacturer’s recommended cleaning and maintenance documents.

1.7 QUALITY ASSURANCE
A. Installer Qualifications: Minimum three (3) years of experience and has completed three (3) projects of similar magnitude within the past three (3) years.
B. Warranties:
 1. Manufacturer’s Warranty: Minimum five (5) year material and workmanship warranty.
 2. Installer Warranty: Minimum two (2) year installation warranty.
C. Mockups: Build a mockup, at the size and location designated on the drawings, to demonstrate aesthetic effects, and to set quality standards for material and execution.
 1. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups, unless such deviations are approved in writing.
 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE AND HANDLING
A. Store rubber material in dry spaces protected from the weather with ambient temperatures maintained within range recommended by the manufacturer.

1.9 FIELD CONDITIONS
A. Maintain ambient temperatures within range recommended by manufacturer, in spaces to receive rubber flooring during the following periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer.

C. Close spaces to foot traffic during, and 48 hours after rubber floor material installation.

D. Install rubber floor material after other finishing operations, including painting, are complete.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-Of-Design: Athletica, North West Rubber Ltd.
 1. Alternate Manufacturers include and are limited to the following:
 a. Flexco, Prime Sports.
 c. Mondo, Ramflex.

 1. Minimum Size: 48 inch (1.2m.) wide roll.
 2. Minimum Thickness: 3/8 inch (10mm).
 3. Loose-Lay installation. The use of any adhesive is prohibited.

 1. Minimum Size: 48 inch (1.2m.) wide roll.
 2. Minimum Thickness: 3/8 inch (10mm).
 3. Loose-Lay installation. The use of any adhesive is prohibited.

D. Drawing Designation SRFT-3: Athletica, Sportfloor, Stamina.
 1. Minimum Size: 48 inch (1.2m.) wide roll.
 2. Minimum Thickness: 1/2 inch (12.7mm).
 3. Loose-Lay installation. The use of any adhesive is prohibited.

E. Material: Vulcanized rubber.

F. Flame Spread Index: Less than 25.

G. Smoke Developed Index: Less than 450.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, with Installer present, for compliance with requirements for moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that may interfere with rubber flooring installation.

3.2 PREPARATION
A. Prepare substrates according to rubber flooring manufacturer’s written instructions to ensure proper installation.

B. New Concrete Surfaces: The Contractor shall verify to the Owner and Installer a minimum of thirty (30) days prior to the scheduled rubber flooring installation the following substrate conditions. All substrate testing shall be documented and submitted to the Architect and Owner before commencement of the rubber flooring installation
 1. Verify that substrates are dry, free of debris, and that all curing compounds, sealers and hardeners have properly cured.
 2. Moisture Testing: Perform tests recommended by manufacturer, and submit results to manufacturer’s local representative for approval. Forward approvals to Owner and Architect for record.

3.3 INSTALLATION
A. Install rubber flooring according to manufacturer’s written instructions and recommendations.

B. Align flooring seam pattern parallel with walls.

3.4 CLEANING
A. Upon installation completion, and acceptance by Architect and Owner, perform the rubber flooring manufacturer’s written instructions and recommendations.

3.5 PROTECTION
A. Protect the installed surface from damage resulting from subsequent on-site construction activity using protective materials recommended by rubber flooring manufacturer.

B. Touch-Up: Repair any minor damage to eliminate all evidence of repair. Remove and replace rubber flooring which cannot be satisfactorily repaired.

END OF SECTION 09 6200

The Club at Woodbridge
INDOOR ICE RINK
SKATE RESISTANT RUBBER FLOORING
TVC Project No.: 18-27905
09 6200 - 4
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermoset-rubber base.
 2. Rubber stair accessories.
 3. Rubber molding accessories.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Samples: For each exposed product and for each color and texture specified, not less than 12 inches (300 mm) long.
C. Samples for Initial Selection: For each type of product indicated.
D. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer's standard-size Samples, but not less than 12 inches (300 mm) long.
E. Product Schedule: For resilient base and accessory products. Use same designations indicated on Drawings.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. Furnish not less than 10 linear feet (3 linear m) for every 500 linear feet (150 linear m) or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C).
1.6 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, in spaces to receive resilient products, 48 hours before installation, during installation and 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer.

C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 THERMOSET-RUBBER BASE

A. Product Standard: ASTM F1861, Type TS (rubber, vulcanized thermoset), Group I (solid, homogeneous).
 1. Style: Cove.
 2. Thickness: 0.125 inch (3.2 mm).
 3. Height: 4 inches (102 mm).
 4. Lengths: Cut lengths 48 inches (1219 mm) long or coils in manufacturer's standard length.
 5. Outside & Inside Corners: Job formed or preformed.
 6. Color: As indicated on the drawings.

2.2 RUBBER STAIR ACCESSORIES

A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

B. Stair Treads: ASTM F2169.
 1. Type: TS; rubber, vulcanized thermoset.
 2. Class: 2; ribbed.
 3. Group: 2; with contrasting color (Safety Yellow) for the visually impaired.
 4. Nosing Style: Square, adjustable to cover angles between 60 and 90 degrees.
 5. Nosing Height: 1-1/2 inches (38 mm).
 6. Thickness: 1/4 inch (6 mm) and tapered to back edge.
 7. Size: Lengths and depths to fit each stair tread in one piece.

C. Separate Risers: Smooth, flat; in height that fully covers substrate; produced by same manufacturer as treads and recommended by manufacturer for installation with treads.
 1. Style: Toeless, by length matching treads.
 2. Thickness: 0.125 inch (3.2 mm).
D. Stringers: Height and length after cutting to fit riser outside faces and treads and to cover stair stringers, produced by same manufacturer as treads, and recommended by manufacturer for installation with treads.
 1. Thickness: 0.125 inch (3.2 mm).

E. Locations: At steps providing access to hot tubs.

F. Color: Match thermoset rubber base.

2.3 INSTALLATION MATERIALS

A. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

B. Floor Polish: Provide protective, liquid floor-polish products recommended by resilient stair-tread manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

B. Proceed with installation only after unsatisfactory conditions have been corrected. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.

B. Apply resilient base to walls, lockers in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.

G. Preformed Corners: Install preformed corners before installing straight pieces.

H. Job-Formed Corners:
 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length. Form without producing discoloration (whitening) at bends.
 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length. Miter or cope corners to minimize open joints.

3.4 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient accessories.

B. Resilient Stair Accessories:
 1. Use stair-tread-nose filler to fill nosing substrates that do not conform to tread contours.
 2. Tightly adhere to substrates throughout length of each piece.
 3. For treads installed as separate, equal-length units, install to produce a flush joint between units.

C. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.

B. Perform the following operations immediately after completing resilient-product installation:
 1. Remove adhesive and other blemishes from surfaces.
 2. Sweep and vacuum horizontal surfaces thoroughly.
 3. Damp-mop horizontal surfaces to remove marks and soil.

C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 09 6513
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes rubber floor tile.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For each type of resilient floor tile.
 1. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 2. Show details of special patterns.
C. Samples: Full-size units of each color, texture, and pattern of floor tile required.
D. Product Schedule: For floor tile. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.
1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation and seaming method indicated.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C). Store floor tiles on flat surfaces.

1.9 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, in spaces to receive floor tile during the following periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer.

C. Close spaces to traffic during floor tile installation.

D. Close spaces to traffic for 48 hours after floor tile installation.

E. Install floor tile after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For resilient floor tile, as determined by testing identical products according to ASTM E648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 RUBBER FLOOR TILE: RT-1/RT-2

A. Basis-Of-Design Manufacturer: Roppe; or equal.
 1. Numeric designations refer to color selection. Refer to Drawings for location of RT-1 and RT-2.

C. Hardness: Grade 1, minimum hardness of 85, measured using Shore, Type A durometer according to ASTM D2240.

The Club at Woodbridge
INDOOR ICE RINK
RESILIENT TILE FLOORING
1. Wearing Surface: Molded pattern. Molded-Pattern Figure: Raised discs.

D. Thickness: 0.125 inch (3.2 mm).
E. Size: 24 by 24 inches (610 by 610 mm).
F. Colors and Patterns: As indicated on the drawings.

2.3 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.

C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
4. Moisture Testing: Perform tests so that each test area does not exceed 200 sq. ft. (18.6 sq. m), and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 a. Anhydrous Calcium Chloride Test: ASTM F1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours.
 b. Relative Humidity Test: Using in-situ probes, ASTM F2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until materials are the same temperature as space where they are to be installed. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.3 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 1. Lay tiles square with room axis.

C. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

D. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.

E. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.

F. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.

G. Adhere floor tiles to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.

B. Perform the following operations immediately after completing floor tile installation:
 1. Remove adhesive and other blemishes from surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.

C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish.
 1. Apply two coats.

E. Cover floor tile until Substantial Completion.

END OF SECTION 09 6519
SECTION 09 9113 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following exterior substrates:
 1. Steel and iron.
 2. Galvanized metal.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for shop priming metal fabrications.
 2. Section 055213 "Pipe and Tube Railings" for shop priming and painting pipe and tube railings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions. Indicate VOC content.

B. Samples for Initial Selection: For each type of topcoat product.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.
1.6 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).

B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-Of-Design Manufacturer: Sherwin-Williams.
 1. Alternate manufacturers include the following: Benjamin-Moore and Pittsburgh.

B. Products: Subject to compliance with requirements, provide the product, or comparable product, listed in the Exterior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

A. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

B. Colors: As indicated in a color schedule.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

C. Proceed with coating application only after unsatisfactory conditions have been corrected. Application of coating indicates acceptance of surfaces and conditions.
3.2 PREPARATION

A. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

B. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer.

C. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

D. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

3.3 APPLICATION

A. Apply paints according to manufacturer’s written instructions.
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 3. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 EXTERIOR PAINTING SCHEDULE

A. Previously Painted Steel and Iron Substrates; provide two (2) top coats from one of the following:
 1. Sherwin-Williams; Pro Industrial Acrylic; Semi-Gloss finish. (Basis-Of-Design)
 2. Benjamin Moore; Corotech Acrylic DTM Enamel; Gloss finish.
 3. PPG Paints; Pitt-Tech 90-812 Series; Semi-Gloss finish.

B. Galvanized-Metal Substrates; provide two (2) top coats from one of the following:
 1. Sherwin-Williams; Pro Industrial Acrylic; Semi-Gloss finish. (Basis-Of-Design)
 2. Benjamin Moore; Corotech Acrylic DTM Enamel; Gloss finish.
 3. PPG Paints; Pitt-Tech 90-812 Series; Semi-Gloss finish.

END OF SECTION 09 9113
SECTION 09 9123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on interior substrates identified in the Interior Painting Schedule, located at the end of Part 3.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for shop priming metal fabrications.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions. Indicate VOC content.

B. Samples for Initial Selection: For each type of topcoat product.

C. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

D. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

E. Substrate Moisture Content: Submit documentation indicating the moisture content of all substrates, regardless of whether, or not, the moisture content is within acceptable ranges specified. For larger surface areas, perform one test for every 300 square feet of surface area.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.
1.5 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft. (9 sq. m).
 b. Other Items: Architect will designate items or areas required.
 2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-Of-Design Manufacturer is Sherwin-Williams.
 1. Alternate manufacturers include, and are limited to the following:
 a. Benjamin-Moore.
 b. Pittsburgh Paints.

B. Products: Subject to compliance with requirements, provide product listed in the Interior Painting Schedule for the paint category indicated.
2.2 PAINT, GENERAL

A. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

B. Colors: As selected by Architect from manufacturer's full range, when a specific color is not indicated.
 1. Thirty percent of surface area will be painted with deep tones.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. CMU Masonry: 12 percent.
 3. Wood: 15 percent.
 4. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

The Club at Woodbridge
INDOOR ICE RINK
INTERIOR PAINTING

TVC Project No.: 18-27905
09 9123 - 3
1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.

E. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.

F. Steel Substrates: Remove rust, loose mill scale, and shop primer, if any. Clean using methods recommended in writing by paint manufacturer.

G. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

H. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

I. Aluminum Substrates: Remove loose surface oxidation.

J. Wood Substrates:
 1. Sand surfaces that will be exposed to view, and dust off.
 2. Prime edges, ends, faces, undersides, and backsides of wood.
 3. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.
C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 1. Paint the following work where exposed in equipment rooms:
 a. Tanks that do not have factory-applied final finishes.
 2. Paint the following work where exposed in occupied spaces:
 a. Equipment, including panelboards.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Metal conduit.
 f. Plastic conduit.
 g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 h. Other items as directed by Architect.
 3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.
3.6 INTERIOR PAINTING SCHEDULE

A. Concrete and CMU Substrates, Vertical Surfaces:
 1. Primer: One (1) coat SW Loxon Block Surfacer.
 2. Finish: Two (2) coats SW Pro Industrial Waterbased Catalyzed Epoxy; Semi-Gloss finish.

B. Concrete Substrates, Vertical and Horizontal Surfaces within Snow Melt Pit:
 1. Primer: One (1) coat SW Kem Cat-Coat HS.
 2. Finish: Two (2) coats SW Macropoxy 646 Fast Cure; Semi-Gloss finish.
 a. Non-Slip Grit on Horizontal Surface: H&C Shark Grip added to second finish coat during paint mixing and prior to paint application. Amount per gallon per manufacturer instructions.

C. Steel Substrates, Existing Rigid-Frame Members and Existing Columns:
 1. Primer: One (1) coat SW Kem Bond HS Universal Metal Primer.
 2. Finish: Two (2) coats SW Pro-Industrial High Performance Epoxy; Gloss finish.

D. Galvanized-Metal Substrates, Hollow Metal Doors & Frames, Access Ladders and Pipe Guardrails:
 1. Finish: Two (2) coats SW Pro-Industrial High Performance Epoxy; Gloss finish.

E. Gypsum Board Wall Substrates:
 1. Primer: One (1) coat SW ProMar200 Zero VOC Interior Latex Primer.
 2. Finish: Two (2) coats SW Pro Industrial Waterbased Catalyzed Epoxy; Semi-Gloss finish.

F. Gypsum Board Ceiling Substrates and Wood Trim:
 1. Primer: One (1) coat SW Premium Wall and Wood Primer.
 2. Finish: Two (2) coats SW Bath Paint.

END OF SECTION 09 9123
SECTION 10 2800 – TOILET AND BATH ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Public-use washroom accessories.
 2. Team washroom and shower accessories.
 3. Childcare accessories.
 4. Under-lavatory guards.
 5. Custodial accessories.
 6. Shower curtain, hooks, and rod.

1.3 COORDINATION

A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.

B. Deliver inserts and anchoring devices set into masonry as required to prevent delaying the Work.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
 3. Include electrical characteristics.

B. Samples: Full size, for each exposed product and for each finish specified. Approved full-size Samples will be returned and may be used in the Work.

C. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 1. Identify locations using room designations indicated.
 2. Identify accessories using designations indicated.
1.5 INFORMATIONAL SUBMITTALS
 A. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For accessories to include in maintenance manuals.

1.7 WARRANTY
 A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, visible silver spoilage defects.
 2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 PUBLIC-USE WASHROOM ACCESSORIES
 A. Source Limitations: Obtain public-use washroom accessories from single source from single manufacturer.
 1. Basis-Of-Design Manufacturer: American Specialties, Inc.
 2. Alternate Manufacturers which may be included, but are not limited to the following:
 b. Bobrick Corporation.
 B. Toilet Tissue (Roll) Dispenser (TT-1):
 1. Description: Roll-in-reserve dispenser with hinged front secured with tumbler lockset.
 4. Capacity: Designed for 4-1/2- or 5-inch- (114- or 127-mm-) diameter tissue rolls.
 C. Combination Towel (Roll) Dispenser/Waste Receptacle (PTW-1):
 1. Description: Combination unit for dispensing preset length of roll paper towels, with removable waste receptacle.
6. Liner: Stainless steel, ASTM A480/A480M No. 4 finish (satin) with hemmed edges and finger grips.
7. Lockset: Tumbler type for towel dispenser compartment and waste receptacle.

D. Liquid-Soap Dispenser (LSD-1):
 1. Description: Designed for dispensing antibacterial soap in liquid or lotion form.
 3. Capacity: 57 oz. (1.7 liter).
 5. Lockset: Tumbler type.

E. Grab Bar (GB-1 = 42 inches long; GB-2 = 36 inches long; GB-3 = 18 inches long):
 1. Mounting: Flanges with concealed fasteners.
 2. Material: Stainless steel, 0.05 inch (1.3 mm) thick.
 a. Finish: Smooth, ASTM A480/A480M No. 4 finish (satin) on ends and slip-resistant texture in grip area.

F. Seat-Cover Dispenser (TSC-1):
 1. Mounting: Surface mounted.
 4. Lockset: Tumbler type.

G. Wall Mirror Unit (WM-1):
 1. Frame: Stainless steel angle, 0.036 inch (0.91 mm) thick.
 a. Corners: Manufacturer's standard, burr free.
 3. Size: As indicated on drawings.

2.3 TEAM SHOWER ROOM ACCESSORIES

A. Source Limitations: Obtain public-use shower room accessories from single source from single manufacturer.

B. Shower Curtain Rod (SR-1):
 1. Description: 1-1/4-inch (32-mm) OD; fabricated from nominal 0.05-inch- (1.3-mm-) thick stainless steel.
 2. Mounting Flanges: Stainless steel flanges designed for exposed fasteners.
 3. Finish: Stainless steel, ASTM A480/A480M No. 4 finish (satin).

C. Shower Curtain (SC-1):
 1. Size: Minimum 42 inches (1066 mm) by 72 inches (1828 mm) high.
 2. Material: Vinyl, minimum 0.008 inch (0.2 mm) thick, opaque, matte, with integral antibacterial agent.
 4. Grommets: Corrosion resistant at minimum 6 inches (152 mm) o.c. through top hem.
5. Shower Curtain Hooks: Stainless steel, spring wire curtain hooks with snap fasteners, sized to accommodate specified curtain rod. Provide one hook per curtain grommet.

D. Soap Dish (SSD-1):
 1. Description: Without washcloth bar.

E. Towel / Wardrobe Hook (HK-1):
 1. Dual, surface mounted hook assembly, chrome plated finish.

2.4 CHILDCARE ACCESSORIES

A. Source Limitations: Obtain childcare accessories from single source from single manufacturer.

B. Baby-Changing Station (BC-1):
 1. Description: Horizontal unit that opens by folding down from stored position and with child-protection strap.
 a. Engineered to support minimum of 300-lb (113-kg) static load when opened.
 2. Mounting: Surface mounted, with unit projecting not more than 4 inches (100 mm) from wall when closed.
 5. Liner Dispenser: Built in.

2.5 CUSTODIAL ACCESSORIES

A. Source Limitations: Obtain custodial accessories from single source from single manufacturer.

B. Mop and Broom Holder (MBH-1):
 1. Description: Unit with shelf, hooks and holders.
 2. Length: 36 inches (914 mm).

2.6 SHOWER CURTAIN, HOOKS AND ROD

A. Curtain: Flame-resistant, manufacturer's standard fabric that is stain resistant, self-sanitizing, antistatic, antimicrobial, and launderable to a temperature of not less than 90 deg F (32 deg C).
 1. Resistance: Passes NFPA 701 tests when tested by a testing and inspecting agency acceptable to authorities having jurisdiction.
 2. Labeling: Identify fabrics with appropriate markings of applicable testing and inspecting agency.
3. Curtain Grommets: Two-piece, rolled-edge, rustproof, nickel-plated brass; spaced not more than 6 inches (152 mm) o.c.; machined into top hem.

4. Curtains that are 12 inches (305 mm) wider than opening are recommended for shower openings 48 inches (1219 mm) wide and wider.

5. Width: Minimum 12 inches (305 mm) wider than opening.

6. Length: Where curtain extends to a floor surface, size so that bottom hem clears finished floor by not more than 1 inch (25 mm) and not less than 1/2 inch (13 mm) above floor surface. Where curtains extend to a shower-receptor curb, size so that bottom hem hangs above curb line and clears curb line by not more than 1/2 inch (13 mm).

7. Color and Pattern: As selected by Architect from manufacturer's full range.

B. Headrail with Hooks: Curtain manufacturer's standard, continuous, extruded-aluminum headrail or cap with curtain hooks running in concealed track; with anti-grip profile; in manufacturer's standard finish.

2.7 MATERIALS

A. Stainless Steel: ASTM A240/A240M or ASTM A666, Type 304, 0.031-inch (0.8-mm) minimum nominal thickness unless otherwise indicated.

B. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.

C. Mirrors: ASTM C1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.8 FABRICATION

A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.

B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf (1112 N), when tested according to ASTM F446.
3.2 ADJUSTING AND CLEANING

A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.

B. Remove temporary labels and protective coatings.

C. Clean and polish exposed surfaces according to manufacturer's written instructions.

END OF SECTION 10 2800
SECTION 10 4413 - FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes surface mount, semi-recess mount & fire-rated semi-recess mount, fire protection cabinets for portable fire extinguishers.
 B. Related Requirements: Section 104416 "Fire Extinguishers" for portable, hand-carried fire extinguishers accommodated by fire-protection cabinets

1.3 PREINSTALLATION CONFERENCE
 A. Preinstallation Conference: Conduct conference at Project site. Review methods and procedures related to fire-protection cabinets, including, but not limited to, schedules and coordination requirements.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing semi-recessed, and surface-mounting method and relationships of box and trim to surrounding construction.
 B. Shop Drawings: For fire-protection cabinets. Include plans, elevations, sections, details, and attachments to other work.
 C. Samples for Verification: For each type of exposed finish required, prepared on samples 6 by 6 inches (150 by 150 mm) square.
 D. Product Schedule: For fire-protection cabinets. Indicate whether semi-recessed, or surface mounted. Coordinate final fire-protection cabinet schedule with fire-extinguisher schedule to ensure proper fit and function.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For fire-protection cabinets to include in maintenance manuals.

The Club at Woodbridge
INDOOR ICE RINK
FIRE PROTECTION CABINETS

TVC Project No.: 18-27905
1.6 COORDINATION

A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.

B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fire-protection cabinets, accessories, and fire extinguishers from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E814 for fire-resistance rating of walls where they are installed.

2.3 FIRE-PROTECTION CABINET

A. Cabinet Type: Suitable for five (5) pound capacity fire extinguisher.
 1. Available manufacturers which may be incorporated into the work include, but are not limited to the following:
 a. Larsen’s Manufacturing; Basis-Of-Design.
 i. Surface Mount: Model No.: 2409-SM.
 ii. Semi-Recess Mount: Model No.: 2409-6R.
 iii. Fire-Rated, Semi-Recess Mount: Model No. FS-2409-RA.
 b. Guardian Fire Equipment, Inc.

B. Drawing Designations:
 1. **FEC** – Non-rated cabinet construction.
 2. **FEC-FR** – Fire-rated cabinet construction.

C. Cabinet Material: Cold-rolled steel sheet.

D. Semi-recessed Cabinet: One-piece combination trim and perimeter door frame overlapping surrounding wall surface, with exposed trim face and wall return at outer edge (backbend). Rolled-Edge Trim: 2-1/2-inch (64-mm) backbend depth.

E. Surface-Mounted Cabinet: Cabinet box fully exposed and mounted directly on supports with no trim.

F. Cabinet Trim Material: Same material and finish as door.

G. Door Material: Steel sheet.

The Club at Woodbridge
INDOOR ICE RINK
FIRE PROTECTION CABINETS

TVC Project No.: 18-27905 10 4413 - 2
H. Door Style: Fully glazed panel with frame.

I. Door Glazing: Tempered float glass (clear).

J. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 1. Provide projecting door pull and friction latch.
 2. Provide manufacturer's standard hinge, permitting door to open 180 degrees.

K. Materials:
 1. Cold-Rolled Steel: ASTM A1008/A1008M, Commercial Steel (CS), Type B.
 a. Finish: Baked enamel, TGIC polyester powder coat, HAA polyester powder coat, epoxy powder coat, or polyester/epoxy hybrid powder coat, complying with AAMA 2603.
 b. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 c. Color: As selected by Architect from manufacturer's full range.
 1. Tempered Float Glass: ASTM C1048, Kind FT, Condition A, Type I, Quality q3, 3 mm thick, Class 1 (clear).

2.4 FABRICATION

A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 1. Weld joints and grind smooth.
 2. Miter corners and grind smooth.
 3. Provide factory-drilled mounting holes.
 4. Prepare doors and frames to receive locks.
 5. Install door locks at factory.

B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch (13 mm) thick.
 2. Miter and weld perimeter door frames and grind smooth.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.5 GENERAL FINISH REQUIREMENTS

B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire-protection cabinets after assembly.
D. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls and partitions for suitable framing depth and blocking where semi-recessed and surface mounted cabinets will be installed.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare recesses for semi-recessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

A. General: Install fire-protection cabinets in locations and at mounting heights indicated.
 1. Fire-Protection Cabinets: 42 inches (1067 mm) above finished floor to top of fire extinguisher.

B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.

3.4 ADJUSTING AND CLEANING

A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.

B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.

C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.

D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire-protection cabinet and mounting bracket manufacturers.

E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 10 4413
SECTION 10 4416 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.
B. Related Requirements: Section 104413 "Fire Protection Cabinets."

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site. Review methods and procedures related to fire extinguishers including, but not limited to, schedules and coordination requirements.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.
B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fire-protection cabinet schedule to ensure proper fit and function.

1.5 INFORMATIONAL SUBMITTALS
A. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.
1.7 COORDINATION
 A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.

1.8 WARRANTY
 A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Failure of hydrostatic test according to NFPA 10 when testing interval required by NFPA 10 is within the warranty period.
 b. Faulty operation of valves or release levers.

 2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."

 B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.

 1. Provide fire extinguishers approved, listed, and labeled by FM Global.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS
 A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet and mounting bracket indicated.

 1. Available manufacturers include, but are not limited to the following:
 a. Amerex Corporation.
 b. Guardian Fire Equipment, Inc.
 c. Larsen’s Manufacturing Co.

 2. Source Limitations: Obtain fire extinguishers, fire-protection cabinets, and accessories, from single source from single manufacturer.

 5. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.
B. Multipurpose Dry-Chemical Type in Steel Container: UL-rated 2-A:10-B:C, 5-lb (2.3-kg) nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.

2.3 MOUNTING BRACKETS

A. Mounting Brackets: Manufacturer's standard steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.
 1. Source Limitations: Obtain mounting brackets and fire extinguishers from single source from single manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fire extinguishers for proper charging and tagging.
 1. Remove and replace damaged, defective, or undercharged fire extinguishers.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 1. Mounting Brackets: Top of fire extinguisher to be at 42 inches (1067 mm) above finished floor.

B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 10 4416
SECTION 10 5116 – HIGH DENSITY POLYETHYLENE (HDPE) LOCKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes open front, athletic lockers and benches.
 1. Refer to drawings, sheet A2.1, for locations and quantities.
 2. Refer to drawings, sheet A4.1, for configurations and components.
B. Related sections include 06 1053 “Miscellaneous Rough Carpentry”.
C. All high density polyethylene components must meet Class B category for the following:
 1. Flame Spread Index: Not to exceed 75.
 2. Smoke Developed Index: Not to exceed 450.

1.3 REFERENCES
B. NFPA 286 “Standard Methods of Fire Tests for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth”.
C. UL 723 “UL Standard for Safety Test for Surface Burning Characteristics of Building Materials”.

1.4 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of HDPE locker and bench.
B. Shop Drawings: For HDPE lockers.
 1. Include plans, elevations, sections, and attachment details.
 2. Show locker trim and accessories.
C. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors available, which meet the Class B fire rating.

D. Product Schedule: For lockers. Use same designations indicated on Drawings.

1.6 INFORMATIONAL SUBMITTALS

A. Manufacturer Qualifications: A company regularly engaged in manufacture of products specified in this Section, and whose products have been in satisfactory use under similar service conditions for not less than five (5) years.

B. Installer Qualifications: A company regularly engaged in installation of products specified in this Section, with a minimum of five (5) years experience.

C. Sample Warranty.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver HDPE lockers until spaces to receive them are clean, dry, and ready for their installation.

B. Store products in manufacturer’s unopened packaging until ready for installation.

C. Locker components shall be stored flat until assembly. All finishes shall be protected from soiling and damage during handling.

1.8 FIELD CONDITIONS

A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer. Do not install products under environmental conditions outside manufacturer’s recommended limits.

1.9 COORDINATION

A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of work specified in other Sections to ensure that HDPE lockers can be supported and installed as indicated.

1.10 WARRANTY

A. Warranty: Manufacturer guarantees its HDPE material against breakage, corrosion, and delamination under normal conditions for fifteen (15) years from the date of substantial completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain HDPE lockers, locker benches, and accessories from single source from single locker manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Accessibility Standard: For lockers indicated to be accessible, comply with applicable provisions in ICC A117.1.

2.3 OPEN-FRONT ATHLETIC LOCKERS

A. Basis-Of-Design Manufacturer: Scranton Products; TuffTec Solid HDPE Athletic Locker, with security box and shelf, and foot locker below; or equal.

B. Locker Arrangement: Single-Tier, Open Front.

C. Hardware:
 1. Padlock hasp for security box door.
 2. Two-prong plastic coat hook, where shown on drawings.
 3. Continuous hinges on security box door and foot locker lid.
 4. Slope top.

D. Construction:
 1. Sides, tops, bottoms, backs, and shelves shall be made from high impact, high density, polyethylene (HDPE) formed under pressure into solid plastic components 3/8 inch (9.5 mm) thick with homogenous natural color throughout. Outsides, insides, tops, bottoms, backs, dividers and shelves shall be natural in color.
 2. Provide end panels and filler panels of plastic material in color of locker unless noted otherwise as an accent color.
 3. Assembly profile shall be full height of the lockers. Profile shall be Tongue-and-groove joint construction using 3/8 inch thick HDPE.
 4. Security door and foot locker lid hinges shall be made from heavy duty zinc-plated steel, full length for respective application.
 5. Coat hooks shall be single-prong and made from high density polyethylene. Hooks shall be mounted to each side wall panel.
 6. Wardrobe rod shall be included with rod-ends mounted to each side wall and six (6) inches below the locker shelf.

E. Materials:
 1. Lockers shall be constructed from High Density Polyethylene (HDPE) resins. Material shall be fabricated from polymer resins compounded under high pressure, forming a single component which is waterproof, nonabsorbent and has a self-lubricating surface that resists marks from pens, pencils, markers and other writing instruments.
 2. Plastic components shall resist deterioration and discoloration when subjected to any of the following: acetic acid 80%, acetone, ammonia 12%, ammonium phosphate, bleach.
12%, borax, brine, caustic soda, chlorine water, citric acid, copper chloride, core oils, hydrochloric acid 40%, hydrogen peroxide 30%, isopropyl alcohol, lactic acid 25%, lime sulfur, nicotine, potassium bromide; soaps, sodium bicarbonate, trisodium phosphate, urea, urine and vinegar.

3. HDPE components shall have a smooth "orange peel" finish.
4. Color: As selected from manufacturer's standard colors, meeting the Class B flame and smoke spread indices.

F. Fabrication:
1. Locker components shall be fabricated square and rigid with a finish free of scratches and chips.
2. Solid plastic locker components shall snap together at profile connections or slide together at dovetail connections for easy assembly and shall provide a solid and secure anti-racking book case component construction for clean lines and precise reveals. Adjacent lockers shall share a common side panel. Locker units shall be manufactured for assembly in a group of no more than three adjacent lockers.

2.4 LOCKER BENCHES

A. Basis-Of-Design Manufacturer: Penco; or equal.

B. Provide bench units with overall assembly height of 18 inches (445 mm).

C. Bench Tops: Manufacturer's standard one-piece units, with rounded corners and edges.
 1. Material: Manufacturer’s standard hardwood, finished with two coats of clear lacquer.
 2. Size: Minimum 9-1/2 inches wide by 1-1/4 inches thick (241 mm wide by 32 mm thick).

D. Movable-Bench Pedestals: Manufacturer's standard supports, with predrilled fastener holes for attaching bench top, complete with fasteners, and as follows:
 1. Aluminum: 1/8-inch-thick by 3-inch-wide (3-mm-thick by 76-mm-wide) channel or 1/4-inch-thick by 3-inch-wide (6-mm-thick by 76-mm-wide) bar stock, shaped into trapezoidal form; with nonskid pads at bottom.
 a. Finish: Clear anodic finish.

E. Materials:
 1. Extruded Aluminum: ASTM B221 (ASTM B221M), alloy and temper recommended by aluminum producer and manufacturer for type of use and finish indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls and floors, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean surfaces thoroughly prior to installation.

B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.3 INSTALLATION

A. Install lockers at the location shown in accordance with the manufacturers' instructions for plumb, level, rigid and flush installations.

B. Anchor the units to the wall, through the locker back, and to the floor using 1-1/2 inches (38 mm) tapcon screws.

C. Lockers shall be floor-mounted as scheduled or indicated. Floor shall be level for proper installation.

3.4 ADJUSTING

A. Clean, lubricate, and adjust hardware to operate easily without binding.

3.5 PROTECTION

A. Protect HDPE lockers from damage, abuse, dust, dirt, stain, or paint. Do not permit use during construction.

B. Prior to Certificate of Substantial Completion issuance, repair, or replace lockers that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by locker manufacturer.

END OF SECTION 10 5116
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes floor mounted and wall secured stainless steel tables.

B. Related documents: Refer to T&M Associates Plumbing Drawings and Division 22 Specification Sections for wall mounted hand sink, and floor mounted pot sink with integral adjacent drain boards.

1.3 COORDINATION

A. Coordinate foodservice equipment layout and installation with other work, including layout and installation of lighting fixtures, HVAC equipment, and fire-suppression system components.

B. Coordinate locations and requirements of utility service connections.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include the following:
 1. Accessories and components that will be included for Project.

B. Shop Drawings: For fabricated equipment. Include plans, elevations, sections, roughing-in dimensions, fabrication details, utility service requirements, and attachments to other work.

C. Samples for Initial Selection: For units with factory-applied color finishes.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For foodservice equipment to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Cleaning procedures, including list of recommended cleaning products.
1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of construction contiguous with foodservice equipment by field measurements before fabrication. Indicate measurements on Coordination Drawings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. NSF Standards: Provide equipment that bears NSF Certification Mark or UL Classification Mark certifying compliance with applicable NSF standards.

2.2 FABRICATED EQUIPMENT

A. L-Shaped Stainless Steel Table / Countertop:
 1. Description: Flat-countertop table, with front legs.
 a. Tops: Stainless steel, Type 304, 0.078 inch (1.98 mm) thick, reinforced and sound deadened.
 1) Back Splash: Manufacturer's standard height.
 2) Edge: Bullnose on all exposed sides.
 b. Welded Undershelf: Stainless steel, Type 304, 0.050 inch (1.27 mm) thick.
 c. Crossbracing: Stainless steel tubing, welded to legs.
 d. Legs: Stainless steel tubing.
 e. Feet: Stainless steel adjustable bullets.

2.3 MISCELLANEOUS MATERIALS

A. Installation Accessories, General: NSF certified for end-use application indicated.

B. Elastomeric Joint Sealant: ASTM C920; silicone. Type S (single component), Grade NS (nonsag), Class 25, Use NT (nontraffic) related to exposure, and Use M, G, A, or O as applicable to joint substrates indicated.
 1. Public Health and Safety Requirements:
 a. Sealant is certified for compliance with NSF standards for end-use application indicated.
 b. Washed and cured sealant complies with the FDA's regulations for use in areas that come in contact with food.

2.4 FINISHES

A. Stainless Steel Finishes:
 1. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.

The Club at Woodbridge
INDOOR ICE RINK
FOODSERVICE EQUIPMENT
2. Polished Finishes: Grind and polish surfaces to produce uniform finish, free of cross scratches.
 a. Run grain of directional finishes with long dimension of each piece.
 b. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install foodservice equipment level and plumb, according to manufacturer's written instructions.

B. Complete equipment assembly where field assembly is required.
 1. Provide closed butt and contact joints that do not require a filler.
 2. Grind field welds on stainless steel equipment until smooth and polish to match adjacent finish.

C. Install closure-trim strips and similar items requiring fasteners in a bed of sealant.

D. Install joint sealant in joints between equipment and abutting surfaces with continuous joint backing unless otherwise indicated. Produce airtight, watertight, vermin-proof, sanitary joints.

3.2 CLEANING AND PROTECTING

A. After completing installation of equipment, repair damaged finishes.

B. Clean and adjust equipment as required to produce ready-for-use condition.

C. Protect equipment from damage during remainder of the construction period.

END OF SECTION 11 4000
SECTION 12 3661.16 - SOLID SURFACING WINDOW STOOLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes solid surface material for window stools.

1.3 ACTION SUBMITTALS
 A. Product Data: For window stool materials.
 B. Shop Drawings: Show materials, finishes, edge profiles.
 C. Samples for Initial Selection: For each type of material exposed to view.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For fabricator.

1.5 FIELD CONDITIONS
 A. Field Measurements: Verify dimensions of window stools by field measurements before
 window stools fabrication are complete.

PART 2 - PRODUCTS

2.1 SOLID SURFACE WINDOW STOOL MATERIALS
 A. Solid Surface Material: Homogeneous-filled plastic resin complying with ICPA SS-1.
 1. Type: Provide Standard type unless Special Purpose type is indicated.
 2. Colors and Patterns: As selected by Architect from manufacturer's full range.
2.2 WINDOW STOOL FABRICATION

A. Fabricate window stools according to solid surface material manufacturer's written instructions.

B. Configuration:
 1. Front: Bullnose edge ¾ inches (75 mm) high.
 2. Sides: Bullnose edge ¾ inches (75 mm) high.

C. Fabricate stools with shop-applied edges unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by solid surface material manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to receive solid surface material at stools and conditions under which stools will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of window stools.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install stools level to a tolerance of 1/8 inch in 8 feet (3 mm in 2.4 m), 1/4 inch (6 mm) maximum.

B. Apply sealant to gaps at walls and solid surface material; comply with Section 07 9200 "Joint Sealants."

END OF SECTION 12 3661.16
SECTION 13 0000 REFRIGERATION SYSTEM

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY OF WORK

A. It is the intention of this specification to direct the refrigeration sub-contractor to supply and install a modular refrigeration system complete with all components necessary to make and maintain skateable ice year-round. The components for ice making equipment are identified in this specification and include but are not limited to, refrigeration unit, pumps, fluid cooler, piping and insulation, snow melt pit and coil.

1.3 SYSTEM DESIGN PARAMETERS:

A. The system is designed for the following conditions:

1. Operating Season Year Round
2. Ice Surfaces (One) Concrete, 200’ x 85’
3. Concrete Thickness (One) 5"
4. Primary Refrigerant R-410A
5. Refrigerant Capacity (4) Ice² IC-2545, 27 TR each (108 ton piping infrastructure for year round use) 120 USGPM each Pump mounted on Cube as the cube cold pump.
6. Cold Floor Refrigerant 35% Ethylene Glycol
7. Cold Floor Refrigerant Supply 14.0°F
8. Cold Floor Refrigerant Return 18.1°F
9. Cold Floor Maximum Flow Rate Two pumps, One Stand-by @ 900 USGPM. 35°HD (15HPea.) VFD
10. Warm Loop Pump Flow Rates Two pumps, One Stand-by @ 480 USGPM 60°HD (10HP ea.)
11. Warm Floor & Snow Melt System Heating Capacity 200 MBH Min. - 1320 MBH Max.
12. Warm Floor & Snow Melt Fluid Flow Rate One pump, 125 USGPM @ 45°HD (3HP)
13. Warm Floor & Snow Melt Fluid 35% Ethylene Glycol
14. Snow Melt Glycol Supply Temp. 80°F
15. Snow Melt Glycol Return Temp. 75°F
16. Warm Floor Glycol Supply Temp. 75°F
17. Warm Floor Glycol Return Temp. 73°F
18. Cold Floor Room Piping 8” IPS and 6” IPS
19. Rink Indoor Temperature 60°F Not to Exceed.
20. Rink Relative Humidity 50% Not to exceed
21. Outdoor Dry Bulb Temperature 94.1°F
22. Outdoor Wet Bulb Temperature 77°F
23. Outdoor Mean Coincidental Dry Bulb Temperature 88°F
24. Fluid Cooler Spray Water Flow Rate One Pump
719 USGPM (Water) @ 45’ HD 5HP

1.4 WORK INCLUDED IN TOTAL CONTRACT, NOT NECESSARILY BY REFRIGERATION CONTRACTOR:

A. Temporary lighting, power and heating.
B. Protected 460/480V, 3-phase, 60 HZ electrical sources added power may be needed.
C. Two 120 volt (20 Amp) line voltage power to control system. (1) 120 Volt for Heat trace on water feed to Fluid Cooling tower. One 120 Volt power source for Water Treatment Contractor Conductivity Controller and Chemical pumps.
D. Provision of Internet IP address to refrigeration controls.
E. Provision of data cable from refrigeration controls to BAS.
F. Concrete housekeeping pads for refrigeration equipment.
G. Non-potable 1-1/4” cold water service to Mechanical Room for system filling.
H. Floor drains in refrigeration / resurfacer room and snow melt pit.
I. Heat for refrigeration room to maintain minimum 50°F (if necessary).
K. Provision of dumpsters.
L. Dasher boards.
M. Penetrations and flashing of piping to Fluid Cooler.
N. Adequate openings in building to allow rigging in of equipment.

1.5 STRUCTURAL SUPPORTS AND CONCRETE PADS

A. The general contractor will provide for all associated trades housekeeping pads and structural supports to provide a complete installation associated with the work listed above. This is inclusive of fire rated plywood for mounting of equipment and devices. All coring and saw cutting is also inclusive of this proposal. All penetrations will be sleeved and have firestop installed. The GC will provide an elevated pad for the Fluid Cooling Tower to keep it above the snow zone. The fluid cooling tower is required to sit on galvanized wide flange I beams to elevate basin above the concrete pad.

1.6 INSTALLER QUALIFICATIONS:

A. Refrigeration Contractor must display knowledge and have at least 3 references where they have acted as the refrigeration contractor for an ice rink inclusive of the refrigerated plant and refrigerated floor. The contractors will submit references no later than fifteen (15) calendar days after date of award for review and approval of the Architect. The Refrigeration Contractor must have a minimum of 3 complete Ice Rink installations in the last 3 years. This will be inclusive of the ice rink plant and concrete refrigerated floor. Past experience with modular chiller installations and use of reclaim heat is desirable.

1.7 SUBMITTALS
A. Product Data: Provide rated capacities, dimensions, weights and point loadings, accessories, required clearances, electrical requirements and wiring diagrams, and location and size of field connections. Submit schematic indicating capacity controls.

B. Shop Drawings: Indicate suggested structural steel supports including dimensions, sizes, and locations for mounting bolt holes.

C. Manufacturer's Certificate: Certify that cooling tower performance, based on SME PTC 23 meets or exceeds specified requirements and submit performance curve plotting leaving water temperature against wet bulb temperature.

D. Manufacturer's Instructions: Submit manufacturer's complete installation instructions.

E. Operation and Maintenance Data: Include start-up instructions, maintenance data, parts lists, controls, and accessories.

F. Warranty: Submit manufacturer's warranty and ensure forms have been filled out in Owner's name and registered with manufacturer.

G. Manufacturer Qualifications: Company specializing in manufacturing the type of products specified in this section, with minimum twenty years of documented experience and ISO 9001 certification.

H. Installer Qualifications: Company specializing in performing the type of work specified in this section with minimum 5 years of experience and approved by manufacturer.

I. REGULATORY REQUIREMENTS: Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

J. DELIVERY, STORAGE, AND HANDLING: Factory assemble entire unit. For shipping disassemble into as large as practical sub-assemblies so that minimum amount of field work is required for re-assembly. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.

K. WARRANTY: Provide a one-year warranty to include coverage for defects in material and workmanship labor only. Fans, fan shafts, bearings, sheaves, gearboxes, drive shafts, couplings, and mechanical equipment support must be warranted against defects in materials and workmanship for a period of five (5) years; or seven (7) if motor space heater is properly wired.

PART 2 – PRODUCTS

2.1 REFRIGERATION EQUIPMENT

A. Manufacturers listed and equipment specified are for the purpose of setting the minimum standard of capacity and quality of equipment for performance of the ice rink system. If equipment equivalent is required, the equipment will either match or exceed the quality of the original intended equipment. Basis of Design is Ice3 as manufactured by Emerald Environmental Technologies of Holderness, New Hampshire, USA. Contact Andy Grignon 603-238-9249.

2.2 WATER & GLYCOL PIPING:

A. Above Ground Cold & Warm Piping:
 1. Material to be Carbon Steel A53 B Schedule 40 or Schedule 80 PVC
 2. All piping joints in glycol and water systems will be welded or glued in excess of 2½”.
 All fittings to be manufactured not field Fabricated.
 3. All piping joints 2 ½” and below in glycol and water systems will be Victaulic

The Club at Woodbridge
INDOOR ICE RINK
RINK REFRIGERATION SYSTEM

TVC 18-27905 / MM&D Project No.: 202002
grooved piping, PVC and or Threaded BMI.

B. Below Ground
 1. Material to be fused HDPE (PE-3408) SDR-11
 2. All HDPE piping joints installed in HDPE piping to be butt fused in excess of 1”. All fittings to be manufactured not field fabricated.
 3. All HDPE piping joints 1” and below in glycol and water systems will be socket fused

C. Testing: All piping to be tested at 100 psig for 24 hours.

D. Supports: All above ground piping shall be supported in such a way to eliminate swaying. All hangers and supports shall be from walls and floor as the roof system above cannot support piping. See drawings for locations of steel supports extending from equipment stands and skids.

2.3 INSULATION:
 A. Insulation of cold glycol piping shall be 1 ½” Armaflex with PVC jacket.
 B. All cold pump bodies and strainers shall be insulated with one layer of ¾” closed cell Armaflex.

2.4 REFRIGERATION EQUIPMENT:
 A. Manufacturers listed and equipment specified are for the purpose of setting the minimum standard of capacity and quality of equipment for performance of the ice rink system. If equipment equivalent is required, the equipment will either match or exceed the quality of the original intended equipment. Basis of Design is Ice3 as manufactured by Emerald Environmental Technologies of Holderness, New Hampshire, USA. Contact Andy Grignon 603-238-9249.

 Emerald Environmental Technologies Equipment - (Basis of Design)

 Ice Cubes: Four *Ice³* at 27 TR each nominal

 Decoupler: 24” diameter 150 Gallon with 3” A/C connections (future use)

 Pre-Packaged Pump Skids: All primary pumps and pump trim prefabricated and installed on painted steel skid, pumps themselves shall be Bell and Gossett.

 Automatic Three Way Valve(s): shall be Belimo Series HDU or equal.

 Cold Floor Expansion Tank: Shall be Bell & Gosset plain steel compression tank.

 Warm Loop Expansion Tank: Shall be Bell & Gosset plain steel compression tank.

 Resurfacer Water Preheat Tank: Shall be AO Smith, TJV 175 Gallon, Insulated

B. *ICE³* FLUID TO FLUID LOW TEMPERATURE HEAT PUMP

1. *Ice³ IC-2545 Water-Water R-410a Heat Pump* (Basis of Design)
a. The liquid source water-to-water heat pump shall be a single packaged non-reversing heating/cooling unit. The unit shall be listed by a nationally recognized safety testing laboratory or agency, such as ETL. Testing shall be equal to CSA C22-2 or UL 427. The IC-2040 liquid source water-to-water heat pump unit as manufactured by Ice³, shall be designed to operate with evaporator entering liquid temperatures between 10°F (-12°C) and 70°F (21°C), and condenser entering liquid temperatures between 50°F (10°C) and 110°F (43°C). The IC-2040 liquid source water-to-water heat pump unit as manufactured by Ice³, shall be designed to operate with evaporator entering liquid temperatures between 30°F (-1°C) and 70°F (21°C) and condenser entering liquid temperatures between 50°F (10°C) and 135°F (57°C). The evaporator entering fluid temperature must be lower than the condenser entering fluid temperature. Each unit shall be run-tested at the factory. Each unit shall be pallet mounted and stretch wrapped for shipping.

b. Casing and Cabinet: The cabinet shall be fabricated from heavy gauge stainless steel. The cabinet shall have removable access panels on all four sides, and a hinged access door over the electrical cabinet. The interior shall be insulated with ½” (13 mm) thick multi-density, coated glass fiber, with edges sealed or tucked under flanges. All units shall have 7/8" (22 mm) and 1 1/8" (29 mm) knockouts for entrance of low and high voltage wiring. Cabinet dimensions shall be less than 31" (788 mm) in width or depth to permit units to be easily moved through a standard size door.

c. The unit shall be built on a heavy gauge stainless steel baseplate. The cabinet shall be built to allow service access to the internal components. The baseplate shall have skids to allow a forklift to lift the unit and to sit the unit on the floor or mount to a stand. This design minimizes the physical space requirements of the units. An optional welded unit support / pump stand shall be available from the manufacturer.

d. Refrigerant Circuit: All units shall contain a sealed refrigerant circuit including a hermetically sealed scroll compressor with internal check valve, unidirectional electronically controlled thermal expansion valve assembly, two (2) stainless brazed plate fluid to refrigerant heat exchangers, factory-installed high and low pressure safety switches and service ports and a liquid line filter-drier. The refrigerant circuit shall utilize the electronic expansion valve to prevent migration of refrigerant to the evaporator when the compressor is not activated. Low-pressure lockout switch shall be automatic reset with interruption to power supply. High-pressure lockout switch shall be manual reset.

e. The electronic thermal expansion valve assembly shall provide proper superheat over the liquid temperature range with minimal "hunting". The electronic thermal expansion valve shall be designed for single direction refrigerant flow. Bidirectional valves shall not be permitted. Externally mounted pressure controlled water regulating flow valves are not acceptable. The fluid-to-refrigerant evaporator and refrigerant suction lines shall be insulated with closed cell foam insulation (Armaflex) to prevent condensation at low liquid temperatures.
f. Compressor shall be designed for refrigeration duty, with internal isolation and mounted on rubber vibration isolators. Compressor shall be manufactured with oil-sight glass. Compressor motor shall have internal motor protection and shall be three phase. Compressor shall be designed for use with R410A refrigerant.

g. Refrigerant piping shall be connected to compressor through a brazed copper piping connection. All refrigerant piping on suction side of compressor shall be insulated with ½” (13mm) closed-cell foam insulation to prevent condensation. Evaporator shall be insulated with ½” (13mm) closed cell foam insulation to prevent condensation. Refrigerant piping shall be clamped and supported to minimize vibration and prevent stress cracking.

h. The liquid to refrigerant heat exchangers shall be brazed plate type constructed with type 316 stainless steel plates and brazed with copper. The heat exchangers shall be designed for minimum operation from -321°F (-196°C) to 350°F (177°C), and be capable of withstanding 650 PSIG (4480kPa) working pressure on liquid and refrigerant sides. Heat exchangers shall be manufactured with built in refrigerant distributor tube with calibrated orifices to distribute gas evenly throughout heat exchanger, and be designed for use with R410A refrigerant.

i. Electrical: Controls and safety devices will be factory wired and mounted within the unit. Controls shall include digital controller, expansion board for electronic EXV, user interface, compressor contactor, 24 VAC control circuit, built-in fuse protection, anti-rotation protection and voltage phase protection. A terminal block with screw terminals shall provide a lockout circuit that requires resetting of low voltage supply via the digital interface. Electrical circuit shall include fault light indicator light and green running indicator light on outside of cabinet, and shall include an "on-off-auto" selector switch mounted inside the heat pump cabinet. The digital controls can be provided with optional BACnet and or Modbus cards for remote BMS control. The system can be provided with a full digital control system to act as a global controller.

j. Fluid Piping: All supply and return liquid connections shall be 2.5” MPT threaded fittings. All Fluid piping shall be insulated by customer on site to prevent condensation at low liquid temperatures. Pressure/temperature ports shall be included on both condenser and evaporator fluid inlets and outlets. Each unit shall be factory run-tested for a minimum of two hours under actual load conditions. A copy of the run test shall include: Amperage and voltage draw, Refrigerant pressures, Sight glass status, Operation and verification of high and low pressure controls, Entering and leaving fluid temperatures for condenser and evaporator, Entering and leaving fluid pressures for condenser and evaporator, Superheat measurement, Operation of compressor overload protection; and a copy of the run-test shall be included in the installation manual shipped with the unit and a copy shall be maintained at the factory.

k. Mounting Rack: Unit(s) will be mounted on a painted welded carbon steel rack supplied by the manufacturer. The units will be pre-piped by the manufacturer in Niron PPR piping and or carbon steel through a stand mounted header system. All pump(s) will be prewired to starters mounted within the Cube and sourced from the Cube power distribution.
1. Warranty Information: Start up must be performed by manufacturer’s authorized representative to allow an extended parts only two year warranty. The stainless steel cabinet shall be warranted for life against defect in materials and workmanship, excluding damage due to rough handling, abuse, accident or casualty loss, chlorine or salt air exposure, airborne contaminants or outdoor installation.

C. EMERALD ENVIRONMENTAL TECHNOLOGIES, ICE³ CHILLER CONTROLS:

1. Furnish and install a factory provided DDC System with the following attributes
2. The Factory provided DDC system will provide component staging via the Ice³ Control Package.
3. The following components are specified but not limited to for the Cube Global Control Package.
 a. Cube staging
 b. Control Transformers
 c. Cube Run Timers
 d. Lead / Lag Switching
 e. Overload Protection
 f. Cube Automatic MODBUS feed and BACnet MSTP or IP interface for BAS.
 g. Voltage Phase Protection/Monitoring
 h. Restart Time Delay
 i. Provide VFDs for (2) Cold Floor Pumps (15HP)
 j. Provide VFDs for (2) Warm Loop Pumps (10HP)
 k. Provide control of (1) Warm Loop three way valve (24V)
 l. Provide VFD for (2) Tower Fans (7.5 HP each)
 m. Provide control of (1) Fluid Cooler Spray Pump (5HP)
 n. Provide control of (1) warm control valve on each Cube (24V)
 o. Provide control of (1) Warm Floor /Snow Melt pump (2HP)
 p. Provide control of (1) Warm Floor/Snow Melt three way valve (24V)

4. The control package shall be pre-manufactured within an enclosure sized commensurate with requirements including a minimum of 10% expansion.
5. Control enclosure shall be self supporting via the use of pre-manufactured stand(s) or legs provided or approved by the enclosure manufacturer and employ the use of vibration isolation devices.
6. Electronic control readouts shall be mounted on face panel or provided in a standalone front end.
7. Controls vendor to provide (1) year workmanship guarantee.
8. Approved Control System Manufacturers: Carel or Distech

2.5 PUMPS:

A. COLD FLOOR PUMPS SKID:

1. Two pumps supplying the cold floor system will be base mount close coupled centrifugal
type. The pump will be of a cast iron construction complete with mechanical shaft seal and stainless steel shaft sleeves. Pump Impeller shall be stainless steel.

2. Pumps will be Bell and Gossett e1532 series or equal.
3. Two pumps supplying the cold floor 35% ethylene glycol at 15 horsepower 900 USGPM at 35 feet of head primary pump with 100% stand by pump.
4. Pumps shall be mounted to a welded C-Channel steel skid frame. Frame shall be prepped, primed and painted with Rustoleum Enamel, color to match the pumps.
5. Pumps shall be trimmed out at the factory per the P&ID drawing.

B. WARM LOOP & WARM FLOOR/SNOWMELT PUMPS SKID:

1. Pumps supplying the Warm Loop system will be base mount close coupled centrifugal type. The pump will be of a cast iron construction complete with mechanical shaft seal and stainless steel shaft sleeves. Pump Impeller shall be stainless steel.
2. Pumps will be Bell and Gossett e1532 series or equal.
3. Two Warm Loop Pumps supplying the Cube Condenser side of the heat exchanger will be 10 horsepower 480 USGPM at 60 feet of head of 35% ethylene glycol. Provide primary pump with 100% stand by pump.
4. One Pump supplying the Warm Floor will be 2 horsepower 80 USGPM at 40 feet of head of 35% ethylene glycol.
5. All Three Pumps shall be mounted to a welded C-Channel steel skid frame. Frame shall be prepped, primed and painted with Rustoleum Enamel, color to match the pumps.
6. Pumps shall be trimmed out at the factory per the P&ID drawing.
7. Skid frame shall be fabricated to accept factory mounting of the warm loop basket strainer.

2.6 FLUID COOLER (CLOSED CIRCUIT COOLING TOWER):

A. MANUFACTURERS: Baltimore Aircoil Company: FXV-0812B-32Q-L or equivalent Evapco or Marley. Tower shall be supplied and shipped to the site by Emerald Environmental Technologies.
B. MANUFACTURED UNITS: Provide units for outdoor use, factory-assembled, sectional, vertical discharge, blow through design, with fan assemblies built into pan and casing.
C. Section Includes: Closed-Circuit, induced draft, cross-flow cooling towers.
D. COMPONENTS

1. Cold Water Basin: Heavy-gage galvanized steel with access doors at both ends of tower to air plenum. Provide sloped basin with drain/clean-out connection.
2. Casing Panels and Framework: Casing panels and framework will be constructed of G235 galvanized steel.
3. Fans: Multi blade, axial type, with belt drive, bearings with ABMA STD 9 or ABMA STD 11 L-10 life at 80,000 hours, with extended grease fittings.
4. Motors and Drives: Single speed (1800 rpm) mounted on adjustable steel base.
5. Fan Guard: Welded steel rod and wire guard, hot dipped galvanized after fabrication.
6. Mechanical Equipment Removal Davit: The unit will be equipped with a mechanical equipment removal davit. The motor will lower from the mechanical equipment supports down to grade. Davit will attach to the unit without the need for tools. If tools are required for davit installation or removal, provide (1) davit for each motor provided.
7. Wet Heat Transfer Coils:
 a. Galvanized Steel: The coil shall be constructed of continuous serpentine all prime surface steel, be pneumatically tested at 375 psig, and be hot-dip galvanized after fabrication. The coil shall be designed for free drainage of fluid and shall be ASME B31.5 compliant. Maximum allowable working pressure shall be 300 psig).
8. Distribution Section: Polyvinyl chloride piping header and branches with ABS plastic spray nozzles.
9. Fill:
 a. Polyvinyl chloride plastic with flame spread index of 25 or less, when tested in accordance with ASTM E84.
 b. Fungal Resistance: No growth when tested according to ASTM G21.
10. Drift Eliminators: Three pass PVC, drift loss limited to 0.005 percent of total water circulated.
12. Hardware: Galvanized steel nuts, bolts, washers, and tappers; assembled with phenolic epoxy coated, corrosion resistant washer head fasteners.

E. PERFORMANCE REQUIREMENTS
1. This section is based on specific selections of equipment, and these selections relate to selection of related equipment, Hydronic Pumps and Refrigeration Equipment. In submitting equivalent equipment, ensure that performance selection criteria matches that specified or that the selection of related equipment is acceptable or is revised to suit.
2. Capacity:
 a. Water Flow: 480 USGPM
 b. Entering Water Temperature: 95 degrees F
 c. Leaving Water Temperature: 85 degrees F
 d. Entering Air WB Temperature: 77 degrees F
 e. Ambient Air DB Temperature / Switchpoint: 88 degrees F
3. External Static Pressure: 0.0 inch wg.
4. Electrical Characteristics:
 a. (2) 7.5 hp fans
 b. (1) 5 hp spray pump
 c. 480 volts, three phase, 60 Hz.

F. ACCESSORIES
1. Electric Immersion Heaters: In pan suitable to maintain temperature of water in pan at 40 degrees F when outside temperature is 0 degrees F and wind velocity is 15 mph; immersion thermostat and float control operate heaters on low temperature when the pan is filled. Heaters will be constructed of copper.
2. Vibration Switch: Provide a mechanical local reset vibration switch. The mechanical vibration cutout switch will be guaranteed to trip at a point so as not to cause damage to the cooling tower. To ensure this, the trip point will be set in a frequency range of 0 to 3,600 RPM and a trip point of 0.2 to 2.0 g’s.
3. Access Packages:
 a. Internal Platform: An internal platform shall be provided in the plenum section to provide for inspection and maintenance. All working surfaces shall be able to
withstand 50 psf live load or 200 pound concentrated load. Platforms and ladders must ship assembled from cooling tower manufacturer.

G. INSTALLATION
1. Install in accordance with manufacturer’s instructions.
2. Install tower on structural steel beams as instructed by manufacturer.
3. General Contractor shall provide 24” Tall Galvanized Steel support stand.
5. Connect make-up water piping with flanged or union connections to tower.
6. Connect overflow, bleed, and drain, pipe to grade or floor drain.
7. Provide connections for water treatment. Provide space in refrigeration room for this WTC to set up chemical treatment. The water treatment contractor will be provided by independent treatment contractor for a period of 1 year contracted directly by owner.

2.17 EXPANSION TANKS AND DECOUPLERS:
A. Provide expansion tanks on each closed loop piping system as described above in part 2 – paragraph 2.4. Tanks shall be of sufficient capacity to absorb expansion of fluids thru all expected temperatures, see specifications provided on plans.
B. Provide a Hydraulic Decoupler Supplied and Fabricated by Emerald Environmental to ensure primary pumps are decoupled from the floor pumps. Tank shall be field insulated w/ (2) ¾” layers of armaflex w/ PVC jacketing.

2.18 SNOW MELT COIL - Warm Floor
A. Supplied and Fabricated grid coil by Emerald Environmental Technologies from schedule 40, 304 stainless steel construction capable of 200 MBH capacity.
B. Grid coil shall be 4’ wide x 5’ long, three tiers high.

2.19 SNOW MELT PIT
A. In accordance with the plans and details, the GC shall excavate the corner of the floor within the Ice resurfacing vehicle room. Pour a reinforced base pad at elevation shown. Install 4” drain from pit to a localized sanitary drain. This drain will be piped to 12” from rim height of pit. Install a water stop and form an 8 inch vertical CMU wall as shown or reinforced 3,000 PSI concrete wall extending above the floor level per the detail. After a 48 hour cure period remove forms and seal interior of snowmelt pit as shown on detail. Install a bump stop for the Ice resurfacing vehicle on the face of the pit at bumper height of the Ice resurfacing vehicle. Refer to architectural drawings for construction of pit. Install fabricated stainless steel coil as Manufactured by Emerald Environmental Technologies. At a capacity of 200 MBH. Piping will be installed in accordance with the specifications above and drawings. Great care must be employed to keep all piping away from the shavings drop zone.
PART 3 - EXECUTION

3.1 SYSTEM START-UP & COMMISIONING:

A. Provide the services of factory trained and locally licensed technician or manufacturers’ authorized company for 40 hours to completely check unit operation.

B. Provide owners operating personnel with 24 hours of hands on instruction, including daily routine for equipment checks and provision of checklist.

C. Turn over operation and maintenance manuals to owner at time of instruction, to run concurrently with checkout and startup.

D. Revisit site after 6 months to review operations and maintenance with owner’s personnel.

END OF SECTION
SECTION 13 1000 – REFRIGERATED CONCRETE RINK FLOOR

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Comply with requirements of General and Supplementary Conditions, and Division 1, General Requirements.

1.2 SUMMARY

A. Section Includes:
 1. Materials, systems, and labor required for construction of new refrigerated concrete rink floor, including all necessary fill, insulation, heating grid, refrigerant piping, and related materials.

B. Related Requirements:
 1. Section 03 3000 “Cast-In-Place Concrete” for construction of snow melt pit. (NOTE: This Section is included in a separate specification volume prepared by T&M Associates.)
 2. Section 09 9123 “Interior Painting: for painting of the snow melt pit.
 3. Section 13 0000 “Refrigeration Systems” for ice rink refrigeration equipment.
 4. Section 13 1816 “Ice Rink Dasher Board Systems” for perimeter dasher boards, glazing, and team, penalty and timekeepers boxes with floors.

1.3 PREVIOUS WORK BY OTHERS

A. Asphaltic concrete paving has been removed from the original floor surface exposing steel tie rods connecting building’s steel frame bases to provide thrust compensation to building’s frames. These rods must remain in place and should be protected during construction of rink slab.

1.4 EQUIPMENT BY OWNER

A. The Owner shall provide an ice resurfacing machine for the use of the Contractor in preparing and surfacing the new ice to be created during completion of the rink installation. This equipment shall be provided at the site by the Owner for use by the Contractor when needed for the initial ice surface preparation.

B. Provide a minimum of fifteen (15) calendar days notice to the Owner prior to the time this equipment is required on site.

1.5 COORDINATION

A. The site contractor for the general contractor shall use extreme care to not disturb the existing building tie rods when removing material in preparation for the subgrade elevation.

B. The refrigeration contractor shall coordinate installation of warm floor (underfloor heating system) to ensure there is no conflict with the building tie rods.

C. The refrigeration contractor shall coordinate underground piping with other MEP Trades.

1.6 SUBGRADE
A. The site contractor for the general contractor shall prepare the subgrade to the proper elevation plus or minus ½” over the entire rink surface.

B. Over the subgrade and atop the warm floor tubing the refrigeration contractor shall apply 6” of sand/stone dust leveled to plus or minus ¼” over the entire surface of the ice rink.

1.7 SUBFLOOR HEATING GRID

A. Headers shall be shop fabricated and tested to 50 psi. Records of tests shall be forwarded to consultant prior to installation.
 1. Headers shall be constructed of HDPE SDR13.5.
 2. All joints shall be glued or fusion welded.
 3. Fusion welded of the 1 inch 13.5 tubing

B. Grid tubing shall be PE3408 high-density polyethylene, with a working pressure of 112 psi at (or 130 if fusion welded) 73°F. There shall be no joints in the tubing except at the connection to header.

C. The header pipe and the tubing shall be tested at 75 psi for 24 hours. All joints shall be shop tested to confirm that the system is tight.

D. The underfloor grid shall be covered completely by the contractor with leveling material to 6”.

E. The subfloor heating system shall be filled with compressed air at a valve/gage connection within the mechanical room for potential future use.

F. Install a 6 mill vapor barrier. Under insulation.

1.8 FLOOR INSULATION

A. Provide two (2) layers of 2” thick insulation board. The board shall be Dow SM ASTM C578-85 Type IV or equal.

B. Board shall be installed as indicated on the drawings.

C. Joints shall be offset as indicated on the drawings.

D. All cuts and miters shall be made by saw cutting.

E. Apply 6 mil tick clear polyethylene sheeting over and under insulation.

F. Overlap poly sheeting 12” in all directions when installing.

G. Tape joints of poly sheathing with compatible tape.

1.9 TUBING SUPPORTS

A. Provide machine fabricated tubing supports.
B. Supports shall be combination type. They are to function as tubing spacers as well as longitudinal rebar supports (see plans for details).

C. Supports shall be fabricated from #7 wire welded to a 3” wide 20 gage base plate. Supports shall be shipped in six-foot lengths.

D. Supports shall be installed 6’ on center for polyethylene tubing and/or 5’ on center for steel pipe and overlapped at least two tubing runs.

1.10 REFRIGERANT HEADERS

A. Material: Headers are to be fabricated from SDR 13.5 HDPE fusion welded. Fitting connections are to be as shown on drawings.

B. All joints between the headers and the fitting connections are to be shop welded.

C. After fabrication, header sections are to be shop tested for 2 hours at 100 psig. Records of test shall be forwarded to architect (engineer).

D. Prior to shipment, header shall be piece marked for case of installation.

E. Open ends of headers shall have joint protection applied prior to shipment.

F. All headers shall be shop primed with rust inhibiting paint primer prior to shipment.

G. Job site placement of the headers shall be leveled and aligned prior to field welding/fusion.

1.11 RINK FLOOR PIPING

A. Polyethylene tubing to be SDR13.5 high-density polyethylene with a minimum working pressure of 100 psi at 73°F. All tubing runs to be one piece with no field joints except at return bends and headers.

B. Each joint at return bends and headers shall be fusion welded.

C. Return bends shall be fabricated from HDPE with socket elbows fusion welded.

D. Tubing to be wire tied at each RTS support, ends of wire ties to be bent down.

1.12 TESTING

A. At the completion of the tubing installation the connecting piping to the rink headers shall be blanked off.

B. The entire grid shall be tested at 100 psig for a period of 24 hours.

C. The architect shall witness the testing. Provide one-week notice to allow the architect to be on the job site.
D. After the testing has been witnessed and approved, the pressure shall be lowered to 50 psig and kept at that point until the concrete floor is poured to provide visible evidence that the tubing has not been damaged due to the placement process.

1.13 FLOOR TEMPERATURE SENSOR

A. Sensor shall be a two wire NTD compatible with Carel controller or approved equal.

B. Sensor shall be located and shown on plans.

C. Wire for sensor shall be shielded and PVC jacketed.

PART 2-CONCRETE FLOOR

2.1 GENERAL

A. The entire floor is designated as a random traffic floor, to be made in one continuous pour. Concrete used in the floor slab shall be deposited by pump. Other methods must be approved in detail, by the Ice Rink Consultant. A minimum of one (1) pump shall be employed, plus one (1) stand-by pump. The concrete criteria shall be as herein specified. The concrete design mix shall be submitted for approval four (4) weeks prior to scheduled pour.

B. The method of mixing, pouring, leveling, and finishing shall be approved by the Ice Rink Consultant before pouring of ice slab. A job site meeting including the Ice Rink Consultant, concrete testing lab, concrete supplier and the placement contractor shall be scheduled to review applicable items in this paragraph, one (1) week prior to any concrete placement.

2.2 CONCRETE DESIGN

A. Concrete shall be mixed with aggregate graded and proportioned to produce slurry of such consistency as to flow slowly under its own weight and which can be worked into corners and under and around reinforcing without forming voids or honeycomb surfaces. When mixed, particles of aggregate shall be coated with cement, and aggregates shall not separate when placed, nor shall be any free water.

B. Concrete shall have strength of 4,500 psi after a 28 day set. Exact mix shall be designed by a testing laboratory an approved by the Ice Rink Consultant.

C. The design mix shall be proportioned based on field experience or trial mixtures in strict accordance with sections 5.3 of ACI-318-89. Design mix shall be submitted to the Architect for approval not less than four (4) weeks before the scheduled pouring of the ice rink floor.

D. During pour of concrete floor and leveling of the slab, laboratory shall maintain one (1) engineer on the job. Strength quality of the concrete shall be established by tests, which shall be made in advance of beginning of operations, using consistence suitable for work, and in accordance with Standard Method of Making Compression Tests of Concrete, (ASTM Serial Designation C-39-49).

E. Tests shall be made in accordance with Standard Method of Making and Storing Compression Test Specimens of Concrete in the field, (ASTM Serial Designation C-31) and cured in
accordance with requirements for laboratory control tests. Not less than three (3) specimens shall be made for each test, not less than one (1) test for each 50 cubic yards of concrete.

F. Cylinders shall be tested at seven (7) days, fourteen (14) Days and twenty-eight (28) days the results filed with the Architect and/or Ice Rink Consultant. Only one (1) cylinder from each set shall be tested at 7 days, 14 and the remaining two (2) of each set shall be tested at the end of 28 days.

G. Cement: All cement shall be type 1 Portland cement and shall conform to the Stand Specification fro Portland cement (ASTM C 1 50).

H. All cement shall be recent manufacturer. Once a manufacturer is selected only that manufacturer’s product shall be used.

I. Normal Weight Aggregates: ASTM C33 and as herein specified. Provide aggregates from a single source.
 1. Fine Aggregate: Clean, sharp, natural sand free from loam, clay, lumps or other deleterious substances.

J. Coarse Aggregate: Clean uncoated, processed aggregate containing no clay, mud, loam or foreign matter as follows:
 1. Crushed stone or crushed gravel processed from natural rock or stone, with maximum size of ¾”.

K. Water used in mixing concrete shall be clean and free from injurious amounts of oils, acids, alkalis, salt, organic materials or other substance that may be deleterious to concrete or steel and must not contain more chloride ions than are present in municipal drinking water, but not more than 0.1%.

L. All testing and laboratory costs described above will be furnished by the owner.

2.3 ADMIXTURES

A. Responsibility: The testing laboratory employed shall be charged with full control of the use of the admixture under the direction of the manufacturer’s representative. The design mix shall include the admixture and the quantity of concrete ingredients shall be based on the influence of the admixture. All admixtures shall conform to ASTM C494. Notify the manufacturer not less than 14 days before pouring concrete in which the admixture is specified. When an admixture is approved for this project, no change shall be made in the brand or quality of the admixture without the written approval of the architect and rink contractor, and if a change is granted then a new design mix shall be determined by the Laboratory.

B. High range water-reducing admixture (superplasticizer): Eucon 37 by Euclid Chemical Company or Sikament by Sika Chemical Corporation. The admixture shall confirm to ASTM C494, Type F or G and not contain more chloride ions than are present in municipal drinking water, but not more than 0.1%. The user of superplasticizer varies with every application; therefore, the engineering department of the supplier must be in attendance at the time of pouring to vary mixture as required.
C. Air entraining admixtures: The air contact of this concrete shall be natural and between 1% and 2% naturally.

2.4 CONCRETE PLACEMENT

A. Concrete shall be deposited as nearly as possible to its final position to avoid segregation due to re-handling. No concrete that has partially hardened or has been contaminated by foreign material shall be deposited on the ice rink floor.

B. The contractor shall provide rubber tires and plywood under concrete piping couplings located across un-poured rink area.

C. Concrete shall be thoroughly consolidated by suitable means during operation of placing and shall be thoroughly worked around reinforcement embedded fixtures and into corners.

D. The floor shall be machine vibrated to eliminate voids. Vibrators shall be of type that will fit between the rink piping. Contractor shall have at least (2) units available during pour. Vibrators shall be subject to approval by the Ice Rink Consultant, and shall be operated by experienced operators.

E. When hot weather conditions exist and the daytime temperature is expected to reach or exceed 80°F or more, place concrete in compliance with ACI 305 and as herein specified. Cool ingredients before mixing to maintain concrete temperature at time of placement below 75°F. Wet forms thoroughly before placing concrete.

F. Cold weather placement shall be in accordance with AC306R. The ice rink shall be free from frost and ice when concrete is placed. After concrete is placed, it shall be protected on exposed sides by a covering, insulation, housing, or by heating. Protection shall continue for a period long enough to produce the strength required for structural stability as determined by the Ice Rink Consultant.

G. The contractor shall pour the floor, per the American Concrete Standard #1 17 to meet the tolerance shown in the floor profile below. Surveying shall be included in the cost of this work.

<table>
<thead>
<tr>
<th>Floors Profile Quality Classification</th>
<th>Specified</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>FF</td>
<td>FL</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

2.5 FINISHING

A. Concrete to be placed with as stiff a consistency as possible in order to prevent accumulation of free water on surface at any time. After screeding, consolidating and leveling concrete slabs, do not work surface until ready for floating. Consolidate surface with power vibrator or bull float. Cut down high spots and fill low spots. Immediately after leveling, refloat to a uniform, smooth, granular texture.

1. Trowel Finish: Apply trowel finish to monolithic slab surfaces. After floating, begin trowel finish operation when surface water has disappeared, using a power-driven trowel. Elevation of top rink slab must conform with the levelness and flatness specifications (FF, FL), as outlined in section 2.04.
2.6 CURING AND PROTECTION

A. Protect freshly placed concrete from premature drying and excessive temperatures and maintain without drying a relatively constant temperature for a period of time necessary for hydration of cement and proper hardening, a maximum of 14 days. Start initial curing as soon as free water has disappeared from concrete surface after placing and finishing.

B. Perform curing of concrete by moist curing. Cover the wetted slab with a polyethylene sheet. At the end of the curing period, remove ponded water.

C. The contractor shall protect the floor from any great temperature changes for a period of seven (7) days. No ice shall be frozen on concrete until twenty-eight (28) full days after finish of concrete pour.

2.7 CLEANING

At the end of the project a top to bottom cleaning will be required of the rink area by the general contractor including lights and stands. The new cold floor will be washed and rinsed with a phosphate cleaner and water rinsed. All of the dasher glass will be cleaned and dust free. The owner will mount banners and flags.

2.8 MAKING AND PAINTING OF ICE

The contractor shall furnish and install first sheet of skatable ice complete with the following:

1. Painting over the entire initial layer of ice, Manufacturer Jet Ice or approved equal white in color.
2. Install standard NCAA Game lines and markings.
3. Install Logos provided by owner.
4. Make ice to a minimum thickness of 1”.

END OF SECTION 13 1000
SECTION 13 1816 – ICE RINK DASHER BOARD SYSTEM

PART 1 GENERAL

1.01 RELATED DOCUMENTS

A. Comply with requirements of General and Supplementary Conditions, and Division 1, General Requirements.

1.02 SECTION INCLUDES

A. The work of this Section shall include, but not be limited to, the following:
 1. Manufacturer, supply and installation of a complete factory prefabricated, arena board system with spectator shielding and gates, including team, penalty and officials' boxes with benches; and safety netting as indicated on the drawings and specified herein.

1.03 RELATED SECTIONS

A. Section 03 3000 “Cast-In-Place Concrete” for construction of spectator area floor slab around perimeter of rink floor. (NOTE: This Section is included in a separate specification volume prepared by T&M Associates.)

B. Section 13 1000 “Refrigerated Concrete Rink Floor” for construction of rink floor system and components.

C. Final cleaning to be carried out as specified in Division 01, General Requirements.

1.04 COORDINATION

A. Provide clear access into the rink area by forklift.

B. Final cleaning to be carried out as specified in Division 1, General Requirements.

1.05 SUBMITTALS

A. Shop Drawings
 1. Shop drawings shall be submitted by manufacturer. Drawings shall be submitted to Contractor, Engineer, Architect or Owner for approval prior to actual fabrication of materials.
 2. Shop drawings shall show, in appropriate scale, dimensions, details of arena board system, glazing assemblies, methods of joining, fastening, joint locations, methods of anchoring, sizes of anchorage’s, glazing details and glazing methods, hardware, details of other pertinent components of the work, and adjacent constructions to which work of this Section will be attached.
 3. Shop drawings shall indicate dimensioned layout and placement drawings for installation of floor anchors.
B. Samples: Submit samples of materials, finishes and colors for review.

C. Operation and Maintenance Data
 1. On completion of installation, supply three copies of instructions covering removal and replacement of panel system, reglazing, adjustments and other relevant operating and maintenance data.
 2. Provide “As Built” drawings showing overall layout of the boards and glass.

1.06 QUALITY ASSURANCE

A. Qualifications
 1. All materials shall be manufactured and installed per plans and specifications. Any deviations to this specification, unless approved in writing by the owner, will be charged back to the supplier at the Owner’s discretion.

B. Manufacturers: The following manufacturers are acceptable:

1. Athletica Sport Systems
 554 Parkside Drive, Waterloo, Ontario, Canada N2L 5Z4
 Phone: 519.747.1856 Toll-free 1.877.778.5911 Fax: 519.747.3659
 - AND -
 720 Innovation Dr, Shakopee Minnesota, USA 55379
 Phone: 763.249.7465 Toll-free 1.800.809.7465 Fax: 763.249.7475
 www.Athletica.com

2. Other Approved Manufacturers:
 Arena board system shall be provided by an approved manufacturing firm having satisfactory experience in manufacturing and installing arena boards, using persons trained and skilled in the type of work required for both manufacturing and installing. Firm must provide evidence of at least ten (10) installations identical in construction and features to the following specification, each with a minimum of five (5) years’ operating successfully prior to bid date. A list of these installations including arena name, contacts, address and telephone numbers must be included with requests for prior approval. Where materials or suppliers have been named, the words “or approved equal” shall apply. Approval must be obtained from the Architect in writing prior to acceptance of an “equal”. Requests for equivalent approval must be submitted in writing, no later than 10 days after award. If the submitted manufacturer is approved, the Contractor shall be responsible for all costs associated with the use of the “approved equal” component.

3. Steel framed dasher board systems are not an acceptable alternate for this scope of work.
1.07 WARRANTY

A. Warrant the work of this Section against defects in materials and workmanship for a period of three (3) years from the date of substantial completion of the contract. Misuse, abuse and/or accident not caused by normal use is excluded. Glass breakage is excluded. Board misalignment from ice build-up underneath, excessive ice edge or ice thickness beyond 1-1/2” is excluded. Exclusions are considered maintenance requirements.

1.08 DELIVERY

A. Contractor’s construction schedule shall allow for sufficient manufacturing and installation time prior to the project completion date.

PART 2 – PRODUCT DESCRIPTION

2.01 SYSTEM DESCRIPTION FOR BASE REQUIREMENT

A. Basis of design is the Athletica Sport Systems Inc. CrystaPlex® Series 6A Aluminum Prefabricated Dasher Board System. This facility is proposed to be 200 ft long by 85 ft wide, with 28’ radius corners.

2.02 ARENA PANELS & FRAME

A. Aluminum Extrusions: ASTM B221, 6005-T5 or T6 alloy and temper. Architectural aluminum is not acceptable.

B. Dasher Panels shall be fabricated in demountable sections of nominal 8’ (2400 mm) lengths. The design of all panels, whether straight section, curved section or a section in which a gate is located shall be fundamentally similar.

C. Standard size of straight panels is to be 41” high by 96” long (1050 x 2400 mm).

D. Standard size of curved panels is to be 41” high by 88” long (1050 x 2200 mm).

E. Aluminum is to be Structural alloy 6005A.-T6

F. Aluminum components to meet ASTM B221 and Federal specification QQA200-9.

G. Dasher frames are to be complete welded construction.

H. Frames to be 6” wide.

I. For Seamless glass Sections: Base for Glass (horizontal) – 3-1/2” (88 mm) extruded aluminum U channel mounted into frame. The use of a plastic channel in lieu of the aluminum channel is not acceptable. The use of no channel is not acceptable.
2.03 ANCHORS
A. Adjustable pre-cast anchors supplied and installed by Athletica Sport Systems Inc.
B. Concrete pour to be supervised by Athletica Sport Systems Inc. to ensure integrity of anchors.
C. Floor thickness to be 5” min.
D. Expansion joint to be 1/2” wide located behind the dasher board system.
E. The dashers are to be installed onto a concrete refrigerated floor.

2.04 GATES
A. See drawing for location. Sizes and exact locations to be site verified.
B. 4 player gates 30” wide.
C. 2 penalty gates 30” wide.
D. 4 access gate(s) 36” wide in the side of the rink.
E. 1 double leaf machine gate(s) 120” wide in the radius of the rink.

2.05 THRESHOLDS
A. All player/penalty and access gates shall be equipped with 1” thick natural HDPE skate threshold. The width shall be enough to cover the entire width of the door openings. Existing player/access gates that are to be re-used must receive new thresholds.
B. Machine gates shall be equipped with 1-1/2” thick natural HDPE threshold. The width shall be enough to cover the entire width of the door openings.
C. All threshold fasteners to be counter-sunk ½” deep.

2.06 HARDWARE
A. All player and access gate hardware is to plated steel
B. Machine gate hardware is to be plated steel
C. Each machine gate unit shall be equipped with adjustable heavy-duty spring-loaded casters, with the direction of travel fixed to the arc of the door.
D. Machine gate closure bars to be 2” diameter solid steel and are to be a double bar sliding type.
E. Provide a flush mounted push-button latch release in the cap rail on the ice entrance gates where shields would otherwise prevent latch operation. The push-button shall be designed to be simple to operate from both sides of the shielding (suitable for opening gates with hockey glove on hand), yet prevent accidental opening.

F. All fasteners are to be zinc plated and are to be color matched where necessary

2.07 BOARD CLADDING

A. .500” thick Stay-White polyethylene board facing.

B. .500” thick x 8” high, polyethylene kick plate, and top edge routed to 3/8” radius.

C. Color for the kick plate to be yellow.

D. .500” thick polyethylene cap rail top edge, front and back, routed to 3/8” radius.

E. Color for the cap rail to be dark blue.

F. Official line markings, 1/2” x 12” red and blue, and 2” red goal lines shall be carried vertically from the ice to the bottom of the cap rail. Line markings to be in accordance with League Guidelines.

G. Board cladding is to be applied with ¼” – 20 Philips flat head color matched screws.

H. Bottom row of fasteners in kick plate must be stainless steel.

2.08 GLAZING AND SUPPORTS

A. 72” high x 5/8” thick tempered glass on two ends including radius sections.

B. 48” high x ½” thick tempered glass on the player box side of the rink.

C. 72” high x 1/2” thick tempered glass opposite the player box side.

D. The shielding system is to be SEAMLESS* sides, ends and boxes.

E. The shield supports are to be aluminum HDR Quick Release.

F. The shield supports are to extend to within 13” (standard) of the top of the shielding.

G. Shielding in front of the scorer’s table shall have a 3 ¼” diameter speak hole.

H. Heights are above cap rail.

*NOTES: For Seamless Glass Sections

1. Base for Glass (horizontal) – 3-1/2” (88 mm) extruded aluminum U channel mounted into frame. The use of a plastic channel or no channel in lieu of the aluminum channel is not
acceptable. The use of no channel is not acceptable.

2. The gap between the glass, where there are no gates, shall be 1/4” to 3/8” (6 to 9 mm). There shall be a spring-loaded Lexan clip at the top of the glass to connect one piece of glass to the next. The use of non-spring-loaded clips is not acceptable. Plastic spacers will be provided at the base of the glass.

2.09 PLAYERS, PENALTY AND TIMEKEEPERS – BOXES

A. Player boxes are to be 25 ft long and 6’ deep with side walls.
B. Penalty boxes are to be 8 ft long and 6’ deep with side walls.
C. Timers box is to be 8 ft long and 6’ deep with side walls.
D. 4 side walls are be 4’ long and 2 are be 6’ long.
E. .375” thick half height backer panel and water bottle shelf to be included for the player’s boxes.
F. Penalty and timer’s boxes are to be located on same side as the player bench side of the rink.
G. 2 additional 30” wide gates are to be provided for each one of the player boxes in the end panel.
H. 2 additional 30” wide gates are to be provided for each one of the penalty boxes in the end panel.
I. 2 additional 30” wide gates are to be provided for each one of the timer’s box in the side panel.

2.10 PLAYERS, PENALTY AND TIMEKEEPERS – SHIELDING

A. 48” high x 1/2” thick tempered glass for the sides of the player’s boxes.
B. 48” high x ½” thick tempered glass for the front and sides of the penalty boxes.
C. 48” high x 1/2” thick tempered glass for the front and sides of the timer’s box.
D. Heavy Duty bumper pads are to be provided on supports at shield’s termination points.
E. Tempered Safety Glass CAN/CGSB-12.1, Type 2, clear, colorless, fully toughened, heat tempered safety glass. The roll-wave distortion shall not exceed 0.127 mm (0.005”) from peak to valley.
F. Each piece of tempered glass shall bear the stamp of approval from the American National Standards Institute (ANSI), in a location that will be visible and legible after boards and shielding are installed.

2.11 PLAYERS, PENALTY AND TIMEKEEPERS – FLOORS

A. Floors for the players, penalty and timer’s boxes are to be of wood framed construction with 3/4” plywood nailed to base. ½” black rubber flooring to be loose laid on top of plywood.
B. Coach’s walkway, 8” high by 30” wide to be provided for each player box.

C. Plywood: CSA O121, Douglas Fir plywood, exterior waterproof type, Grade G/Solid (Canadian Standard), or Product Standard PS-1, Douglas Fir plywood, exterior waterproof type (American Standard).

2.12 PLAYERS, PENALTY AND TIMEKEEPERS – BENCHES

A. Benches are 1/2” thick dark blue polyethylene top fastened to a 9 1/2“wide aluminum channel.

B. Player box benches are to be 20 ft long.

C. Benches in the penalty boxes are to be 8 ft long.

D. Player and penalty benches are to be removable.

E. Timekeepers Table with supports, 20” x full width of box, as shown on drawings, with bottom pencil holder.

2.13 BACKER PANEL

A. .375” thick Stay white polyethylene Backer Panel for one complete end and spectator side (to machine door) with ¼” type f screws.

B. Backer panel to be white and full 41” height.

2.14 PERMANENT MOUNT PROTECTIVE NETTING

A. Clear monofilament netting for two ends and spectator side of the rink to a height of 12 ft above the shielding.

B. Netting hardware package to include beam clamps, cables and misc. hardware required for a complete installation.

C. Netting to be attached to a conduit frame at the top which is suspended from the ceiling.

D. Bottom of netting to be attached to shielding.

2.15 SPARE COMPONENTS

A. Fifty additional painted screws of each color required for fastening of HDPE facings.

B. Two pieces of each size facing, cap rail and kick plate.

C. Two extra pieces of shielding of each standard size required.
D. 1 piece of 5’ x 8’ x .590 acrylic to use as spares for specials.

2.16 IMPACT AD PANELS

A. 20 Blank Polycarbonate Panels 118” thick, 96“W x 33”H

B. Panels to feature bullnose edging and rounded corners to minimize errant rebounds and potential player injury.

C. Panels are supplied as predrilled and countersunk

D. Includes Flathead screws with special hi-lo thread seat below the panel surface to provide a safe and secure attachment.

2.17 COMPLETE INSTALLATION

A. Provide a complete installation of the board system by the manufacturer or manufacturer approved dealer in accordance with the drawings and specifications. Union Wages apply.

2.18 NOTES: For Seamless glass Sections

A. Base for Glass (horizontal) – 3-1/2” (88 mm) extruded aluminum U channel mounted into frame. The use of a plastic channel in lieu of the aluminum channel is not acceptable. The use of no channel is not acceptable.

B. The gap between the glass, where there are no gates, shall be 1/4” to 3/8” (6 to 9 mm). There shall be a spring-loaded Lexan clip at the top of the glass to connect one piece of glass to the next. Plastic spacers will be provided at the base of the glass.

END OF SECTION 13 1816
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Provide engineering, material, freight, installation and supervision to provide a new semi-permanent bleacher structure within the existing rigid frame metal building, in accordance with the following specifications.

B. Minimum acceptable criteria:
 1. Design per plan view and sectional view drawings.
 2. Continuous aluminum welded decking system with “shot blasted” slip resistant surface equal to or greater than .80 coefficient of friction when wet.
 3. 12/24 rise/run with riser mounted seat board brackets with a direct structural steel connection.
 4. Color powder-coated seat boards and risers.
 5. Blue vinyl coated chain link fence guard rails.

1.3 REFERENCES

A. ASTM A36 “Standard Specification for Carbon Structural Steel”.

C. ASTM A307 “Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength”.

D. ASTM A572 “Standard Specification for High-Strength Low-Alloy Columbium-Valandium Structural Steel”.

E. ASTM A615 “Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement”.

G. ASTM F3125 “Standard Specification for High Strength Structural Bolts and Assemblies, Steel and Alloy Steel, Heat Treated, Inch Dimensions 120 ksi and 150 ksi Minimum Tensile Strength, and Metric Dimensions 830 MPa and 1040 MPa Minimum Tensile Strength

1.4 PERFORMANCE REQUIREMENTS
A. All material and workmanship shall be in accordance with the following:
 1. New Jersey Uniform Construction Code.
 a. Chapters 2, 3 and 4 only shall apply.
 6. ACI 318-14 Building Code Requirements for Structural Concrete.

B. Design Loads:
 1. Dead Load: 6 psf; Seat and footboards, risers, steel framing, etc.
 2. Live Load:
 a. 100 psf; To structural members. All stringers and girders shall be limited to L/200 for maximum vertical live load deflection.
 b. 120 plf; Seatboards and footboards.
 3. Sway:
 a. 24 plf; Per linear foot to seat, parallel to seat run.
 b. 10 plf; Per linear foot to seat, perpendicular to seat run.

C. Deflection: Structural elements shall be sized to limit the live load deflections to 1/200 of the span. Calculation shall be submitted with shop details confirming 1/200 deflection criteria.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

C. Samples for Verification: For exposed finishes, in manufacturer's standard sizes.

D. Delegated-Design Submittal: Comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 CLOSEOUT SUBMITTALS

A. Warranty: Sample of special warranty.

B. Maintenance Data: For bleacher system to be included in maintenance manuals.
1.8 QUALITY ASSURANCE

A. Manufacturer shall have a minimum of five (5) years of experience in fabrication of bleacher structures.

B. A calculation package must be provided to the owner with the first set of approval drawings. The calculations and plans shall bear the seal of a New Jersey Professional Engineer.

C. Warranty: Product shall be guaranteed for five (5) years on the structure and three (3) years on the finish together with labor. Damage resulting from abnormal use, vandalism, or incorrect installation (if done by other than authorized installer of the manufacturer) is not applicable. Any exposed mill finish aluminum surface will become discolored due to oxidation which is a natural phenomenon. The manufacturer will not be responsible or liable for oxidation of mill finish aluminum.

D. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

PART 2 – PRODUCTS

2.1 MANUFACTURER

A. Basis-of-Design Product: Subject to compliance with requirements, provide spectator grandstand and seating system manufactured by Dant Clayton Corporation, 1500 Bernheim Avenue, Louisville, KY 40210, (800) 626-2177 or comparable product by one of the following:
 1. National Recreation Systems, Inc., Fort Wayne, IN.
 2. Southern Bleacher Company, Inc., Graham, TX.

2.2 MATERIALS

A. Structural Steel:
 1. All detailing, fabrication, and erection shall be in accordance with AISC Manual of Steel Construction, 15th Edition.
 2. Structural steel shall be ASTM A572 multi-certified grade 50, Miscellaneous steel shall be ASTM A36.
 3. All bolts 5/8" diameter and larger shall be ASTM F3125. All bolts 1/2" and smaller shall be ASTM A307. Threaded rod shall be ASTM A36.
 4. All welds shall conform to ANSI/AWS D1.1, latest edition. Electrodes shall be E70XX.

B. Guardrail:
 1. Vertical guardrail structural supports shall be aluminum rectangular tube 2.8" x 2.0 x .1888" or aluminum angle of equivalent strength, and shall be 6061-T6 alloy. Guardrail shall have structural support on each leg of the fencing at all 90° turns. Tension bars do not meet this requirement.
2. Guardrail horizontal and vertical framing members will be 1 5/8” O.D. aluminum pipe.
3. Chain link fence shall be 2” mesh, 6 gauge black vinyl-coated fabric.

C. Handrail:
1. Two line center aisle handrails shall be anodized extruded aluminum pipe of 6061-T6 alloy, with a 1 15/16” outside diameter and a wall thickness of .145”.
2. Handrails on all ramps and stairs shall provide 1-1/2” clearance from the guardrail material and shall extend 12” past the last riser with a return. Newel posts will not interrupt handrails. Handrails will not project more than 4.5” into the width of a stair or ramp.

D. Aisles:
1. Aisles with seating on both sides shall have 34” high handrail with an intermediate rail approximately 22’ above tread and shall be discontinuous to allow access to seating through a space 22” (min.) to 36” (max.)
2. Intermediate steps shall have consistent rise and run throughout the aisle. Intermediate steps shall be fully closed.
3. All aisles shall have a 2” recessed black powder coated anti-slip nosing at each step.
4. All aisles for all seating sections shall have the same rise and tread.

E. Seating
1. Seats shall be 6063-T6 extruded aluminum with a fluted surface and a minimum of 4 vertical legs. The exact size of seatboard is 2” x 10” x .080” wall thickened at the joints and weighing 1.9 lbs. per foot with 1” radius comfort curve front edge.
 a. Aluminum shall be powder coated. Color shall be as selected by Owner and Architect from manufacturer’s full color range.
3. Seat boards shall be attached to the system by riser mounted galvanized steel “L” brackets (deck mounted brackets not allowed). The seat boards shall align with the intermediate steps at the aisles. Seat brackets must have a positive connection to the steel frame of the bleacher. Attachment to the riser board or decking is not allowed.

F. Decking System
1. Fully Closed Welded Deck System:
 a. Provide a two-component decking system.
 b. The first component is a one-piece welded deck panel constructed by welding multiple aluminum extensions together in the factory utilizing a fully automated, computer controlled, multi-head welding machine. The welding machine will weld all extrusions together in a single pass with 0.040” diameter 4043 welded wire using Orlion Gas to insure uniform shape, dimension and appearance. The decking system is fixed with a 1° slope to the front to enhance water drainage. The decking system is attached by concealed clips and galvanized hardware. The decking extrusions are 1 ¾” vertically with a .078” wall thickness and are interlocked horizontally prior to welding using a tongue and groove connection.
 c. The second component is a one-piece aluminum riser extension that has a male-female connection at the top with the welded deck panel and a shingled overlap connection at the bottom with the welded deck panel. The riser is finished with a powder coated surface treatment, covering 100% of the both sides of the riser surface, in color selected by Architect from manufacturer’s full range.
d. The joint of the welded deck panel is covered with a 4” wide aluminum extrusion joint cover.
e. The joint of the welded deck panel is elevated ¼” by use of a ¼” steel plate that is installed below the welded deck panel and above the structural steel supports below.
f. Riser height per row and tread depth per row is indicated on design drawings.
g. The ends of decking system will be finished with a one-piece aluminum angle end cap.

G. Walking Surface Requirement

1. All aluminum decking intended for use as a walking surface, including walkways, aisles, walking surfaces in seating sections, stairs, ramps, platforms, handicap areas, and landings, will exhibit a slip resistant surface treatment intended to minimize the effects of wet conditions on pedestrian safety.
2. This surface treatment will increase the slip resistance of mill finished aluminum to achieve a slip index (coefficient of friction) of 0.80 or higher in all directions of travel, including parallel to seating, as measured by the Variable Incidence Tribometer (VIT), under wet conditions as well as dry conditions. This testing machine is referenced in ASTM F-1679, Standard Test Method for Using a Variable Incidence Tribometer.

H. Ramps, Stairs, Ramp Platforms and Stair Platforms:

1. Shall conform to local building codes. Stair stringers shall be closed and stair risers shall be fully closed and powder coated on both sides.

I. End Caps:

1. Walkways, footboards, and aisle board end caps shall be one-piece mill finish aluminum angle design tumbled after fabrication to remove burrs and sharp edges. End caps shall be riveted to the planks.
2. Seat board end caps shall be one-piece cast aluminum and shall be friction-fit to the plank without the use of mechanical fasteners.
3. Guardrail posts shall be covered with cast aluminum top caps.

J. Wheelchair Accessible Areas:

1. Wheelchair viewing areas will be per design drawings.

K. Skirting and Closure Panels:

1. Where shown on the plans the front field side of the grandstand, stairs and ramps between the front walkway and 1 inch above finished grade shall be fully closed by a ¼” non-corrosive, 100% recycled, impact resistant material.
2. Maximum water absorption shall be 0.3%.
3. Vertical gaps between panels are trimmed with heavy duty aluminum extrusions that eliminate any visual gap between the panels and control alignment between the panels.
4. The top edge of the panel is trimmed with aluminum channel that matches the thickness of the panel.
5. Each panel is attached to the bleacher frame on not more that 6'-0” centers with additional backing supports as required.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Installation shall be handled directly by the manufacturer or by a factory-certified installation subcontractor. Factory certification shall require three installations within the last two years within the state.

B. Structure shall be erected in accordance with plans, shop drawings, and specifications.

C. Site preparation is not included in this specification.

3.3 CLEANING

A. Clean all surfaces after erection, in accordance with manufacturer's recommendations.

B. Remove and properly dispose of all packaging and construction debris.

C. Do not use acid solution, steel wool or other harsh abrasives.

END OF SECTION 13 3416
SECTION 32 3113 – INDOOR CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes indoor chain link fence installations, with privacy slats.

B. Related Requirements: Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 a. Fence and gate posts, rails, and fittings.
 b. Chain-link fabric, reinforcements, and attachments.
 c. Accessories: Privacy slats.
 d. Gates and hardware.

B. Shop Drawings: For each type of fence and gate assembly.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include accessories, hardware, gate operation, and operational clearances.

C. Samples for Initial Selection: For each type of factory-applied finish.

D. Samples for Verification: For each type of component with factory-applied finish, prepared on Samples of size indicated below:

1.4 FIELD CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.5 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Failure to comply with performance requirements.
 b. Deterioration of metals, and other materials beyond normal weathering.
2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

 A. Structural Performance: Chain-link fence and gate frameworks shall withstand the design wind loads and stresses for fence height(s) and under exposure conditions indicated according to ASCE/SEI 7.

2.2 CHAIN-LINK FENCE FABRIC

 A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist according to "CLFMI Product Manual" and requirements indicated below:

 1. Fabric Height: As indicated on Drawings.
 2. Steel Wire for Fabric: Wire diameter of 0.192 inch (4.88 mm).
 a. Mesh Size: 2 inches (50 mm).
 3. Selvage: Knuckled at both selvages.

2.3 FENCE FRAMEWORK

 A. Posts and Rails: ASTM F1043 for framework, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F1043 based on the following:

 1. Fence Height: As indicated on Drawings.
 a. Line Post: Diameter as indicated on drawings.
 b. End, Corner, and Pull Posts: Diameter as indicated on drawings.
 3. Horizontal Framework Members: Intermediate, top, and bottom rails according to ASTM F1043. Diameters as indicated on drawings.
 5. Metallic Coating for Steel Framework:
 a. Type A: Not less than minimum 2.0-oz./sq. ft. (0.61-kg/sq. m) average zinc coating according to ASTM A123/A123M or 4.0-oz./sq. ft. (1.22-kg/sq. m) zinc coating according to ASTM A653/A653M.

2.4 TENSION WIRE

 A. Metallic-Coated Steel Wire: 0.177-inch- (4.5-mm-) diameter, marcelled tension wire according to ASTM A817 or ASTM A824.
2.5 SWING GATES

A. General: ASTM F900 for gate posts and double] swing gate types.
 1. Gate Leaf Width: As indicated.
 2. Framework Member Sizes and Strength: Based on gate fabric height as indicated.

B. Pipe and Tubing:
 1. Zinc-Coated Steel: ASTM F1043 and ASTM F1083; protective coating and finish to match fence framework.
 2. Gate Posts: Round tubular steel.
 3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.

D. Hardware:
 2. Latch: Permitting operation from both sides of gate with provision for padlocking accessible from rink side of gate.
 3. Padlock: Provided by Owner.
 4. Manual operated (vertically) L-shape vertical rod, secured to inactive gate leaf, with core drilled into concrete to receive bottom tip of rod.

2.6 FITTINGS

A. Provide fittings according to ASTM F626.

B. Post Caps: Provide for each post.
 1. Provide line post caps with loop to receive tension wire or top rail.

C. Rail and Brace Ends: For each gate, corner, pull, and end post.

D. Rail Fittings: Provide the following:
 1. Rail Clamps: Line and corner boulevard clamps for connecting all rails to posts.

E. Tension and Brace Bands: Pressed steel.

F. Tension Bars: Steel, length not less than 2 inches (50 mm) shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

G. Tie Wires, Clips, and Fasteners: According to ASTM F626.
 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, according to the following:
 a. Hot-Dip Galvanized Steel: 0.106-inch- (2.69-mm-) diameter wire.

H. Finish: Not less than 1.2 oz./sq. ft. (366 g/sq. m) of zinc.
2.7 PRIVACY SLATS
 A. Fiber-Glass-Reinforced Plastic Slats: UV-light-stabilized fiber-glass-reinforced plastic, not less than 0.06 inch (1.5 mm) thick, sized to fit mesh specified for direction indicated.
 B. Color: As selected by Architect from manufacturer's full range.

2.8 GROUT AND ANCHORING CEMENT
 A. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M. Provide grout, recommended in writing by manufacturer, for exterior applications.
 B. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating, and that is recommended in writing by manufacturer for exterior applications.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas and conditions, with Installer present, for compliance with requirements for conditions affecting performance of the Work. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CHAIN-LINK FENCE INSTALLATION
 A. Install chain-link fencing according to ASTM F567 and more stringent requirements specified.
 B. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.
 1. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 2. Post Bracing and Intermediate Rails: Install according to ASTM F567, maintaining plumb position and alignment of fence posts. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.
 C. Tension Wire: Install according to ASTM F567, maintaining plumb position and alignment of fence posts. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- (3.05-
mm-) diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches (610 mm) o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:

1. Extended along top and bottom of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches (152 mm) of bottom of fabric and tie to each post with not less than same diameter and type of wire.

D. Top Rail: Install according to ASTM F567, maintaining plumb position and alignment of fence posts. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.

E. Intermediate and Bottom Rails: Secure to posts with fittings.

F. Chain-Link Fabric: Apply fabric to inside] of enclosing framework. Leave 2-inch (50-mm) bottom clearance between floor line and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

G. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts, with tension bands spaced not more than 15 inches (380 mm) o.c.

H. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric according to ASTM F626. Bend ends of wire to minimize hazard to individuals and clothing. Maximum Spacing: Tie fabric to line posts at 12 inches (300 mm) o.c. and to braces at 24 inches (610 mm) o.c.

I. Fasteners: Install nuts for tension bands and carriage bolts on the side of fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.

J. Privacy Slats: Install slats vertically, securely locked in place.

3.3 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation.

3.4 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

END OF SECTION 323113
<table>
<thead>
<tr>
<th>Division</th>
<th>Section Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 03 - CONCRETE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031000</td>
<td>CONCRETE FORMING AND ASSESSORIES</td>
<td>10</td>
</tr>
<tr>
<td>032000</td>
<td>CONCRETE REINFORCING</td>
<td>7</td>
</tr>
<tr>
<td>033000</td>
<td>CAST-IN-PLACE CONCRETE</td>
<td>11</td>
</tr>
<tr>
<td>036000</td>
<td>GROUTING</td>
<td>5</td>
</tr>
<tr>
<td>DIVISION 05 - METALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>052100</td>
<td>STEEL JOIST FRAMING</td>
<td>7</td>
</tr>
<tr>
<td>053123</td>
<td>STEEL ROOF DECKING</td>
<td>4</td>
</tr>
<tr>
<td>054000</td>
<td>COLD-FORMED METAL FRAMING</td>
<td>8</td>
</tr>
<tr>
<td>DIVISION 21 – FIRE PROTECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210517</td>
<td>SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING</td>
<td>3</td>
</tr>
<tr>
<td>210518</td>
<td>ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING</td>
<td>3</td>
</tr>
<tr>
<td>210523</td>
<td>GENERAL-DUTY VALVES FOR WATER-BASED FIRE PROTECTION PIPING</td>
<td>8</td>
</tr>
<tr>
<td>210553</td>
<td>IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT</td>
<td>5</td>
</tr>
<tr>
<td>211313</td>
<td>WET-PIPE SPRINKLER SYSTEMS</td>
<td>14</td>
</tr>
<tr>
<td>DIVISION 22 - PLUMBING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220517</td>
<td>SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING</td>
<td>3</td>
</tr>
<tr>
<td>220518</td>
<td>ESCUTCHEONS FOR PLUMBING PIPING</td>
<td>3</td>
</tr>
<tr>
<td>220519</td>
<td>METERS AND GAGES FOR PLUMBING AND PIPING</td>
<td>7</td>
</tr>
<tr>
<td>220523.12</td>
<td>BALL VALVES FOR PLUMBING PIPING</td>
<td>7</td>
</tr>
<tr>
<td>220523.14</td>
<td>CHECK VALVES FOR PLUMBING PIPING</td>
<td>4</td>
</tr>
<tr>
<td>220529</td>
<td>HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT</td>
<td>12</td>
</tr>
<tr>
<td>220553</td>
<td>IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT</td>
<td>5</td>
</tr>
<tr>
<td>220719</td>
<td>PLUMBING PIPING INSULATION</td>
<td>16</td>
</tr>
<tr>
<td>221116</td>
<td>DOMESTIC WATER PIPING</td>
<td>11</td>
</tr>
<tr>
<td>221119</td>
<td>DOMESTIC WATER PIPING SPECIALTIES</td>
<td>8</td>
</tr>
<tr>
<td>221123</td>
<td>DOMESTIC WATER PUMPS</td>
<td>3</td>
</tr>
<tr>
<td>221316</td>
<td>SANITARY WASTE AND VENT PIPING</td>
<td>10</td>
</tr>
<tr>
<td>221319</td>
<td>SANITARY WASTE PIPING SPECIALTIES</td>
<td>5</td>
</tr>
<tr>
<td>223400</td>
<td>FUEL-FIRED, DOMESTIC-WATER HEATERS</td>
<td>8</td>
</tr>
<tr>
<td>224213.13</td>
<td>COMMERCIAL WATER CLOSETS</td>
<td>4</td>
</tr>
<tr>
<td>224213.16</td>
<td>COMMERCIAL URINALS</td>
<td>4</td>
</tr>
<tr>
<td>224216.13</td>
<td>COMMERCIAL LAVATORIES</td>
<td>5</td>
</tr>
<tr>
<td>224223</td>
<td>COMMERCIAL SHOWERS</td>
<td>3</td>
</tr>
<tr>
<td>DIVISION 23 - MECHANICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230513</td>
<td>COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT</td>
<td>2</td>
</tr>
<tr>
<td>230529</td>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
<td>4</td>
</tr>
<tr>
<td>230548</td>
<td>VIBRATION FOR HVAC PIPING AND EQUIPMENT</td>
<td>3</td>
</tr>
</tbody>
</table>
230553 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT 5
230593 TESTING, ADJUSTING, AND BALANCING FOR HVAC 14
230713 DUCT INSULATION 13
230716 HVAC EQUIPMENT INSULATION 10
230719 HVAC PIPING INSULATION 13
230900 INSTRUMENTATION AND CONTROL FOR HVAC 21
231123 FACILITY NATURAL-GAS PIPING 15
232113 HYDRONIC PIPING 13
232123 HYDRONIC PUMP 4
233113 METAL DUCTS 11
233300 AIR DUCT ACCESSORIES 7
233713 DIFFUSERS, REGISTERS, AND GRILLES 2
233716 FABRIC AIR-DISTRIBUTION DEVICES 5
234300.11 BI-POLAR IONIZATION SYSTEM 3
237413 PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS 9
238400 DESICCANT DEHUMIDIFICATION UNITS 12

DIVISION 26 - ELECTRICAL
260505 SELECTIVE DEMOLITION FOR ELECTRICAL 4
260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 7
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS 6
260533 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS 8
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS 4
260923 LIGHTING CONTROL DEVICES 6
262200 LOW-VOLTAGE TRANSFORMERS 7
262416 PANELBOARDS 8
262726 WIRING DEVICES 4
262816 ENCLOSED SWITCHES 3
262823 ENCLOSED CIRCUIT BREAKERS 3
265119 LED INTERIOR LIGHTING 8
265619 LED EXTERIOR LIGHTING 3
284600 FIRE DETECTION AND ALARM 8

DIVISION 31 – EARTHWORK
310513 SOILS FOR EARTHWORK 3
310516 AGGREGATES FOR EARTHWORK 3
312213 ROUGH GRADING 5
312316 EXCAVATION 4
312317 TRENCHING 6
312323 FILL 4

DIVISION 32 – EXTERIOR IMPROVEMENTS
320516 AGGREGATES FOR EXTERIOR IMPROVEMENTS 4
321123 AGGREGATE BASE COURSES 3
321313 CONCRETE PAVING 8
DIVISION 33 – UTILITIES
330513 MANHOLES AND STRUCTURES 8
330516.13 PRECAST CONCRETE UTILITY STRUCTURES 10
331213 WATER SERVICE CONNECTIONS 8
333100 SANITARY UTILITY SEWERAGE PIPING 6

END OF TABLE OF CONTENTS
SECTION 031000 - CONCRETE FORMING AND ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Formwork for cast-in-place concrete.
2. Shoring, bracing, and anchorage.
3. Architectural form liners.
4. Form accessories.
5. Form stripping.

B. Related Requirements:

1. Section 032000 - Concrete Reinforcing: Reinforcing steel and required supports for cast-in-place concrete.
2. Section 033000 - Cast-in-Place Concrete: Cast-in-place or in-situ concrete for structural building frame, slabs-on-grade, and other concrete components associated with building.
3. Section 042000 - Unit Masonry:
 a. Positioning of recessed reglets for brick veneer masonry anchors.
 b. Product requirements for masonry accessories for placement by this Section.
4. Section 055000 - Metal Fabrications: Product requirements for metal fabrications for placement by this Section.

1.2 REFERENCE STANDARDS

A. American Concrete Institute:

2. ACI 301 - Specifications for Structural Concrete.
3. ACI 318 - Building Code Requirements for Structural Concrete.
4. ACI 347 - Guide to Formwork for Concrete.

B. American Forest & Paper Association:

C. American Society of Mechanical Engineers:

D. APA - The Engineered Wood Association:

The Club At Woodbridge
INDOOR ICE RINK
CONCRETE FORMING AND ACCESSORIES

T&M Project No.: WOOD-00510
1. APA/EWA PS 1 - Voluntary Product Standard - Structural Plywood.

E. ASTM International:

F. West Coast Lumber Inspection Bureau:

1. WCLIB - Standard No. 17 Grading Rules for West Coast Lumber.

1.3 COORDINATION

A. Section 01 3100 – Project Management Coordination.

B. Coordinate Work of this Section with other Sections of Work in forming and placing openings, slots, reglets, recesses, sleeves, bolts, anchors, other inserts, and components of other Work.

1.4 QUALITY ASSURANCE

A. Perform Work according to ACI 347, 301 and 318.

B. For wood products furnished for Work of this Section, comply with AF&PA.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Section 016000 - Product Requirements: Requirements for transporting, handling, storing, and protecting products.

B. Inspection: Accept void forms on Site in manufacturer's original packaging and inspect for damage.

C. Store materials off ground in ventilated and protected manner to prevent deterioration from moisture.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Design, engineer, and construct formwork, shoring, and bracing according to ACI 318 to conform to design and applicable code requirements to achieve concrete shape, line, and dimension as indicated on Drawings.

B. Vapor Retarder Permeance: Maximum 1 perm when tested according to ASTM E96, water method.

The Club At Woodbridge
INDOOR ICE RINK
CONCRETE FORMING AND ACCESSORIES

T&M Project No.: WOOD-00510 031000 - 2
2.2 WOOD FORM MATERIALS

A. Form Materials: At discretion of Contractor.

2.3 PREFABRICATED FORMS

A. Manufacturers:

1. EFCO – Economy Forms Corporation
2. Molded Fiber Glass Construction Products
3. Sonoco Products Company
4. Symons by Dayton Superior
5. Wall-Ties & Forms, Incorporated
6. Western Forms
7. Substitutions: As specified in Section 016000 - Product Requirements.

2.4 FORMWORK ACCESSORIES

A. Form Ties:

1. Type: Removable cone or Snap off cone.
3. Length: Fixed or Adjustable.
4. Free of defects capable of leaving holes larger than 1 inch in concrete surface.
5. Manufacturers:

 a. Heckmann Building Products, Inc.
 b. Symons by Dayton Superior
 c. Wall-Ties & Forms, Inc.
 d. Substitutions: As specified in Section 016000 - Product Requirements.

B. Spreaders:

1. Description: Standard, non-corrosive metal-form clamp assembly, of type acting as spreaders and leaving no metal within 1 inch of concrete face.
2. Wire ties, wood spreaders, or through bolts are not permitted.

C. Form Release Agent:

1. Description: Colorless mineral oil that will not stain concrete or absorb moisture.
2. Manufacturers:

 a. Architectural Concrete Chemicals, LLC
 b. Nox-Crete Products Group.
 c. Substitutions: As specified in Section 016000 - Product Requirements.

D. Corners:
1. Type: Chamfer, rigid plastic or wood strip
2. Lengths: Maximum possible.
3. Manufacturers:
 a. BoMetals, Inc.
 b. Wall-Ties & Forms, Inc.
 c. Substitutions: As specified in Section 016000 - Product Requirements.

E. Dovetail Anchor Slot:
1. Material: Galvanized steel.
2. Thickness: 22 gage.
4. Fasten slot to concrete formwork according to manufacturer instructions and insert foam filler to prevent concrete from entering slot during pour.
5. Manufacturers:
 a. BoMetals, Inc.
 b. Dur-O-Wal
 c. Hohmann & Barnard
 d. Heckmann Building Products, Inc.
 e. Substitutions: As specified in Section 016000 - Product Requirements.

F. Flashing Reglets:
1. Material: Galvanized steel.
2. Thickness: 22 gage.
3. Lengths: Maximum possible.
4. Furnish alignment splines for joints.
6. Fasten flashing reglet to concrete formwork according to manufacturer instructions and insert foam to prevent concrete from entering reglet during pour.
7. Manufacturers:
 a. Cheney Flashing Company
 b. Fry Reglet Corporation
 c. Heckmann Building Products, Inc.
 d. Hohmann & Barnard, Inc.
 e. W. P. Hickman Systems, Inc.
 f. Substitutions: As specified in Section 016000 - Product Requirements.

G. Vapor Retarder:
1. Description: Polyethylene sheet.
2. Thickness: 8 mils.

I. Nails, Spikes, Lag Bolts, Through Bolts, Anchorages: Size, strength, and character to maintain formwork in place while placing concrete.
J. Waterstop:

1. Description: Flexible strip of bentonite waterproofing compound in coil form for joints in concrete construction.
2. Manufacturers:
 a. CETCO
 b. Minerals Technologies
 c. Tremco Commercial Sealants & Waterproofing.
 d. Substitutions: As specified in Section 016000 - Product Requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Section 017000 - Execution and Closeout Requirements: Requirements for installation examination.

B. Verify lines, levels, and centers before proceeding with formwork.

C. Verify that dimensions agree with Drawings.

D. If formwork is placed after reinforcement resulting in insufficient concrete cover over reinforcement, request instructions from Architect/Engineer before proceeding.

3.2 INSTALLATION

A. Earth Forms: Not permitted.

B. Formwork:

1. Provide top form for sloped surfaces steeper than 1.5 horizontal to 1 vertical to hold shape of concrete during placement, unless it can be demonstrated that top forms can be omitted.
2. Construct forms to correct shape and dimensions, mortar-tight, braced, and of sufficient strength to maintain shape and position under imposed loads from construction operations.
3. Camber forms where necessary to produce level finished soffits unless indicated otherwise on Drawings.
4. Positioning:
 a. Carefully verify horizontal and vertical positions of forms.
 b. Correct misaligned or misplaced forms before placing concrete.

5. Complete wedging and bracing before placing concrete.
6. Erect formwork, shoring, and bracing to achieve design requirements according to ACI 301 and 318.
7. Stripping:
 a. Arrange and assemble formwork to permit dismantling and stripping.
 b. Do not damage concrete during stripping.
 c. Permit removal of remaining principal shores.

8. Obtain approval of Architect/Engineer before framing openings in structural members not indicated on Drawings.

9. Install chamfer strips on external corners where noted.

10. Install void forms according to manufacturer instructions.

11. Do not patch formwork.

12. Leave forms in place for minimum number of days according to ACI 347.

C. Form Removal:

1. Do not remove forms or bracing until concrete has gained sufficient strength to carry its own weight and imposed loads, and removal has been approved by Architect/Engineer.

2. Loosen forms carefully; do not wedge pry bars, hammers, or tools against finish concrete surfaces scheduled for exposure to view.

3. Store removed forms in manner that surfaces to be in contact with fresh concrete will not be damaged.

4. Discard damaged forms.

5. Form Release Agent:
 a. Apply according to manufacturer instructions.
 b. Apply prior to placement of reinforcing steel, anchoring devices, and embedded items.
 c. Do not apply form release agent if concrete surfaces are indicated to receive special finishes or applied coverings that may be affected by agent.
 d. Soak inside surfaces of untreated forms with clean water, and keep surfaces coated prior to placement of concrete.

6. Form Cleaning:
 a. Clean forms as erection proceeds to remove foreign matter within forms.
 b. Clean formed cavities of debris prior to placing concrete.
 c. Flush with water or use compressed air to remove remaining foreign matter.
 d. Ensure that water and debris drain to exterior through cleanout ports.
 e. Cold Weather:
 1) During cold weather, remove ice and snow from within forms.
 2) Do not use de-icing salts.
 3) Do not use water to clean out forms, unless formwork and concrete construction proceed within heated enclosure; use compressed air or other dry method to remove foreign matter.

7. Reuse and Coating of Forms:
 a. Thoroughly clean forms and reapply form coating before each reuse.
 b. For exposed Work, do not reuse forms with damaged faces or edges.

The Club At Woodbridge
INDOOR ICE RINK
CONCRETE FORMING AND ACCESSORIES
T&M Project No.: WOOD-00510
031000 - 6
c. Apply form coating to forms according to manufacturer instructions.
d. Do not coat forms for concrete indicated to receive "scored finish."
e. Apply form coatings before placing reinforcing steel.

D. Forms for Smooth Finish Concrete:
1. Use steel, plywood, or lined-board forms.
2. Use clean and smooth plywood and form liners, uniform in size, and free from surface and edge damage capable of affecting resulting concrete finish.
3. Install form lining with close-fitting square joints between separate sheets without springing into place.
4. Use full-sized sheets of form liners and plywood wherever possible.
5. Tape joints to prevent protrusions in concrete.
6. Apply forming and strip wood forms in a manner to protect corners and edges.
7. Level and continue horizontal joints.
8. Keep wood forms wet until stripped.

E. Architectural Form Liners:
1. Erect architectural side of formwork first.
2. Attach form liner to forms before installing form ties.
3. Install form liners square, with joints and pattern aligned.
4. Seal form liner joints to prevent grout leaks.
5. Dress joints and edges to match form liner pattern and texture.

F. Forms for Surfaces to Receive Membrane Waterproofing:
1. Use plywood or steel forms.
2. After erection of forms, tape form joints to prevent protrusions in concrete.

G. Framing, Studding, and Bracing:
1. Maximum Spacing of Studs:
 a. Boards: Maximum 16 inches o.c.
 b. Plywood: 12 inches o.c.
2. Size framing, bracing, centering, and supporting members for sufficient strength to maintain shape and position under imposed loads from construction operations.
3. Construct beam soffits of material minimum 2 inches thick.
4. Distribute bracing loads over base area on which bracing is erected.
5. When placed on ground, protect against undermining, settlement, and accidental impact.

H. Form Anchors and Hangers:
1. Do not use anchors and hangers leaving exposed metal at concrete surface.
2. Symmetrically arrange hangers supporting forms from structural-steel members to minimize twisting or rotation of member.
3. Penetration of structural-steel members is not permitted.
I. Inserts, Embedded Parts, and Openings:
 1. Install formed openings for items to be embedded in or passing through concrete Work.
 2. Locate and set in place items required to be cast directly into concrete.
 3. Position recessed reglets for brick veneer masonry anchors according to spacing and intervals as specified in Section 042000 - Unit Masonry.
 4. Install accessories straight, level, and plumb, and ensure that items are not disturbed during concrete placement.
 5. Joints:
 a. Install waterstops continuous without displacing reinforcement.
 6. Openings:
 a. Provide temporary ports or openings in formwork as required to facilitate cleaning and inspection.
 b. Locate openings at bottom of forms to allow flushing water to drain.
 7. Close temporary openings with tight-fitting panels, flush with inside face of forms, and neatly fitted such that joints will not be apparent in exposed concrete surfaces.

J. Form Ties:
 1. Provide sufficient strength and quantity to prevent spreading of forms.
 2. Place ties at least 1 inch away from finished surface of concrete.
 3. Leave inner rods in concrete when forms are stripped.
 4. Space form ties equidistant, symmetrical, and aligned vertically and horizontally unless indicated otherwise on Drawings.

K. Arrange formwork to allow proper erection sequence and to permit form removal without damage to concrete.

L. Construction Joints:
 1. Install surfaced pouring strip where construction joints intersect on exposed surfaces to provide straight line at joints.
 2. Just prior to subsequent concrete placement, remove strip and tighten forms to conceal shrinkage.
 3. Appearance:
 a. Show no overlapping of construction joints.
 b. Construct joints to present same appearance as butted plywood joints.
 4. Arrange joints in continuous line straight, true, and sharp.

M. Embedded Items:
 1. Make provisions for pipes, sleeves, anchors, inserts, reglets, anchor slots, nailers, waterstops, and other features.
 2. Do not embed wood or uncoated aluminum in concrete.

The Club At Woodbridge
INDOOR ICE RINK
CONCRETE FORMING AND ACCESSORIES

T&M Project No.: WOOD-00510
031000 - 8
3. Obtain installation and setting information for embedded items furnished under other Sections.
4. Securely anchor embedded items in correct location and alignment prior to placing concrete.
5. Ensure that conduits and pipes, including those made of coated aluminum, meet requirements of ACI 318 regarding size and location limitations.

N. Openings for Items Passing through Concrete:
1. Frame openings in concrete where indicated on Drawings.
2. Establish exact locations, sizes, and other conditions required for openings and attachment of Work specified under other Sections.
3. Coordinate Work to avoid cutting and patching of concrete after placement.
4. Perform cutting and repairing of concrete required as result of failure to provide required openings.

O. Screeds:
1. Set screeds and establish levels for tops of and finish on concrete slabs.
2. Slope slabs to drain where required or as indicated on Drawings.
3. Before depositing concrete, remove debris from space to be occupied by concrete and thoroughly wet forms; remove freestanding water.

P. Screed Supports:
1. For concrete over waterproof membranes and vapor retarder membranes, use cradle-, pad-, or base-type screed supports that will not puncture membrane.
2. Staking through membrane is not permitted.

Q. Cleanouts and Access Panels:
1. Provide removable cleanout sections or access panels at bottoms of forms to permit inspection and effective cleaning of loose dirt, debris, and waste material.
2. Clean forms and surfaces against which concrete is to be placed.
3. Remove chips, sawdust, and other debris.
4. Thoroughly blow out forms with compressed air just before concrete is placed.

3.3 TOLERANCES
A. Construct formwork to maintain tolerances according to ACI 301 and 318.

3.4 FIELD QUALITY CONTROL
A. Section 014000 - Quality Requirements: Requirements for inspecting and testing.
B. Inspection:
1. Inspect erected formwork, shoring, and bracing to ensure that Work complies with formwork design and that supports, fastenings, wedges, ties, and items are secure.
2. Notify Architect/Engineer after placement of reinforcing steel in forms but prior to placing concrete.
3. Schedule concrete placement to permit formwork inspection before placing concrete.

END OF SECTION 031000
SECTION 032000 - CONCRETE REINFORCING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Reinforcing bars.
 2. Welded wire reinforcement.
 3. Reinforcement accessories.

B. Related Requirements:
 1. Section 031000 - Concrete Forming and Accessories: Form materials, waterstops, and accessories required to form cast-in-place concrete.
 2. Section 033000 - Cast-in-Place Concrete: Cast-in-place or in-situ concrete for structural building frame, slabs on grade, and other concrete components associated with building.

1.2 REFERENCE STANDARDS

A. American Concrete Institute:
 1. ACI 301 - Specifications for Structural Concrete.
 2. ACI 318 - Building Code Requirements for Structural Concrete.

B. American Welding Society:
 1. AWS D1.4 - Structural Welding Code - Reinforcing Steel.

C. ASTM International:
 2. ASTM A615 - Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
 3. ASTM A704 - Standard Specification for Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement.
 4. ASTM A706 - Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement.
 5. ASTM A767 - Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement.
9. ASTM A996 - Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.

D. Concrete Reinforcing Steel Institute:

2. CRSI 10PLACE - Placing Reinforcing Bars.

E. The Masonry Society:

1. TMS 402 - Building Code Requirements for Masonry Structures.
2. TMS 602 - Specification Requirements for Masonry Structures.

1.3 COORDINATION

A. Section 01 3100 – Project Management Coordination.

B. Coordinate Work of this Section with placement of formwork, formed openings, and other Work.

1.4 PREINSTALLATION MEETINGS

A. Section 013000 - Administrative Requirements: Requirements for preinstallation meeting.

B. Convene minimum two weeks prior to commencing Work of this Section.

1.5 SUBMITTALS

A. Section 013300 - Submittal Procedures: Requirements for submittals.

B. Shop Drawings:

1. Indicate bar sizes, spacings, locations, splice locations, and quantities of reinforcing steel.
2. Indicate bending and cutting schedules.
3. Indicate supporting and spacing devices.

C. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.

D. Submit certified copies of mill test report of reinforcement materials analysis.

E. Welder Certificates: Certify welders and welding procedures employed on Work, verifying AWS qualification within previous 12 months.

F. Source Quality-Control Submittals: Indicate results of shop tests and inspections.
G. Field Quality-Control Submittals: Indicate results of Contractor-furnished tests and inspections.

H. Qualifications Statement:

1. Welders: Qualify procedures and personnel according to AWS D1.1.

1.6 QUALITY ASSURANCE

A. Perform Work according to CRSI 10-MSP, ACI 301 and ACI 318.

B. Prepare Shop Drawings according to ACI SP-66.

1.7 QUALIFICATIONS

A. Welders: AWS qualified within previous 12 months for employed weld types.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Section 016000 - Product Requirements: Requirements for transporting, handling, storing, and protecting products.

B. Inspection: Accept materials on Site in manufacturer's original packaging and inspect for damage.

C. Store materials according to manufacturer instructions.

D. Protection:

1. Protect materials from moisture by storing in clean, dry location remote from construction operations areas.
2. Provide additional protection according to manufacturer instructions.

1.9 EXISTING CONDITIONS

A. Field Measurements:

1. Verify field measurements prior to fabrication.
2. Indicate field measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 REINFORCEMENT

A. Reinforcing Steel:
1. Comply with ASTM A615.
2. Yield Strength: 60 ksi.

B. Welded Plain Wire Reinforcement:
 2. Configuration: Flat sheets.
 3. Finish: Uncoated

2.2 FABRICATION
 A. Fabricate concrete reinforcement according to ACI 318.
 B. Form standard hooks for 180-degree bends, 90-degree bends, stirrups and tie hooks as indicated on Drawings.
 C. Form reinforcement bends with minimum diameters according to ACI 318.
 D. Fabricate column reinforcement with offset bends at reinforcement splices.
 E. Form spiral column reinforcement from minimum 3/8-inch-diameter continuous deformed bar.
 F. Form ties and stirrups from following:
 1. Bars No. 10 and Smaller: No. 3 deformed bars.
 2. Bars No. 11 and Larger: No. 4 deformed bars.
 G. Weld reinforcement according to AWS D1.4.
 H. Splicing:
 1. If not indicated on Drawings, locate reinforcement splices at point of minimum stress.
 2. Obtain approval of splice locations from Architect/Engineer.

2.3 ACCESSORY MATERIALS
 A. Tie Wire:
 1. Minimum 16 gage, annealed type.
 B. Chairs, Bolsters, Bar Supports, and Spacers:
 1. Size and Shape: To strengthen and support reinforcement during concrete placement conditions.
C. Special Chairs, Bolsters, Bar Supports, and Spacers Adjacent to Weather-Exposed Concrete Surfaces:

2. Size and Shape: To meet Project conditions.

D. Reinforcing Splicing Devices:

1. Type: Mechanical set screw; full tension and compression.
2. Size: To fit joined reinforcing.
3. Manufacturers:
 a. Symons by Dayton Superior.
 b. Substitutions: Not permitted.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Place, support, and secure reinforcement against displacement.

B. Do not deviate from required position beyond specified tolerance.

C. Do not weld crossing reinforcement bars for assembly.

D. Do not displace or damage vapor retarder.

E. Accommodate placement of formed openings.

F. Spacing:

1. Space reinforcement bars with minimum clear spacing according to ACI 318.
2. If bars are indicated in multiple layers, place upper bars directly above lower bars.

G. Maintain minimum concrete cover around reinforcement according to ACI 318 as follows:

1. Footings and Concrete Formed against Earth: 3 inches.
2. Concrete Exposed to Earth or Weather:
 a. No. 6 Bars and Larger: 2 inches
 b. No. 5 Bars and Smaller: 1-1/2 inches
3. Supported Slabs, Walls, and Joists:
 a. No. 14 Bars and Larger: 1-1/2 inches
 b. No. 11 Bars and Smaller: 3/4 inch
4. Beams and Columns: 1-1/2 inches
5. Shell and Folded Plate Members: The Club At Woodbridge INDOOR ICE RINK CONCRETE REINFORCING
a. No. 6 Bars and Larger: 3/4 inch
b. No. 5 Bars and Smaller: 1/2 inch

H. Splice reinforcing where indicated on Drawings according to manufacturer's instructions.

I. Bond and ground reinforcement as specified in Section 260526 - Grounding and Bonding for Electrical Systems.

3.2 TOLERANCES

A. Section 014000 - Quality Requirements: Requirements for tolerances.

B. Install reinforcement within following tolerances for flexural members, walls, and compression members:

1. Reinforcement Depth Greater Than 8 Inches:
 a. Depth Tolerance: Plus or Minus 3/8 inch
 b. Minus 3/8 inch

2. Reinforcement Depth Less Than or Equal to 8 Inches:
 a. Depth Tolerance: Plus or Minus 1/2 inch
 b. Minus 1/2 inch

C. Foundation Walls: Install reinforcement within tolerances according to ACI 530/530.1.

3.3 FIELD QUALITY CONTROL

A. Section 014000 - Quality Requirements: Requirements for inspecting and testing.

B. Field inspection and testing will be performed by Owner's testing laboratory according to ACI 318.

C. Provide unrestricted access to Work and cooperate with appointed inspection and testing firm.

D. Reinforcement Inspection:

1. Placement Acceptance: Inspect specified and ACI 318 material requirements and specified placement tolerances.
2. Welding: Inspect welds according to AWS D1.1.
3. Periodic Placement Inspection: Inspect for correct materials, fabrication, sizes, locations, spacing, concrete cover, and splicing.
4. Weldability Inspection: Inspect for reinforcement weldability if formed from steel other than ASTM A706.
5. Continuous Weld Inspection: Inspect reinforcement according to ACI 318.
6. Periodic Weld Inspection: Inspect other welded connections.
END OF SECTION 032000
SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes Cast-in-Place Concrete for Following Items:

1. Retaining walls.
2. Foundation walls.
3. Footings.
4. Supported slabs.
5. Slabs on grade.
6. Control, expansion, and contraction joint devices.
7. Equipment pads.

B. Related Requirements:

1. Section 031000 - Concrete Forming and Accessories: Formwork and accessories.
2. Section 032000 - Concrete Reinforcing: Requirements for reinforcing steel and supports.

1.2 REFERENCE STANDARDS

A. American Concrete Institute:

1. ACI 301 - Specifications for Structural Concrete.
4. ACI 308.1 - Specification for Curing Concrete.
5. ACI 318 - Building Code Requirements for Structural Concrete.

B. ASTM International:

2. ASTM C31 - Standard Practice for Making and Curing Concrete Test Specimens in the Field.
5. ASTM C42 - Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete.
10. ASTM C173 - Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method.
11. ASTM C231 - Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method.
16. ASTM C618 - Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
17. ASTM C685 - Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing.
27. ASTM D994 - Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type).
33. ASTM E1643 - Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs.
34. ASTM E1745 - Standard Specification for Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs.

C. South Coast Air Quality Management District:

1. SCAQMD Rule 1168 - Adhesive and Sealant Applications.
1.3 COORDINATION
 A. Section 01 3100 – Project Management Coordination.
 B. Coordinate placement of joint devices with erection of concrete formwork and placement of form accessories.

1.4 SUBMITTALS
 A. Section 013300 - Submittal Procedures: Requirements for submittals.
 B. Product Data: Submit data on joint devices, attachment accessories and admixtures.
 C. Design Data:
 1. Submit concrete mix design for each concrete strength.
 2. Submit separate mix designs if admixtures are required for following:
 a. Hot and cold weather concrete Work.
 b. Air entrained concrete Work.
 3. Identify mix ingredients and proportions, including admixtures.
 4. Identify chloride content of admixtures and whether or not chlorides were added during manufacture.
 D. Manufacturer’s Certificate: Certify that products meet or exceed specified requirements.
 E. Field Quality-Control Submittals: Indicate results of Contractor-furnished tests and inspections.

1.5 CLOSEOUT SUBMITTALS
 A. Section 017000 - Execution and Closeout Requirements: Requirements for submittals.
 B. Project Record Documents: Record actual locations of embedded utilities and components concealed from view in finished construction.

1.6 QUALITY ASSURANCE
 A. Perform Work according to ACI 301 and ACI 318.
 B. Comply with ACI 305R when pouring concrete during hot weather.
 C. Comply with ACI 306.1 when pouring concrete during cold weather.
 D. Acquire cement and aggregate from one source for Work.
 E. Fire-Rated Wall, Floor and Roof Construction:
1. Rating: As indicated on Drawings.
2. Tested Rating: Determined according to ASTM E119.
3. Prescriptive Rating:
 a. Determined according to applicable code.

1.7 MOCKUPS
 A. Section 014000 - Quality Requirements: Requirements for mockup.
 B. Construct mockup for architectural concrete surfaces receiving special treatment or finish as result of formwork.
 C. Size: Single panel delineated by control joints, shown on the drawings.
 D. If requested by Architect/Engineer, cast concrete against sample panel.
 E. Obtain acceptance of Architect/Engineer for resultant surface finish prior to erecting formwork.
 F. Locate where directed by Architect/Engineer.
 G. Incorporate accepted mockup as part of Work.
 H. Remove mockup when directed by Architect/Engineer.

1.8 AMBIENT CONDITIONS
 A. Section 015000 - Temporary Facilities and Controls: Requirements for ambient condition control facilities for product storage and installation.
 B. Maintain concrete temperature after installation at minimum 50 degrees F for minimum seven days.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA
 A. Vapor Retarder Permeance: Maximum 1 perm when tested according to ASTM E96, water method.

2.2 MATERIALS
 A. Concrete:
 1. Cement:
 a. Comply with ASTM C150, Type I - Normal.
b. Type: Portland.

2. Normal Weight Aggregates:
 a. Comply with ASTM C33.
 b. Coarse Aggregate Maximum Size: According to ACI 318.

3. Lightweight Aggregate:
 b. Coarse Aggregate Maximum Size: According to ACI 318.

4. Water:
 a. Comply with ACI 318.
 b. Potable, without deleterious amounts of chloride ions.

B. Admixtures:

1. Manufacturers:
 a. BASF Corporation
 b. Cortec Corporation
 c. Euclid Chemical Company
 d. Sika Corporation
 e. Substitutions: As specified in Section 016000 - Product Requirements.

3. Chemical:

6. Slag:
 a. Description: Ground-granulated blast-furnace slag.
 b. Comply with ASTM C989.

7. Plasticizing:
 a. Comply with ASTM C1017.

C. Joint Devices and Filler:

1. Joint Filler:
 a. Description: Asphalt-impregnated fiberboard or felt.
 b. Comply with ASTM D994.
2. Construction Joint Devices:
 b. Profile: Tongue-and-groove with removable top strip exposing sealant trough and knockout holes spaced at 6 inches o.c.
 c. Furnish ribbed steel spikes with tongue to fit top screed edge.

3. Expansion and Contraction Joint Devices:
 a. Comply with ASTM B221.
 c. Filler Strip: Resilient elastomeric with Shore A hardness of 35 to permit plus or minus 25 percent joint movement with full recovery.
 d. Cover Plate: Extruded aluminum, of longest manufactured length at each location, and flush mounted.
 e. Color: As selected.

4. Sealant:
 a. Comply with ASTM D6690.
 b. Type: II.

2.3 CONCRETE MIX

A. Select proportions for concrete according to ACI 318 field test data.

B. Performance and Design Criteria:
 1. Compressive Strength: 4500 psi.
 2. Cement Type: ASTM C150.
 3. Aggregate Type: Normal weight.
 4. Maximum Water-Cement Ratio: 0.45 by weight
 5. Aggregate Size:
 a. Maximum: 3/4 inch
 6. Air Content: 6 percent, plus or minus 1.5 percent.

C. Admixtures:
 1. Include admixture types and quantities indicated in concrete mix designs only if approved by Architect/Engineer.
 2. Cold Weather:
 a. Use accelerating admixtures in cold weather.
b. Use of admixtures will not relax cold-weather placement requirements.

4. Do not use calcium chloride or admixtures containing calcium chloride.
5. Add air entrainment admixture to concrete mix for Work exposed to freezing and thawing or deicing chemicals.
6. For concrete exposed to deicing chemicals, limit fly ash, pozzolans, silica fumes, and slag content as required by applicable code.

D. Average Compressive Strength Reduction: Not permitted.

E. Ready-Mixed Concrete: Mix and deliver concrete according to ASTM C94.

2.4 ACCESSORIES

A. Bonding Agent:

1. Manufacturers:
 a. Euclid Chemical Company
 b. Metalcrete Industries
 c. QUIKRETE
 d. Sika Corporation
 e. W.R. Meadows, Inc.
 f. Substitutions: As specified in Section 016000 - Product Requirements.

B. Vapor Retarder:

1. Manufacturers:
 a. Carlisle Coatings & Waterproofing, Inc.
 b. GCP Applied Technologies, Inc.
 c. Raven Industries, Inc.
 d. Reef Industries, Inc.
 e. Stego Industries, LLC
 f. W.R. Meadows, Inc.
 g. Substitutions: As specified in Section 016000 - Product Requirements.

2. Description: Clear polyethylene film or Fabric-reinforced plastic film.
3. Comply with ASTM E1745, Class A.
4. Thickness: 6 mils.
5. Type: As recommended for below-grade application.
6. Joint Tape: As recommended by manufacturer.

C. Non-shrink Grout:

1. Manufacturers:
 a. CGM, Incorporated.
b. Euclid Chemical Company.
c. Laticrete International, Inc.
d. QUIKRETE.
e. Sika Corporation.
f. Substitutions: As specified in Section 016000 - Product Requirements.

2. Description: Premixed compound consisting of non-metallic aggregate, cement, and water-reducing and plasticizing agents.
4. Minimum Compressive Strength: 2,400 psi in 48 hours and 7,000 psi in 28 days.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Section 017000 - Execution and Closeout Requirements: Requirements for installation examination.

B. Verify requirements for concrete cover over reinforcement.

C. Verify that anchors, seats, plates, reinforcement, and other items to be cast into concrete are accurately placed, positioned securely, and will not interfere with placing concrete.

3.2 PREPARATION

A. Section 017000 - Execution and Closeout Requirements: Requirements for installation preparation.

B. Previously Placed Concrete:

1. Prepare previously placed concrete by cleaning with steel brush and applying bonding agent.
2. Remove laitance, coatings, and unsound materials.

C. In locations where new concrete is dowelled to existing work, drill holes in existing concrete, insert steel dowels, and pack solid with non-shrink grout.

D. Remove debris and ice from formwork, reinforcement, and concrete substrates.

E. Remove water from areas receiving concrete before concrete is placed.

3.3 INSTALLATION

A. Placing Concrete:

1. Place concrete according to ACI 301 and ACI 318.
2. Notify testing laboratory and Architect/Engineer minimum 24 hours prior to commencement of operations.
3. Ensure that reinforcement, inserts, embedded parts, formed expansion and contraction joints are not disturbed during concrete placement.
4. Install vapor retarder under interior slabs on grade according to ASTM E1643.
5. Lap joints minimum 6 inches and seal watertight by adhesive applied between overlapping edges and ends.
6. Repairs:
 a. Repair vapor retarder damaged during placement of concrete reinforcement.
 b. Using vapor retarder material, lap over damaged areas minimum 6 inches and seal watertight.
7. Joint Filler:
 a. Separate slabs on grade from vertical surfaces with 1/2-inch-thick joint filler.
 b. Place joint filler in floor slab; set top to required elevations; secure to resist movement by wet concrete.
 c. Extend joint filler from bottom of slab to within 1/2 inch of finished slab surface.
8. Deposit concrete at final position, preventing segregation of mix.
9. Place concrete in continuous operation for each panel or section as determined by predetermined joints.
11. Maintain records of concrete placement, including date, location, quantity, air temperature, and test samples taken.
12. Place concrete continuously between predetermined expansion, control, and construction joints.
13. Do not interrupt successive placement and do not permit cold joints to occur.
14. Place floor slabs in indicated saw-cut pattern.
15. Saw-Cut Joints:
 a. Saw-cut joints within 12 hours after placing.
 b. Use 3/16 inch thick blade.
 c. Cut into 1/4 depth of slab thickness.
16. Screeding:
 a. Screed floors and slabs on grade level.
 b. Surface Flatness: maximum 1/8 inch in 10 feet.

B. Separate Floor Toppings:
1. Prior to placing floor topping, remove deleterious material and broom and vacuum clean.
2. Place required dividers, edge strips, reinforcement and other items to be cast in concrete.
3. Place concrete floor toppings to required lines and levels.
4. Place topping in checkerboard panels, with dimension not to exceed 20 feet.
5. Screed toppings level, maintaining surface flatness of maximum 1/8 inch in 10 feet.

C. Concrete Finishing:

The Club At Woodbridge
INDOOR ICE RINK
CAST-IN-PLACE CONCRETE

T&M Project No.: WOOD-00510

033000 - 9
1. Provide formed concrete surfaces to be left exposed with smooth-rubbed finish.
2. Finish concrete floor surfaces according to ACI 301 and ACI 318.
3. Wood float surfaces receiving quarry tile, ceramic tile and terrazzo with full-bed setting system.
4. Steel trowel surfaces receiving carpeting, resilient flooring, seamless flooring, thin-set quarry tile and thin-set ceramic tile.
5. Steel trowel surfaces indicated to be exposed.
6. In areas with floor drains, maintain floor elevation at walls and pitch surfaces uniformly to drains as indicated on Drawings.

D. Curing and Protection:

1. Immediately after placement, protect concrete from premature drying, excessively hot or cold temperatures, and mechanical injury.
2. Protect concrete footings from freezing for minimum of five days.
3. Maintain concrete with minimal moisture loss at relatively constant temperature for period as necessary for hydration of cement and hardening of concrete.
4. Cure floor surfaces according to ACI 301 and ACI 318.
5. Ponding: Maintain 100 percent coverage of water over floor slab areas continuously for seven days.
6. Spray water over floor slab areas and maintain wetness for seven days.

3.4 FIELD QUALITY CONTROL

A. Section 014000 - Quality Requirements: Requirements for inspecting and testing.
B. Inspection and Testing: Performed by Owner’s testing laboratory according to ACI 318.
C. Provide unrestricted access to Work and cooperate with appointed testing and inspection firm.
D. Submit proposed mix design of each class of concrete to inspection and testing firm for review prior to commencement of Work.
E. Concrete Inspections:

1. Continuous Placement Inspection: Inspect for proper installation procedures.
2. Periodic Curing Inspection: Inspect for specified curing temperature and procedures.
F. Strength Test Samples:

2. Cylinder Molding and Curing Procedures:
3. Sample concrete and make one set of four cylinders for every 75 cu. yd. or less of each class of concrete placed each day, and for every 5,000 sq. ft. of surface area for slabs and walls.

The Club At Woodbridge
INDOOR ICE RINK
CAST-IN-PLACE CONCRETE

T&M Project No.: WOOD-00510

033000 - 10
4. If volume of concrete for a class of concrete would provide less than five sets of cylinders, take samples from five randomly selected batches, or from every batch if less than five batches are used.
5. Make one additional cylinder during cold weather concreting and field cure.

G. Field Testing:

4. Compressive Strength Concrete:
 a. Measure slump and temperature for each sample.
 b. Measure air content in air-entrained concrete for each sample.

H. Cylinder Compressive Strength Testing:

2. Test Acceptance: According to ACI 318.
3. Test two cylinders at seven days.
4. Test two cylinders at 28 days.
5. Dispose of remaining cylinders if testing is not required.

I. Core Compressive Strength Testing:

2. Test Acceptance: According to ACI 318.
3. Drill three cores for each failed strength test from failed concrete.

J. Patching:

1. Allow Architect/Engineer to inspect concrete surfaces immediately upon removal of forms.
2. Honeycombing or Embedded Debris in Concrete:
 a. Not acceptable.
3. Patch imperfections according to ACI 318.

K. Defective Concrete:

1. Description: Concrete not conforming to required lines, details, dimensions, tolerances, or specified requirements.
2. Repair or replacement of defective concrete will be determined by Architect/Engineer.
3. Do not patch, fill, touch up, repair, or replace exposed concrete except upon express direction of Architect/Engineer for each individual area.

END OF SECTION 033000
SECTION 036000 - GROUTING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Portland cement grout.
 2. Rapid curing epoxy grout.
 3. Non-shrink cementitious grout.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Grout:
 2. Basis of Payment: Includes preparation of substrate, grout, placement, consolidation, troweling and curing.

1.3 REFERENCES

A. American Concrete Institute:
 1. ACI 301 - Specifications for Structural Concrete.
 2. ACI 318 - Building Code Requirements for Structural Concrete.

B. American Society of Testing and Materials:
 2. ASTM C40 - Test Method for Organic Impurities in Fine Aggregates for Concrete.
 8. ASTM C827 - Test Method for Change in Height at Early Ages of Cylindrical Specimens from Cementitious Mixtures.

C. U. S. Army Corps of Engineers Concrete Research Division (CRD):
 1. CRD C621 - Non-Shrink Grout.

1.4 SUBMITTALS

A. Product Data: Submit product data on grout.
B. Manufacturer's Installation Instructions: Submit manufacturer’s instructions for mixing, handling, surface preparation and placing epoxy type and non-shrink type grouts.

C. Manufacturer's Certificate: Certify Products meet or exceed specified requirements.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Perform Work in accordance with NJDOT Standard Specification for Road and Bridge Construction, as currently amended.

B. Maintain one copy of each document on site.

C. All grout used for concrete pipes and drainage structures shall comply to NJDOT Standard Specifications for Road and Bridge Construction, Section 903.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver grout in manufacturer's unopened containers with proper labels intact.

B. Store grout in a dry shelter, protect from moisture.

1.8 ENVIRONMENTAL REQUIREMENTS

A. Maintain minimum temperature of 40 degrees F before, during, and after grouting, until grout has set.

PART 2 – PRODUCTS

2.1 PORTLAND CEMENT GROUT MATERIALS

A. Portland Cement: ASTM C150, Type I and II.

B. Water:
 1. Potable; containing no impurities, suspended particles, algae or dissolved natural salts in quantities capable of causing:
 b. Volume change increasing shrinkage cracking.
 c. Efflorescence.
 d. Excess air entraining.

C. Fine Aggregate:
 1. Washed natural sand.
 2. Gradation in accordance with ASTM C33 and represented by smooth granulometric curve within required limits.
 3. Free from injurious amounts of organic impurities as determined by ASTM C40.
D. Mix:
 1. Portland cement, sand and water. Do not use ferrous aggregate or staining ingredients in grout mixes.

2.2 RAPID CURING EPOXY GROUT

A. Furnish materials in accordance with NJDOT Standards for Road and Bridge Construction as currently amended.

B. Rapid Curing Epoxy Grout: High strength, three component epoxy grout formulated with thermosetting resins and inert fillers. Rapid-curing, high adhesion, and resistant to ordinary chemicals, acids and alkalies.

<table>
<thead>
<tr>
<th>Property</th>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength</td>
<td>ASTM C579</td>
<td>12,000 psi at 7 days</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM C307</td>
<td>2,000 psi minimum</td>
</tr>
<tr>
<td>Coefficient of Expansion</td>
<td>ASTM C531</td>
<td>30x10-6 in per degree F</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>ASTM C827</td>
<td>None</td>
</tr>
</tbody>
</table>

2.3 NON-SHRINK CEMENTITIOUS GROUT

A. Furnish materials in accordance with NJDOT Standards for Road and Bridge Construction, as currently amended

B. Non-shrink Cementitious Grout: Pre-mixed ready for use formulation requiring only addition of water; non-shrink, non-corrosive, non-metallic, non-gas forming, no chlorides.

C. Properties: Certified to maintain initial placement volume or expand after set and meet the following minimum properties when tested in accordance with CRD-C621, for Type D non-shrink grout:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test</th>
<th>Time</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Time</td>
<td>ASTM C191</td>
<td>Initial</td>
<td>2 hours (Approx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final</td>
<td>3 hours (Approx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.10% - 0.4% Maximum</td>
</tr>
<tr>
<td>Expansion</td>
<td>CRD-C621</td>
<td>1 day</td>
<td>4,000 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 days</td>
<td>7,000 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 days</td>
<td>10,000 psi to 10,800 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>CRD-C621</td>
<td>1 day</td>
<td>4,000 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 days</td>
<td>7,000 psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 days</td>
<td>10,000 psi to 10,800 psi</td>
</tr>
</tbody>
</table>

2.4 FORMWORK

A. Refer to Section 03 10 00 for formwork requirements.

2.5 CURING

A. Prevent rapid loss of water from grout during first 48 hours by use of approved membrane curing compound or with use of wet burlap method.
PART 3 – EXECUTION

3.1 EXAMINATION
A. Verify areas to receive grout.

3.2 PREPARATION
A. Remove defective concrete, laitance, dirt, oil, grease and other foreign material from concrete surfaces by brushing, hammering, chipping or other similar means until sound, clean concrete surface is achieved.
B. Rough concrete lightly, but not enough to interfere with placement of grout.
C. Remove foreign materials from metal surfaces in contact with grout.
D. Align, level and maintain final positioning of components to be grouted.
E. Saturate concrete surfaces with clean water; remove excess water, leave none standing.

3.3 INSTALLATION - FORMWORK
A. Construct leakproof forms anchored and shored to withstand grout pressures.
B. Install formwork with clearances to permit proper placement of grout.

3.4 MIXING
A. Portland Cement Grout:
 1. Use proportions of 2 parts sand and 1 part cement, measured by volume.
 2. Prepare grout with water to obtain consistency to permit placing and packing.
 3. Mix water and grout in two steps; pre-mix using approximately 2/3 of water; after partial mixing, add remaining water to bring mix to desired placement consistency and continue mixing 2 to 3 minutes.
 4. Mix only quantities of grout capable of being placed within 30 minutes after mixing.
 5. Do not add additional water after grout has been mixed.
 6. Capable of developing minimum compressive strength of 2400 psi in 48 hours and 7000 psi in 28 days.

 OR

B. Mix and prepare rapid curing epoxy grout in accordance with manufacturer's instructions.
 1. Capable of developing minimum compressive strength of 2400 psi in 48 hours and 7000 psi in 28 days.

 OR

C. Mix and prepare non-shrink cementitious grout in accordance with manufacturer's instructions.
1. Capable of developing minimum compressive strength of 2400psi in 48 hours and 7000 psi in 28 days.

D. Mix grout components in proximity to work area and transport mixture quickly and in manner not permitting segregation of materials.

3.5 PLACING GROUT

A. Place grout material quickly and continuously.

B. Do not use pneumatic-pressure or dry-packing methods.

C. Apply grout from one side only to avoid entrapping air.

D. Do not vibrate placed grout mixture, or permit placement when area is being vibrated by nearby equipment.

E. Thoroughly compact final installation and eliminate air pockets.

F. Do not remove leveling shims for at least 48 hours after grout has been placed.

3.6 CURING

A. Immediately after placement, protect grout from premature drying, excessively hot or cold temperatures, and mechanical injury.

B. After grout has attained its initial set, keep damp for minimum of 3 days.

3.7 FIELD QUALITY CONTROL

A. Field inspection and testing will be performed in accordance with ACI 301 and ACI 318

B. Submit proposed mix design of each class of grout to inspection and testing firm for review prior to commencement of Work.

C. Tests of grout components may be performed to ensure conformance with specified requirements.

END OF SECTION
SECTION 052100 - STEEL JOIST FRAMING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Open-web steel joists with bridging, attached seats, and anchors.
 2. Loose bearing plates and anchor bolts for site placement.
 3. Framed roof openings greater than 18 inches.

B. Related Requirements:
 1. Section 053123 - Steel Roof Decking: Support framing for openings less than 18 inches in decking.

1.2 REFERENCE STANDARDS

A. American Institute of Steel Construction:

B. American Welding Society:
 1. AWS D1.1/D1.1M - Structural Welding Code - Steel.

C. ASTM International:

D. South Coast Air Quality Management District:

1. SCAQMD Rule 1168 - Adhesive and Sealant Applications.

E. SSPC: The Society for Protective Coatings:

1. SSPC SP 2 - Hand Tool Cleaning.
2. SSPC SP 10 - Joint Surface Preparation Standard: Near-White Metal Blast Cleaning.
3. SSPC Paint 15 - Steel Joist Shop Primer/Metal Building Primer.
4. SSPC Paint 20 - Zinc-Rich Coating (Type I - Inorganic and Type II - Organic).

F. Steel Joist Institute:

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Requirements for submittals.

B. Shop Drawings:

1. Indicate:
 a. Standard designations, configuration, sizes, spacing, locations of joists, seat depth and joist leg extensions.
 b. Joist coding, bridging, connections and attachments.
 c. Cambers.
 d. Connection details.
 e. Loading diagram.

C. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.

D. Welder Certificates: Certify welders and welding procedures employed on Work, verifying AWS qualification within previous 12 months.

E. Delegated Design Submittals: Submit signed and sealed Shop Drawings with design calculations and assumptions for design of connections not detailed on Drawings.

F. Manufacturer Instructions: Submit detailed instructions on installation requirements, including storage and handling procedures.

G. Source Quality-Control Submittals: Indicate results of shop tests and inspections.

H. Field Quality-Control Submittals: Indicate results of Contractor-furnished tests and inspections.

I. Qualifications Statements:
1. Submit qualifications for manufacturer, fabricator, erector, and licensed professional.
2. Welders: Qualify procedures and personnel according to AWS D1.1/D1.1M.

1.4 QUALITY ASSURANCE
A. Comply with the following:
 1. SJI K-1.1, including headers and other supplementary framing.
 2. AISC 341.
B. Perform Work according to Steel Joist Institute standards.

1.5 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years' documented experience.
B. Fabricator: Company specializing in fabricating products specified in this Section with minimum three years' documented experience.
C. Erector: Company specializing in performing Work of this Section with minimum three years' documented experience and approved by fabricator.
D. Welders: AWS qualified within previous 12 months for employed weld types.
E. Licensed Professional: Professional engineer experienced in design of specified Work and licensed in the State of New Jersey.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Section 016000 - Product Requirements: Requirements for transporting, handling, storing, and protecting products.
B. Inspection: Accept materials on Site in manufacturer's original packaging and inspect for damage.
C. Store materials according to manufacturer instructions.
D. Protection:
 1. Protect materials from moisture and dust by storing in clean, dry location remote from construction operations areas.
 2. Provide additional protection according to manufacturer instructions.

1.7 EXISTING CONDITIONS
A. Field Measurements:
1. Verify field measurements prior to fabrication.
2. Indicate field measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers:
 1. Canam Steel Corporation
 2. New Millennium Building Systems, LLC
 4. Vulcraft
 5. Substitutions: As specified in Section 016000 - Product Requirements.

2.2 MATERIALS

A. Open Web Joists Members: SJI Type K.

B. Bolts:
 1. Comply with ASTM A325.
 2. Type:
 a. 3; plain.
 b. Heavy hex; structural.

C. Nuts:
 2. Type: Heavy hex.

D. Washers
 2. Type 3, circular.
 3. Furnish clipped washers if required due to space limitations.

E. Structural Steel for Supplementary Framing and Joist Leg Extensions: Comply with ASTM A36/A36M.

F. Welding Materials:
 1. Comply with AWS D1.1/D1.1M.
 2. Type: As required for materials being welded.

G. Shop Primer: SSPC Paint 15, Type 1, red oxide.
H. Touchup Primer: Match shop primer.

2.3 FABRICATION

A. Furnish bottom and top chord extensions as indicated on Drawings.

B. End Bearings Resulting from Fabrication:
 1. On Masonry: 4 inches.

C. Frame special sized openings in joist web framing as detailed.

2.4 FINISHES

A. Prepare joist component surfaces according to SSPC SP 2.

B. Priming:
 1. Shop-prime joists and supplementary framing members.
 2. Do not prime surfaces that will be fireproofed, field welded, or in contact with concrete.

2.5 SOURCE QUALITY CONTROL

A. Section 014000 - Quality Requirements: Requirements for testing, inspection, and analysis.

B. Furnish shop testing and analysis of steel sections.

C. Owner Inspection:
 1. Make completed framing available for inspection at manufacturer's factory prior to packaging for shipment.
 2. Notify Owner at least seven days before inspection is allowed.

D. Owner Witnessing:
 1. Allow witnessing of factory inspections and test at manufacturer's test facility.
 2. Notify Owner at least seven days before inspections and tests are scheduled.

E. Certificate of Compliance:
 1. If manufacturer is approved by authorities having jurisdiction, submit certificate of compliance indicating Work performed at manufacturer's facility conforms to Contract Documents.
 2. Specified shop tests are not required for Work performed by approved manufacturer.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Section 017700 - Execution and Closeout Requirements: Requirements for installation examination.

B. Verify that bearing plates are set to required location and elevation.

C. Verify that bearing surfaces are ready to receive joists.

3.2 ERECTION

A. Erect and bear joists on supports.

B. Allow for erection loads, and install sufficient temporary shoring and bracing to maintain framing safe, plumb, and in alignment.

C. Bearing Plates:
 2. After joist alignment and installation of framing, field weld joist seat to bearing plates.

D. Position and field weld joist chord extensions and wall attachments as detailed.

E. Frame roof openings greater than 12 inches with supplementary framing.

F. Do not permit erection of decking until joists are braced, bridged and secured, or until completion of erection and installation of permanent bridging and bracing.

G. Do not field-cut or alter structural members without approval of Architect/Engineer.

H. After erection, prime welds, abrasions, and surfaces not shop primed.

3.3 TOLERANCES

A. Section 014000 - Quality Requirements: Requirements for tolerances.

B. Maximum Variation from Plumb: 1/4 inch.

C. Maximum Offset from Indicated Alignment: 1/4 inch.

3.4 FIELD QUALITY CONTROL

A. Section 014000 - Quality Requirements: Requirements for inspecting and testing.
B. Field-inspect members, connections, welds, and tightening of high-strength bolts in slip-critical connections.

END OF SECTION 052100
SECTION 053123 - STEEL ROOF DECKING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Steel roof deck and accessories.
 2. Formed steel cant strips, eave strips and valley strips.
 3. Framing for openings up to and including 12 inches.
 4. Bearing plates and angles.

B. Related Sections:
 1. Section 052100 - Steel Joist Framing: Support framing for deck openings.

1.2 REFERENCES

A. American Society of Civil Engineers:
 1. ASCE 3 - Standard Practice for the Construction and Inspection of Composite Slabs.

B. ASTM International:
 2. ASTM A653/A653M - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.

C. American Welding Society:
 1. AWS D1.1 - Structural Welding Code - Steel.

D. Green Seal:
 1. GC-03 - Anti-Corrosive Paints.

E. Steel Deck Institute:
 1. SDI 29 - Design Manual for Composite Decks, Form Decks and Roof Decks.

F. SSPC: The Society for Protective Coatings:
 1. SSPC Paint 15 - Steel Joist Shop Paint.
1.3 PERFORMANCE REQUIREMENTS
 A. Design metal deck in accordance with SDI 29 Design Manual.
 B. Design deck to accommodate section modulus of 0.19 in³ and maximum vertical deck deflection of 1/240 or 1 inch.

1.4 SUBMITTALS
 A. Section 013300 - Submittal Procedures: Submittal requirements.
 B. Shop Drawings: Indicate deck plan, support locations, projections, openings and reinforcement, pertinent details, and accessories.
 C. Product Data: Submit deck profile characteristics and dimensions, structural properties, and finishes.
 D. Manufacturer's Installation Instructions: Submit manufacturer's installation instructions.
 E. Manufacturer's Certificates: Certify Products meet or exceed specified requirements.
 F. Welders Certificates: Certify welders employed on the Work, verifying AWS qualification within previous 12 months.

1.5 QUALITY ASSURANCE
 A. Perform Work in accordance with ASCE 3 for composite decks.
 B. Perform Work in accordance with Steel Deck Institute standards.

1.6 QUALIFICATIONS
 A. Installer: Company specializing in performing Work of this section with minimum 3 years documented experience and approved by manufacturer.
 B. Design deck layout, spans, fastening, and joints under direct supervision of Professional Engineer experienced in design of this Work and licensed in the State of New Jersey.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Section 016000 - Product Requirements: Product storage and handling requirements.
 B. Cut plastic wrap to encourage ventilation.
 C. Separate sheets and store deck on dry wood sleepers; slope for positive drainage.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Manufacturers:

1. Canam Steel Corporation
2. Epic Metals Corporation
3. Valley Joist
4. Vulcraft
5. Wheeling Corrugating Company

B. Sheet Steel: ASTM A653, Grade 40 (Fy = 40 ksi) Structural Quality; with G90 galvanized coating.

C. Bearing Plates and Angles: ASTM A36/A36M steel, unfinished.

E. Shop Primer: SSPC Paint 15, Type 1.

F. Touch-Up Primer: Match shop primer.

2.2 ACCESSORIES

A. Flute Closures: Closed cell foam rubber, 1 inch thick; profiled to fit tight to deck.

B. Finish Strips, Butt Strips, Reinforcing Channels: Fabricated of metal of same type and finish as deck.

2.3 FABRICATION

A. Metal Deck: Sheet steel, configured as follows:

3. Minimum Section Properties (per foot width): S= 0.19 in³, Ip = 0.16 in⁴, In = 0.18in⁴.
4. Nominal Height: 1-1/2 inch, fluted profile to SDI WR.
5. Formed Sheet Width: 36 inch.
7. Flute Sides: plain vertical face.

B. Related Deck Accessories: Metal closure strips, butt strips, finish strips, reinforcing channel 20 gage thick galvanized sheet steel; of profile and size as indicated on drawings.

C. Cant Strips: Formed sheet steel, 20 gage thick, 45 degree slope, 3 1/2 inch nominal width and height, flange for attachment.

The Club At Woodbridge
INDOOR ICE RINK
STEEL ROOF DECKING
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Section 013000 - Administrative Requirements: Coordination and project conditions.

3.2 INSTALLATION
 A. Erect metal deck in accordance with SDI Manual.
 B. Bear deck on steel supports with 1-1/2 inch minimum bearing. Align and level.
 C. Fasten deck to steel support members at ends and intermediate supports with fusion welds at 5 welds per 36 inch-wide sheet. Fasten perimeter edges of panels between supports at intervals not exceeding 18 inches on center with 1-1/2 inch long welds.
 D. Weld in accordance with AWS D1.1.
 E. Mechanically fasten male/female side laps between supports at intervals not exceeding 18 inches on center with #10 diameter or larger self-drilling steel screws.
 F. Install 6 inch minimum wide sheet steel cover plates, of same thickness as deck, where deck changes direction. Fusion weld or mechanically attach at 12 inches oc maximum.
 G. Install sheet steel closures and angle flashings to close openings between deck and walls, columns, and openings.
 H. Install single row of foam flute closures above walls and partitions perpendicular to deck flutes.
 I. Place metal cant strips in position and fusion weld or mechanically attach at intervals not to exceed 18 inches on center.
 J. Immediately after welding deck and other metal components in position, coat welds, burned areas, and damaged surface coating, with touch-up prime paint.

3.3 FIELD QUALITY CONTROL
 A. Welding: Inspect welds in accordance with AWS D1.1.

END OF SECTION 053123
SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Formed-steel joist framing and bridging.

B. Related Requirements:
 1. Section 061053 - Miscellaneous wood blocking.
 2. Section 072100 - Thermal Insulation.
 3. Section 092900 - Gypsum Board.
 4. Section 092216 - Non-Structural Metal Framing.

1.2 REFERENCE STANDARDS

A. American Iron and Steel Institute:
 1. AISI S213: North American Standard for Cold-Formed Steel Framing - Lateral Design.
 2. AISI S214: North American Standard for Cold-Formed Steel Framing - Truss Design.
 3. AISI General - Standard for Cold-Formed Steel Framing - General Provisions.
 4. AISI Header - Standard for Cold-Formed Steel Framing - Header Design.
 5. AISI NAS - North American Specification for the Design of Cold-Formed Steel Structural Members.

B. American Welding Society:
 1. AWS D1.1 - Structural Welding Code - Steel.
 2. AWS D1.3 - Structural Welding Code - Sheet Steel.

C. ASTM International:
 2. ASTM A1003 - Standard Specification for Steel Sheet, Carbon, Metallic- and Nonmetallic-Coated for Cold-Formed Framing Members.
 3. ASTM C955 - Standard Specification for Load-Bearing (Transverse and Axial) Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Application of Gypsum Panel Products and Metal Plaster Bases.

D. Green Seal:
 1. GC-03 - Anti-Corrosive Paints.

E. National Association of Architectural Metal Manufacturers:
 The Club At Woodbridge
 INDOOR ICE RINK
 COLD-FORMED METAL FRAMING

T&M Project No.: WOOD-00510

F. SSPC: The Society for Protective Coatings:
 1. SSPC Paint 15 - Steel Joist Shop Primer/Metal Building Primer.
 2. SSPC Paint 20 - Zinc-Rich Coating (Type I - Inorganic and Type II - Organic).

G. Steel Stud Manufacturers Association:
 1. SSMA - Product Technical Guide.

1.3 COORDINATION
 A. Section 01 3100 – Project Management Coordination.

1.4 SUBMITTALS
 A. Section 013300 - Submittal Procedures: Requirements for submittals.
 B. Product Data: Submit data on standard framing members, including but not limited to, profiles, gross section properties and effective section properties; describe materials and finish, product criteria and limitations.

 C. Shop Drawings:
 1. Indicate component details, framed openings, bearing, anchorage, loading, welds, type and location of fasteners, and accessories or items required of related Work.
 2. Indicate floor joist/ceiling joist layout.

 D. Manufacturer's Installation Instructions: Submit special procedures, perimeter conditions requiring special attention and standard detailing requirements.

 E. Manufacturer's Certificate: Certify that products meet or exceed specified requirements on the contract documents.

 F. Mill Certifications: Submit mill certifications for steel delivered to Site. Certify steel bare metal thickness of 1 mil, yield strength, tensile strength, total elongation in 2-inch or 8-inch gauge length, chemical analysis, and galvanized coating thickness.

 G. Welders' Certificates: Certify welders and welding procedures employed on the Work, verifying AWS qualification within previous 12 months.

 H. Qualifications Statements:
 1. Submit qualifications for manufacturer, installer, and licensed professional.
 2. Submit manufacturer's approval of installer.
1.5 QUALITY ASSURANCE

A. Calculate structural properties of framing members according to AISI NAS.

B. Furnish framing materials according to SSMA - Product Technical Guide.

C. Perform Work according to following:
 1. Framing: AISI General and AISI NAS.

D. Form, fabricate, provide, and connect components according to NAAMM ML/SFA 540 - Lightweight Steel Framing Systems Manual.

E. Perform Work according to AISI standards.

1.6 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years' documented experience.

B. Installer: Company specializing in performing Work of this Section with minimum three years' documented experience and approved by manufacturer.

C. Welders and Welding Procedures: AWS D.1 qualified within previous 12 months for employed weld types.

D. Licensed Professional: Professional engineer experienced in design of specified Work and licensed in the State of New Jersey.

PART 2 - PRODUCTS

2.1 COLD-FORMED METAL FRAMING

A. Manufacturers:
 1. ClarkDietrich
 2. MarinoWARE
 3. MBA Building Supplies
 4. The Steel Network, Inc.
 5. Substitutions: Specified in Section 016000 - Product Requirements.

B. Description: ASTM C955.

2.2 FRAMING MATERIALS

A. Steel Sheet:
1. ASTM A1003.
2. Structural grade, Type H, metallic coated.
3. Grade: As indicated on contract documents.

B. Joists:
 1. Steel sheet, formed to open-box shape, solid web.
 2. Size: As indicated on contract documents.

C. Track:
 1. Steel sheet, formed to channel shape.
 2. Width: Same as studs, tight fit.
 3. Thickness: As indicated on contract documents.
 4. Type: Solid web.

2.3 FASTENERS
 B. Welding: According to AWS D1.1 and AWS D1.3.

2.4 FABRICATION
 A. Fabricate assemblies of formed sections of required sizes and profiles.
 B. Fit, reinforce, and brace framing members to suit design requirements.
 C. Fit and assemble in largest practical sections for delivery to Site, ready for installation.

2.5 FINISHES
 A. Touchup Primer for Galvanized Surfaces:
 1. SSPC Paint 20.
 2. ASTM A780.

2.6 ACCESSORIES
 A. Bracing, Furring, and Bridging: Formed sheet steel, as indicated on contract documents.
 B. Plates, Gussets, and Clips: Formed sheet steel, as indicated on contract documents.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Section 017700 - Execution and Closeout Requirements: Requirements for installation examination.

B. Verify that substrate surfaces and building framing components are ready to receive Work.

C. Verify that rough-in utilities are in proper location.

3.2 ERECTION

A. Joists:

1. Install framing components.
2. Make provisions for erection stresses.
3. Install temporary bracing to maintain alignment until permanent bracing and attachments are installed.
4. Place joists at spacing indicated on the contract documents and not more than 2 inches from abutting walls.
5. Connect joists to supports using fastener method.
6. Set floor/ceiling joists parallel and level, using lateral bracing and bridging.
7. Locate joist end bearing directly over load-bearing studs, or install load-distributing member to top of stud track.
8. Touch up field welds and damaged metallic-coatings surfaces with primer to match shop coating.

3.3 TOLERANCES

A. Section 014000 - Quality Requirements: Requirements for tolerances.

B. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:

1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

END OF SECTION 054000
SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

The Club at Woodbridge
INDOOR ICE RINK

SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
T&M Project No: WOOD-00510 210517-1
C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

3.2 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves or Galvanized-steel wall sleeves.
b. Piping NPS 6 and Larger: Cast-iron wall sleeves, Galvanized-steel wall sleeves or Galvanized-steel-pipe sleeves.

2. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves, Stack-sleeve fittings or Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves or Stack-sleeve fittings.

3. Interior Partitions:

END OF SECTION 210517
SECTION 210518 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.
 h. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 210518
SECTION 210523 - GENERAL-DUTY VALVES FOR WATER-BASED FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Two-piece ball valves with indicators.
2. Bronze butterfly valves with indicators.
3. Iron butterfly valves with indicators.
4. Check valves.
5. Bronze OS&Y gate valves.
7. NRS gate valves.
8. Indicator posts.
9. Trim and drain valves.

1.3 DEFINITIONS

A. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
B. NRS: Nonrising stem.
C. OS&Y: Outside screw and yoke.
D. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, and weld ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:

 1. Main Level: HAMV - Fire Main Equipment.
 a. Level 1: HCBZ - Indicator Posts, Gate Valve.
 b. Level 1: HLOT - Valves.
 1) Level 3: HLUG - Ball Valves, System Control.
 2) Level 3: HLXS - Butterfly Valves.
 3) Level 3: HMER - Check Valves.
 4) Level 3: HMRZ - Gate Valves.

 a. Level 1: VQGU - Valves, Trim and Drain.

B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:

 1. Automated Sprinkler Systems:
 a. Indicator posts.
 b. Valves.
 1) Gate valves.
 2) Check valves.
 a) Single check valves.
3) **Miscellaneous valves.**

C. **Source Limitations for Valves:** Obtain valves for each valve type from single manufacturer.

D. **ASME Compliance:**
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B1.20.1 for threads for threaded-end valves.
 3. ASME B31.9 for building services piping valves.

E. **AWWA Compliance:** Comply with AWWA C606 for grooved-end connections.

F. **NFPA Compliance:** Comply with NFPA 24 for valves.

G. **Valve Pressure Ratings:** Not less than the minimum pressure rating indicated or higher as required by system pressures.

H. **Valve Sizes:** Same as upstream piping unless otherwise indicated.

I. **Valve Actuator Types:**
 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 2. Handwheel: For other than quarter-turn trim and drain valves.
 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 **TWO-PIECE BALL VALVES WITH INDICATORS**

A. **Description:**
 1. UL 1091, except with ball instead of disc and FM Global standard for indicating valves (butterfly or ball type), Class Number 1112.
 4. Body Material: Forged brass or bronze.
 5. Port Size: Full or standard.
 6. Seats: PTFE.
 7. Stem: Bronze or stainless steel.
 8. Ball: Chrome-plated brass.
 9. Actuator: Worm gear or traveling nut.
 10. Supervisory Switch: Internal or external.
 11. End Connections for Valves NPS 1 through NPS 2: Threaded ends.

2.3 **BRONZE BUTTERFLY VALVES WITH INDICATORS**

A. **Description:**
1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 1112.
4. Seat Material: EPDM.
5. Stem Material: Bronze or stainless steel.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.

2.4 IRON BUTTERFLY VALVES WITH INDICATORS

A. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
4. Seat Material: EPDM.
5. Stem: Stainless steel.
6. Disc: Ductile iron, nickel plated and EPDM or SBR coated.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.

2.5 CHECK VALVES

A. Description:

3. Type: Single swing check.
4. Body Material: Cast iron, ductile iron, or bronze.
5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
6. Clapper Seat: Brass, bronze, or stainless steel.
7. Hinge Shaft: Bronze or stainless steel.

2.6 BRONZE OS&Y GATE VALVES

A. Description:
3. Body and Bonnet Material: Bronze or brass.
4. Wedge: One-piece bronze or brass.
5. Wedge Seat: Bronze.
6. Stem: Bronze or brass.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.7 IRON OS&Y GATE VALVES

A. Description:
3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.8 NRS GATE VALVES

A. Description:
3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.9 INDICATOR POSTS

A. Description:
2. Base Barrel Material: Cast or ductile iron.
3. Extension Barrel: Cast or ductile iron.
4. Cap: Cast or ductile iron.

2.10 TRIM AND DRAIN VALVES

A. Ball Valves:

1. Description:
 b. Body Design: Two piece.
 c. Body Material: Forged brass or bronze.
 d. Port size: Full or standard.
 e. Seats: PTFE.
 f. Stem: Bronze or stainless steel.
 g. Ball: Chrome-plated brass.
 h. Actuator: Handlever.
 i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
 j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.

B. Angle Valves:

1. Description:
 b. Body Material: Brass or bronze.
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron, bronze, or aluminum.

C. Globe Valves:

1. Description:
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc Holder and Nut: Bronze.
 f. Disc Seat: Nitrile.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

A. Comply with requirements in the following Sections for specific valve installation requirements and applications:

1. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.
2. Section 211316 "Dry-Pipe Sprinkler Systems" for application of valves in dry-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the pipe center.

F. Install valves in position to allow full stem movement.

G. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are
installed. Install permanent identification signs indicating the portion of system controlled by each valve.

H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

I. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION 210523
SECTION 210553 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Warning signs and labels.
2. Pipe labels.
3. Stencils.
4. Valve tags.
5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg. F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: Size letters according to ASME A13.1 for piping.

E. Pipe-Label Colors:

1. Background Color: Safety Red.

2.3 STENCILS

A. Stencils for Piping:

1. Lettering Size: Size letters according to ASME A13.1 for piping.
2. Stencil Material: Fiberboard or metal.
3. Stencil Paint: Exterior, gloss, alkyd enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
4. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
2.4 VALVE TAGS

A. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032 inch or [anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
2. Fasteners: Brass wire-link chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Stenciled Pipe-Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

B. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:
 a. Wet-Pipe Sprinkler System: 2 inches, round.
 b. Dry-Pipe Sprinkler System: 2 inches, round.
3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 210553
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Specialty valves.
 5. Control panels.
 6. Pressure gages.
B. Related Requirements:
 1. Section 230523 "General-Duty Valves for Water-Based Fire-Suppression Piping" for ball, butterfly, check, gate, post-indicator, and trim and drain valves.

1.3 DEFINITIONS
A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For wet-pipe sprinkler systems.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.
C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Domestic water piping.
2. HVAC ductwork.
3. HVAC hydronic piping.
4. Sewer and vent piping.
5. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Fire alarm devices.

B. Qualification Data: For qualified Installer and professional engineer.

C. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations.

D. Welding certificates.

E. Fire-hydrant flow test report.

F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

G. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of
sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.9 FIELD CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:

1. Notify Owner no fewer than three days in advance of proposed interruption of sprinkler service.
2. Do not proceed with interruption of sprinkler service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. Delegated Design: Engage a qualified professional engineer to design wet-pipe sprinkler systems.

 1. Conduct fire-hydrant flow test and record the following:

 a. Date:
 b. Time:
c. Performed by:
d. Location of Residual Fire Hydrant R:
e. Location of Flow Fire Hydrant F:
f. Static Pressure at Residual Fire Hydrant R:
g. Measured Flow at Flow Fire Hydrant F:
h. Residual Pressure at Residual Fire Hydrant R:

2. Sprinkler system design shall be approved by authorities having jurisdiction.
 a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 b. Sprinkler Occupancy Hazard Classifications:
 1) Building Service Areas: Ordinary Hazard, Group 1.
 2) Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 3) General Storage Areas: Ordinary Hazard, Group 1.
 4) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 5) Office and Public Areas: Light Hazard.
 6) Restaurant Service Areas: Ordinary Hazard, Group 1.

3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 d. Special Occupancy Hazard: As determined by authorities having jurisdiction.

4. Maximum Protection Area per Sprinkler: According to UL listing.
5. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Electrical Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

2.2 STEEL PIPE AND FITTINGS

A. Standard-Weight, Galvanized and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

B. Schedule 30, Galvanized and Black Steel Pipe: ASTM A 135/A 135M; ASTM A 795/A 795M, Type E; or ASME B36.10M wrought steel, with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.
C. Schedule 10, Black-Steel Pipe: ASTM A 135/A 135M or ASTM A 795/A 795M, Schedule 10, plain end.

E. Galvanized and Uncoated Steel Couplings: ASTM A 865/A 865M, threaded.

G. Malleable- or Ductile-Iron Unions: UL 860.

I. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick, ASME B16.21, nonmetallic and asbestos free or EPDM rubber gasket.
 b. Class 150 and Class 300, Ductile-Iron or Steel, Raised-Face Flanges: Ring-type gaskets.
 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.

K. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Pressure Rating: 175-psig minimum.
 2. Galvanized or Painted Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting, with dimensions matching steel pipe.
 3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating:

The Club at Woodbridge
INDOOR ICE RINK
WET-PIPE SPRINKLER SYSTEMS
T&M Project No: WOOD-00510
C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Flanged or grooved.

F. Alarm Valves:

2. Design: For horizontal or vertical installation.
3. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
4. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
5. Drip Cup Assembly: Pipe drain with check valve to main drain piping.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Automatic (Ball Drip) Drain Valves:

3. Type: Automatic draining, ball check.
5. End Connections: Threaded.

2.4 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:

4. Type: Mechanical-tee and -cross fittings.
5. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
6. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
7. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

3. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded or grooved.
C. Branch Line Testers:
 4. Size: Same as connected piping.
 5. Inlet: Threaded.
 6. Drain Outlet: Threaded and capped.
 7. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:
 3. Body Material: Cast- or ductile-iron housing with sight glass.
 4. Size: Same as connected piping.
 5. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:
 4. Size: Same as connected piping.
 5. Length: Adjustable.
 6. Inlet and Outlet: Threaded.

F. Flexible Sprinkler Hose Fittings:
 2. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
 4. Size: Same as connected piping, for sprinkler.

2.5 SPRINKLERS

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating for Residential Sprinklers: 175-psig maximum.

C. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

D. Automatic Sprinklers with Heat-Responsive Element:
 1. Nonresidential Applications: UL 199.
2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

E. Sprinkler Finishes: Chrome plated, bronze and painted.

F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.

1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:

2. Type: Wire cage with fastening device for attaching to sprinkler.

2.6 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Motor-Operated Alarm:

2. Type: Mechanically operated, with Pelton wheel.
3. Alarm Gong: Cast aluminum with red-enamel factory finish.
4. Size: 8-1/2-inches diameter.
5. Components: Shaft length, bearings, and sleeve to suit wall construction.
7. Outlet: NPS 1 drain connection.

C. Electrically Operated Alarm Bell:

2. Type: Vibrating, metal alarm bell.
3. Size: 8-inch minimum diameter.
5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Water-Flow Indicators:

3. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-
adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
4. Type: Paddle operated.
6. Design Installation: Horizontal or vertical.

E. Pressure Switches:
2. Type: Electrically supervised water-flow switch with retard feature.
4. Design Operation: Rising pressure signals water flow.

F. Valve Supervisory Switches:
2. Type: Electrically supervised.
4. Design: Signals that controlled valve is in other than fully open position.
5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 PRESSURE GAGES
A. Standard: UL 393.
B. Dial Size: 3-1/2- to 4-1/2-inch diameter.
C. Pressure Gage Range: 0- to 250-psig minimum.
D. Label: Include "WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION
A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING
A. Connect sprinkler piping to water-service piping at service entrance to building.
B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 WATER-SUPPLY CONNECTIONS

A. Connect sprinkler piping to building's existing fire water-main.

B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-main piping.

C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.4 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.

C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

J. Install alarm devices in piping systems.
K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."

L. Install pressure gages on riser or feed main, at each sprinkler test connection. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

M. Pressurize and check dry sprinkler system piping and air-pressure maintenance devices.

N. Fill sprinkler system piping with water.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.5 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.

The Club at Woodbridge
INDOOR ICE RINK
WET-PIPE SPRINKLER SYSTEMS

T&M Project No: WOOD-00510 211313-11
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.6 VALVE AND SPECIALTIES INSTALLATION
 A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
 B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
 C. Install check valve in each water-supply connection.
 D. Specialty Valves:
 1. Install valves in vertical position for proper direction of flow, in main supply to system.
 2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.

3.7 SPRINKLER INSTALLATION
 A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
 B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
 C. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.

3.8 IDENTIFICATION
 A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Verify that equipment hose threads are same as local fire department equipment.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 CLEANING

A. Clean dirt and debris from sprinklers.

B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves and pressure-maintenance pumps.

3.12 PIPING SCHEDULE

A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

B. Standard-pressure, wet-pipe sprinkler system, NPS 4 and smaller, shall be one of the following:

1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

C. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:

1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight or Schedule 30, black-steel pipe with plain ends; steel welding fittings; and welded joints.
5. Schedule 10 black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
6. Schedule 10 black-steel pipe with plain ends; welding fittings; and welded joints.

3.13 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:

1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended or Finished Ceilings: concealed sprinklers.
4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers as indicated.
5. Special Applications: Extended-coverage and quick-response sprinklers where indicated.

B. Provide sprinkler types in subparagraphs below with finishes indicated.

1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
2. Upright, Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.
3. Provide cage guards on all sprinklers located below 8’ – 0”, and on all exposed sprinklers in sporting arenas.

END OF SECTION 211313
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
2.2 STACK-SLEEVE FITTINGS
 A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS
 A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS
 A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT
 B. Characteristics: Nonshrink; recommended for interior and exterior applications.
 C. Design Mix: 5000-psi, 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION
 A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
 B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

The Club at Woodbridge
INDOOR ICE RINK
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
T&M Project No: WOOD-00510 220517-2
C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Concrete Slabs above Grade:
 2. Interior Partitions:

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

D. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

2. Escutcheons for Existing Piping:

 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
 h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
i. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated finish.

j. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Filled-system thermometers.
 4. Thermowells.
 5. Dial-type pressure gages.
 7. Test plugs.
 8. Test-plug kits.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

B. Case: Liquid-filled and sealed type(s); stainless steel with 5-inch nominal diameter.
C. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg. F.
D. Connector Type(s): Union joint, adjustable angle with unified-inch screw threads.
E. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
F. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
G. Window: Plain glass.
H. Ring: Stainless steel.
I. Element: Bimetal coil.
J. Pointer: Dark-colored metal.
K. Accuracy: Plus or minus 1 percent of scale range.

2.2 FILLED-SYSTEM THERMOMETERS
A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:
 2. Case: Sealed type, cast aluminum or drawn steel; 6-inch nominal diameter.
 3. Element: Bourdon tube or other type of pressure element.
 4. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.
 5. Dial: Nonreflective aluminum with permanently etched scale markings graduated in deg. F.
 7. Window: Glass.
 9. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device; with ASME B1.1 screw threads.
 10. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
 11. Accuracy: Plus or minus 1 percent of scale range.

2.3 LIQUID-IN-GLASS THERMOMETERS
A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
2. Case: Cast aluminum; 6-inch nominal size.
3. Case Form: Back angle unless otherwise indicated.
4. Tube: Glass with magnifying lens and red organic liquid.
5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg. F.
6. Window: Glass or plastic.
7. Stem: Aluminum or brass and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
2. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
3. Case Form: Adjustable angle unless otherwise indicated.
4. Tube: Glass with magnifying lens and red organic liquid.
5. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg. F.
7. Stem: Aluminum and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
9. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.4 THERMOWELLS

A. Thermowells:
2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
3. Material for Use with Copper Tubing: CNR or CUNI.
4. Material for Use with Steel Piping: CRES.
5. Type: Stepped shank unless straight or tapered shank is indicated.
6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
8. Bore: Diameter required to match thermometer bulb or stem.
9. Insertion Length: Length required to match thermometer bulb or stem.
10. Lagging Extension: Include on thermowells for insulated piping and tubing.
11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.5 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 2. Case: Liquid-filled, Sealed type(s); cast aluminum or drawn steel; 6-inch nominal diameter.
 3. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 4. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 8. Window: Glass.
 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.6 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.7 TEST PLUGS

A. Description: Test-station fitting made for insertion into piping tee fitting.

B. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

C. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.

D. Minimum Pressure and Temperature Rating: 500 psig at 200 deg. F.

E. Core Inserts: EPDM self-sealing rubber.

2.8 TEST-PLUG KITS

A. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
B. Low-Range Thermometer: Small, bimetallic insertion type with 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg. F.

C. High-Range Thermometer: Small, bimetallic insertion type with 2-inch-diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg. F.

D. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch-diameter dial and probe. Dial range shall be at least 0 to 200 psig.

E. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install test plugs in piping tees.

K. Install thermometers in the following locations:

 1. Inlet and outlet of each water heater.
 2. Inlets and outlets of each domestic water heat exchanger.
 3. Inlet and outlet of each domestic hot-water storage tank.

L. Install pressure gages in the following locations:

 1. Building water service entrance into building.
2. Inlet and outlet of each pressure-reducing valve.
3. Suction and discharge of each domestic water pump.

3.2 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING
A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE
A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
 1. Liquid-filled, Sealed, bimetallic-actuated type.
 4. Test plug with EPDM self-sealing rubber inserts.

B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be one of the following:
 1. Liquid-filled, Sealed, bimetallic-actuated type.
 4. Test plug with EPDM self-sealing rubber inserts.

C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be one of the following:
 1. Liquid-filled, Sealed, bimetallic-actuated type.
 4. Test plug with EPDM self-sealing rubber inserts.

D. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE
A. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg. F.
3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be one of the following:
 1. Liquid-filled, Sealed, direct-mounted, metal case.
 2. Test plug with EPDM self-sealing rubber inserts.

B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be one of the following:
 1. Liquid-filled, Sealed direct-mounted, metal case.
 2. Test plug with EPDM self-sealing rubber inserts.

C. Pressure gages at suction and discharge of each domestic water pump shall be one of the following:
 1. Liquid-filled, Sealed direct-mounted, metal case.
 2. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 160 psi.

B. Scale Range for Domestic Water Piping: 0 to 160 psi.

END OF SECTION 220519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If
 outdoor storage is necessary, store valves off the ground in watertight enclosures.
 C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use
 operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

A. One-Piece, Brass Ball Valves:
 1. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Forged brass or bronze.
 e. Ends: Threaded and soldered.
f. Seats: PTFE.
g. Stem: Brass or stainless steel.
h. Ball: Chrome-plated brass or stainless steel.
i. Port: Reduced.

B. Two-Piece, Brass Ball Valves with Full Port and Brass Trim:
1. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

C. Two-Piece, Brass Ball Valves with Full Port and Stainless-Steel Trim:
1. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

D. Three-Piece, Brass Ball Valves with Full Port and Brass Trim:
1. Description:
 b. CWP Rating: 600 psig.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

E. Three-Piece, Brass Ball Valves with Full Port and Stainless-Steel Trim:
1. Description:
 b. CWP Rating: 600 psig.

The Club at Woodbridge
INDOOR ICE RINK
BALL VALVES FOR PLUMBING PIPING
T&M Project No: WOOD-00510 220523.12-3
d. Body Material: Forged brass.
e. Ends: Threaded and soldered.
f. Seats: PTFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel, vented.
i. Port: Full.

2.3 BRONZE BALL VALVES

A. One-Piece, Bronze Ball Valves with Bronze Trim:
 1. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. One-Piece, Bronze Ball Valves with Stainless-Steel Trim:
 1. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Reduced.

C. Two-Piece, Bronze Ball Valves with Full Port, and Bronze or Brass Trim:
 1. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.
D. Two-Piece, Bronze Ball Valves with Full Port and Stainless-Steel Trim:
 1. **Description:**

 a. **Standard:** MSS SP-110.
 b. **CWP Rating:** 600 psig.
 c. **Body Design:** Two piece.
 d. **Body Material:** Bronze.
 e. **Ends:** Threaded or soldered.
 f. **Seats:** PTFE.
 g. **Stem:** Stainless steel.
 h. **Ball:** Stainless steel, vented.
 i. **Port:** Full.

E. Three-Piece, Bronze Ball Valves with Full Port and Bronze or Brass Trim:
 1. **Description:**

 a. **Standard:** MSS SP-110.
 b. **CWP Rating:** 600 psig.
 c. **Body Design:** Three piece.
 d. **Body Material:** Bronze.
 e. **Ends:** Threaded.
 f. **Seats:** PTFE.
 g. **Stem:** Bronze or brass.
 h. **Ball:** Chrome-plated brass.
 i. **Port:** Full.

F. Three-Piece, Bronze Ball Valves with Full Port and Stainless-Steel Trim:
 1. **Description:**

 a. **Standard:** MSS SP-110.
 b. **CWP Rating:** 600 psig.
 c. **Body Design:** Three piece.
 d. **Body Material:** Bronze.
 e. **Ends:** Threaded.
 f. **Seats:** PTFE.
 g. **Stem:** Stainless steel.
 h. **Ball:** Stainless steel, vented.
 i. **Port:** Full.

G. Two-Piece, Safety-Exhaust, Bronze Ball Valves:
 1. **Description:**

 a. **Standard:** MSS SP-110.
 b. **CWP Rating:** 600 psig.
 c. **Body Design:** Two piece.
 d. **Body Material:** Bronze, ASTM B 584, Alloy C844.
 e. **Ends:** Threaded.
 f. **Seats:** PTFE.
 g. **Stem:** Stainless steel.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. One piece, brass ball valve.
3. One piece, bronze ball valve with bronze or stainless-steel trim.
4. Two-piece, brass ball valves with full port and brass or stainless-steel trim.
5. Two-piece, bronze ball valves with full port and bronze, brass or stainless-steel trim.
6. Three-piece, brass ball valves with full port and brass or stainless-steel trim.
7. Three-piece, bronze ball valves with full port and bronze, brass or stainless-steel trim.
8. Two-piece, bronze ball valves with regular port and bronze or stainless-steel trim.

END OF SECTION 220523.12
SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene-diene terpolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.18 for solder joint.
 3. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Class 150, Bronze Swing Check Valves with Bronze Disc:
 1. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

B. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 300 psig.
c. Body Design: Horizontal flow.
e. Ends: Threaded or soldered. See valve schedule articles.
f. Disc: PTFE.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:

 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:

 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves, Class 150, bronze or nonmetallic disc with soldered or threaded end connections.
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Pipe positioning systems.
8. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.
 4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
The Club at Woodbridge
INDOOR ICE RINK
T&M Project No: WOOD-00510 220529-2
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS
A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS
A. MFMA Manufacturer Metal Framing Systems:
1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
3. Channels: Continuous slotted steel channel with inturned lips.
4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
8. Plastic Coating: PVC.
9. Combination Coating: Galvanized and PVC coated.

2.4 THERMAL-HANGER SHIELD INSERTS
A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig, ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.
2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.9 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.
I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
3. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
5. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
6. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
7. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
8. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
9. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
10. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
11. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
12. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
13. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
14. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
15. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
16. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
17. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
18. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg. F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg. F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joint construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.
END OF SECTION 220529
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Warning signs and labels.
 2. Pipe labels.
 3. Stencils.
 4. Valve tags.
 5. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Valve numbering scheme.

D. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg. F.

The Club at Woodbridge
INDOOR ICE RINK
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
T&M Project No: WOOD-00510 220553-1
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.3 STENCILS

A. Stencils for Piping:
 1. Lettering Size: Size letters according to ASME A13.1 for piping.
 2. Stencil Material: Fiberboard or metal.
 3. Stencil Paint: Exterior, gloss, alkyd enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
 4. Identification Paint: Exterior, alkyd enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.
2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

2. Fasteners: Brass wire-link chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.

2. Fasteners: Brass grommet and wire.

3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

1. Domestic Water Piping
 a. Background: Safety green.

2. Sanitary Waste Piping:
 a. Background Color: Safety purple.
3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Hot Water: 2 inches round.

2. Valve-Tag Colors:
 a. Cold Water: Natural or Safety green.
 b. Hot Water: Natural or Safety green.

3. Letter Colors:
 a. Cold Water: Black on Natural Tag or White on Safety Green Tag.
 b. Hot Water: Black on Natural Tag or White on Safety Green Tag.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties, equipment connections, and access panels.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:

1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

The Club at Woodbridge
INDOOR ICE RINK
PLUMBING PIPING INSULATION

T&M Project No: WOOD-00510 220719-1
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.

1. Piping Mockups:
 a. One 10-foot section of NPS 2 straight pipe.
 b. One each of a 90-degree threaded, welded, and flanged elbow.
 c. One each of a threaded, welded, and flanged tee fitting.
 d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 e. Four support hangers including hanger shield and insert.
 f. One threaded strainer and one flanged strainer with removable portion of insulation.
 g. One threaded reducer and one welded reducer.
 h. One pressure temperature tap.
 i. One mechanical coupling.

2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
4. Obtain Architect's approval of mockups before starting insulation application.
5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
7. Demolish and remove mockups when directed.

D. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Block Insulation: ASTM C 552, Type I.
 2. Special-Shaped Insulation: ASTM C 552, Type III.
 3. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

H. Mineral-Fiber, Preformed Pipe Insulation:
 1. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg. F.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

E. PVC Jacket Adhesive: Compatible with PVC jacket.

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg. F.
 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 2. Service Temperature Range: 0 to 180 deg. F.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg. F.
 3. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
3. Service Temperature Range: 0 to plus 180 deg. F.

2.6 SEALANTS

A. Joint Sealants for Cellular-Glass and Phenolic Products:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Permanently flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 100 to plus 300 deg. F.

B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg. F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and pre-sized a minimum of 8 oz./sq. yd.

2.10 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Adhesive: As recommended by jacket material manufacturer.
 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Width: 2 inches.
 2. Thickness: 6 mils.
 3. Adhesion: 64 ounces force/inch in width.
 4. Elongation: 500 percent.
 5. Tensile Strength: 18 lbf/inch in width.

2.12 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.
 2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.

2.13 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:
1. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Provide firestopping and fire-resistive joint sealers.

D. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies to maintain resistance rating.
3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

The Club at Woodbridge
INDOOR ICE RINK
PLUMBING PIPING INSULATION

T&M Project No: WOOD-00510

220719-11
D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two...
locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
1. All Pipe Sizes: Insulation shall be one of the following:

 a. Flexible Elastomeric: 3/4 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC: 20 mils thick.

END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Aboveground domestic water pipes, tubes, and fittings inside buildings.

1.3 ACTION SUBMITTALS
A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
 B. Field quality-control reports.

1.5 FIELD CONDITIONS
A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Owner no fewer than three days in advance of proposed interruption of water service.
 2. Do not interrupt water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

G. Copper Pressure-Seal-Joint Fittings:
 1. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 2. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

H. Copper Push-on-Joint Fittings:
 1. Description:
 a. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B16.22.
 b. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

I. Copper-Tube, Extruded-Tee Connections:
 1. Description: Tee formed in copper tube according to ASTM F 2014.

J. Appurtenances for Grooved-End Copper Tubing:
 1. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75 copper tube or ASTM B 584 bronze castings.
 2. Mechanical Couplings for Grooved-End Copper Tubing:
a. Copper-tube dimensions and design similar to AWWA C606.
b. Ferrous housing sections.
c. EPDM-rubber gaskets suitable for hot and cold water.
d. Bolts and nuts.
e. Minimum Pressure Rating: 300 psig.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:

1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

A. General Requirements:

1. Same size as pipes to be joined.
2. Pressure rating at least equal to pipes to be joined.
3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

C. Dielectric Flanges:
 2. Factory-fabricated, bolted, companion-flange assembly.
 4. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Nonconducting materials for field assembly of companion flanges.
 3. Gasket: Neoprene or phenolic.
 4. Bolt Sleeves: Phenolic or polyethylene.
 5. Washers: Phenolic with steel backing washers.

E. Dielectric Nipples:
 2. Electroplated steel nipple complying with ASTM F 1545.
 3. Pressure Rating and Temperature: 300 psig at 225 deg. F.
 4. End Connections: Male threaded or grooved.
 5. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install shutoff valve immediately upstream of each dielectric fitting.

D. Install domestic water piping level and plumb.

E. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

F. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
G. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

H. Install piping to permit valve servicing.

I. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

J. Install piping free of sags and bends.

K. Install fittings for changes in direction and branch connections.

L. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

M. Install pressure gages on suction and discharge piping for each plumbing pump.

N. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Push-on Joints for Copper Tubing: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

H. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

I. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

J. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

K. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings, nipples or unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

The Club at Woodbridge
INDOOR ICE RINK
DOMESTIC WATER PIPING

T&M Project No: WOOD-00510
1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls.
 Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.

C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.

E. Install supports for vertical copper tubing every 10 feet.

F. Install supports for vertical steel piping every 15 feet.

G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

 The Club at Woodbridge
 INDOOR ICE RINK
 DOMESTIC WATER PIPING
1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least three days before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; copper push-on-joint fittings; and push-on joints.

E. Aboveground domestic water piping, NPS 2-1/2 and Larger, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and brazed or soldered joints.
2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
3. Hard copper tube, ASTM B 88, Type L; grooved-joint, copper-tube appurtenances; and grooved joints.

3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vacuum breakers.
2. Backflow preventers.
4. Temperature-actuated, water mixing valves.
5. Strainers.
6. Hose bibbs.
7. Drain valves.
8. Water-hammer arresters.
10. Flexible connectors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For domestic water piping specialties.

1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 4. Inlet and Outlet Connections: Threaded.
 5. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:
 2. Body: Bronze, nonremovable, with manual drain.
 4. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

A. Intermediate Atmospheric-Vent Backflow Preventers:
 1. Standard: ASSE 1012.
 2. Operation: Continuous-pressure applications.
 5. End Connections: Union, solder joint.

B. Reduced-Pressure-Principle Backflow Preventers:
 2. Operation: Continuous-pressure applications.
 3. Pressure Loss: 12 psig maximum, through middle third of flow range.
4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550.
5. End Connections: Threaded for NPS 2 and smaller.
6. Configuration: Designed for horizontal, straight-through flow.
7. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.

C. Double-Check, Backflow-Prevention Assemblies:

2. Operation: Continuous-pressure applications unless otherwise indicated.
3. Pressure Loss: 5 psig maximum, through middle third of flow range.
4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA.
5. End Connections: Threaded for NPS 2 and smaller.
6. Configuration: Designed for horizontal, straight-through flow.
7. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.

D. Dual-Check-Valve Backflow Preventers:

2. Operation: Continuous-pressure applications.

E. Hose-Connection Backflow Preventers:

2. Operation: Up to 10-foot head of water back pressure.
5. Capacity: At least 3-gpm flow.

F. Backflow-Preventer Test Kits:

1. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.5 BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:

1. Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.
2. Body: Brass or bronze.

The Club at Woodbridge
INDOOR ICE RINK
DOMESTIC WATER PIPING SPECIALTIES
T&M Project No: WOOD-00510 221119-3
3. Size: Same as connected piping, but not larger than NPS 2.
4. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

B. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

C. Memory-Stop Balancing Valves:

2. Pressure Rating: 400-psig minimum CWP.
3. Size: NPS 2 or smaller.
4. Body: Copper alloy.
5. Port: Standard or full port.
7. Seats and Seals: Replaceable.
8. End Connections: Solder joint or threaded.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

3. Type: Thermostatically controlled, water mixing valve.
5. Connections: Threaded union inlets and outlet.
6. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
7. Valve Finish: Chrome plated / Rough bronze.

B. Primary, Thermostatic, Water Mixing Valves:

2. Pressure Rating: 125 psig minimum unless otherwise indicated.
3. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Connections: Threaded union inlets and outlet.
6. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
7. Valve Finish: Rough bronze.
8. Piping Finish: Copper.

C. Individual-Fixture, Water Tempering Valves:

2. Pressure Rating: 125 psig minimum unless otherwise indicated.
5. Inlets and Outlet: Threaded.
6. Finish: Rough or chrome-plated bronze.
7. Tempered-Water Setting: 105 deg. F.
8. Tempered-Water Design Flow Rate: .25 – 2.0 gpm.

2.7 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 4. Screen: Stainless steel with round perforations unless otherwise indicated.
 5. Drain: Pipe plug or factory-installed, hose-end drain valve.

2.8 HOSE BIBBS

A. Hose Bibbs:
 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 9. Finish for Service Areas: Chrome or nickel plated.
 10. Operation for Equipment Rooms: Wheel handle or operating key.
 11. Operation for Service Areas: Operating key.
 12. Include operating key with each operating-key hose bibb.
 13. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.9 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: Class 125.
5. Inlet: NPS 3/4 threaded or solder joint.
6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

C. Stop-and-Waste Drain Valves:
1. Standard: MSS SP-110 for ball valves or MSS SP-80 for gate valves.
2. Pressure Rating: 200-psig minimum CWP or Class 125.
5. Drain: NPS 1/8 side outlet with cap.

2.10 WATER-HAMMER ARRESTERS
A. Water-Hammer Arresters:
2. Type: [Metal bellows] [Copper tube with piston].
3. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.11 FLEXIBLE CONNECTORS
A. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
3. Do not install bypass piping around backflow preventers.

B. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

C. Install water-control valves with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.

D. Install balancing valves in locations where they can easily be adjusted.

E. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

F. Install Y-pattern strainers for water on supply side of each water pressure-reducing valve, solenoid valve and pump.

G. Install water-hammer arresters in water piping according to PDI-WH 201.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 221123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. In-line, centrifugal pumps.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

A. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.

B. Pump Construction:
 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 2. Casing: Bronze, with threaded or companion-flange connections.
 4. Motor: Single speed, unless otherwise indicated.
2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.

 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

A. Thermostats: Electric; adjustable for control of hot-water circulation pump.

 1. Type: Water-immersion temperature sensor, for installation in piping.
 2. Range: 65 to 200 deg F
 3. Operation of Pump: On or off.
 4. Transformer: Provide if required.
 5. Settings: Start pump at 105 deg F and stop pump at 120 deg F.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install in-line, centrifugal pumps with shaft horizontal unless otherwise indicated.

C. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.

 1. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

D. Install thermostats in hot-water return piping.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.

 1. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 220523.12 "Ball Valves
for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties."

D. Connect thermostats to pumps that they control.

3.3 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.3 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working
 pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.7 PROJECT CONDITIONS
 A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied
 by Owner or others unless permitted under the following conditions and then only after
 arranging to provide temporary service according to requirements indicated:

 The Club at Woodbridge
 INDOOR ICE RINK
 SANITARY WASTE AND VENT PIPING
 T&M Project No: WOOD-00510

 221316-1
1. Notify Owner no fewer than three days in advance of proposed interruption of sanitary waste service.
2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. CISPI, Hubless-Piping Couplings:
 2. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
C. Heavy-Duty, Hubless-Piping Couplings:
 2. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
D. Cast-Iron, Hubless-Piping Couplings:
 2. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.
2.4 GALVANIZED-STEEL PIPE AND FITTINGS

A. Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Standard Weight class. Include square-cut-grooved or threaded ends matching joining method.

C. Steel Pipe Pressure Fittings:

D. Cast-Iron Flanges: ASME B16.1, Class 125.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.5 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

B. Dielectric Fittings:
 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
2. **Dielectric Unions:**

a. **Description:**

 1) Standard: ASSE 1079.
 2) Pressure Rating: 150 psig.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

3. **Dielectric Flanges:**

a. **Description:**

 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 150 psig.
 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 **PIPING INSTALLATION**

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.
J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

N. Install steel piping according to applicable plumbing code.

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

P. Plumbing Specialties:
 1. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

F. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

3.3 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

 1. Install transition couplings at joints of piping with small differences in OD's.

B. Dielectric Fittings:

 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 6. Install individual, straight, horizontal piping runs:

 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
8. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

I. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.

J. Install supports for vertical copper tubing every 10 feet.

K. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.
3.5 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect drainage and vent piping to the following:

1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
5. Install horizontal backwater valves with cleanout cover flush with floor or in pit with pit cover flush with floor.
6. Comply with requirements for cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

C. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

D. Make connections according to the following unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger at final connection to each piece of equipment.

3.6 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.7 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
B. Re-inspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for re-inspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.8 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.9 PIPING SCHEDULE

A. Aboveground, soil and waste piping NPS 3 and smaller shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.

B. Aboveground, soil and waste piping NPS 4 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.

C. Aboveground, vent piping all sizes shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 4. Copper DWV tube, copper drainage fittings, and soldered joints.

D. Underground, soil, waste, and vent piping NPS 3 and smaller shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI, cast-iron hubless-piping couplings; and coupled joints.

E. Underground, soil and waste piping NPS 4 and larger shall be any of the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; heavy-duty, cast-iron hubless-piping couplings; coupled joints.
 3. Dissimilar Pipe-Material Couplings: transition couplings

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Cleanouts.
 2. Floor drains.
 3. Through-penetration firestop assemblies.

1.3 DEFINITIONS
 A. HDPE: High-density polyethylene plastic.
 B. PE: Polyethylene plastic.
 C. PP: Polypropylene plastic.
 D. PVC: Polyvinyl chloride plastic.

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
 A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Metal Cleanouts:

1. ASME A112.36.2M, Cast-Iron Cleanouts:
2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
3. Size: Same as connected drainage piping
4. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch or Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Metal Floor Cleanouts:

1. ASME A112.36.2M, Cast-Iron Cleanouts:
2. Standard: ASME A112.36.2M.
3. Size: Same as connected branch.
4. Type: Threaded, adjustable housing.
5. Body or Ferrule: Cast iron.
7. Outlet Connection: Spigot.
8. Closure: Brass plug with tapered threads.
9. Adjustable Housing Material: Cast iron with threads.
11. Frame and Cover Shape: Round.
12. Top Loading Classification: Heavy or Medium Duty, as indicated.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Wall Cleanouts:

1. Standard: ASME A112.36.2M. Include wall access.
2. Size: Same as connected drainage piping.
3. Body: Hub-and-spigot, cast-iron soil pipe T-branch or Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
7. Wall Access: Square, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.
2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

2. Pattern: Floor drain.
4. Seepage Flange: Where required for the application.
5. Anchor Flange: Where required for the application.
7. Outlet: Bottom.
8. Sediment Bucket: Slotted or perforated, where indicated.
9. Top or Strainer Material: Nickel bronze or Stainless steel.
10. Top Shape: Round or Square, as indicated.
11. Top Loading Classification: Heavy Duty or Medium Duty, as indicated.
12. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.

2.3 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

A. Through-Penetration Firestop Assemblies:

2. Size: Same as connected soil, waste, or vent stack.
3. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
5. Special Coating: Corrosion resistant on interior of fittings.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:

1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:

1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
a. NPS 2: 4-inch-minimum water seal.
b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

C. Air-Gap Fittings:

1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.
2. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
3. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Install through-penetration firestop assemblies in conductors and stacks at floor penetrations.

F. Assemble open drain fittings and install with top of hub 1 inch above floor.
G. Install deep-seal traps on floor drains and other waste outlets, if indicated.

H. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

I. Install wood-blocking reinforcement for wall-mounting-type specialties.

J. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Commercial, gas-fired, storage, domestic-water heaters.
 4. Domestic-water heater accessories.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.

The Club at Woodbridge
INDOOR ICE RINK
FUEL-FIRED, DOMESTIC-WATER HEATERS
T&M Project No: WOOD-00510

223400-1
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Product Certificates: For each type of commercial, gas-fired storage, volume and tankless, domestic-water heater, from manufacturer.

C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

D. Source quality-control reports.

E. Field quality-control reports.

F. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.

C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

The Club at Woodbridge
INDOOR ICE RINK
FUEL-FIRED, DOMESTIC-WATER HEATERS
T&M Project No: WOOD-00510 223400-2
1.8 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.9 WARRANTY
 A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

 2. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Gas-Fired, Storage and Volume, Domestic-Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Two year(s).
 b. Gas-Fired, Tankless, Domestic-Water Heaters:
 1) Heat Exchanger: Five years.
 2) Controls and Other Components: Three years.
 c. Expansion Tanks: Five years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-FIRED, DOMESTIC-WATER HEATERS
 A. Commercial, Gas-Fired, Storage and Volume, Domestic-Water Heaters:
 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

 B. Gas-Fired, Tankless, Domestic-Water Heaters:
2. Refer to drawings for performance and Basis of Design.
3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Expansion Tanks:

1. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
2. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. Heat-Trap Fittings: ASHRAE 90.2.

E. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and memory-stop balancing valves to provide balanced flow through each domestic-water heater.

F. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping."
 1. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."

H. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 1/2-psig pressure rating as required to match gas supply.

J. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

K. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.

L. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.

M. Domestic-Water Heater Stands: Manufacturer’s factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

N. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Tankless, Domestic-Water Heater Mounting: Install tankless, domestic-water heaters at least 18 inches above floor on wall bracket.

1. Maintain manufacturer's recommended clearances.
2. Arrange units so controls and devices that require servicing are accessible.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Anchor domestic-water heaters to substrate.

C. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping."

D. Install gas-fired, domestic-water heaters according to the International Fuel Gas Code.

1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 231123 "Facility Natural-Gas Piping."

E. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater
relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

G. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

H. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

I. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

J. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

K. Fill domestic-water heaters with water.

L. Charge domestic-water expansion tanks with air, unless pre-charged at factory

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."

B. Comply with requirements for gas piping specified in Section 231123 "Facility Natural-Gas Piping."

C. Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.
3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, volume and tankless domestic-water heaters.

END OF SECTION 223400
SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.
 4. Supports.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than two of each type.
PART 2 - PRODUCTS

2.1 WATER CLOSETS

A. Water Closets: Floor mounted flushometer, bottom outlet, top spud.
 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.
 a. Height: Standard and Handicapped/elderly, complying with ICC/ANSI A117.1, as indicated on the drawings.

2.2 FLUSHOMETER VALVES

A. Flushometer Valves:
 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

2.3 TOILET SEATS

A. Toilet Seats:
 3. Type: Commercial (Heavy duty).
 4. Shape: Elongated rim, open front.
 7. Color: To match fixture.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:
 1. Install level and plumb according to roughing-in drawings.
 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.

B. Flushometer-Valve Installation:
 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
 4. Install actuators in locations that are easy for people with disabilities to reach.
 5. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

C. Install toilet seats on water closets.

D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.
 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.
3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13
SECTION 224213.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Urinals.
2. Flushometer valves.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for urinals.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.

1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than two of each type.
PART 2 - PRODUCTS

2.1 URINALS

A. Urinals: Wall hung flushometer, back outlet.

 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

 a. Urinal Mounting Height: Standard and Handicapped/elderly according to ICC A117.1.
 c. Support: Type I Urinal Carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture. Include rectangular, steel uprights.

2.2 URINAL FLUSHOMETER VALVES

A. Flushometer Valves:

 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

2.3 SUPPORTS

A. Type I Urinal Carrier:

 1. Standard: ASME A112.6.1M.

B. Type II Urinal Carrier:

 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.
B. Examine walls and floors for suitable conditions where urinals will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:
 1. Install urinals level and plumb according to roughing-in drawings.
 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
 3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:
 1. Install supports, affixed to building substrate, for wall-hung urinals.
 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.

C. Flushometer-Valve Installation:
 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install lever-handle flushometer valves for accessible urinals with handle mounted on open side of compartment.
 4. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:
 1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to urinal color.
 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed urinals and fittings.

C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.16
SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Lavatories.
2. Faucets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.

1. Include the following:

 a. Servicing and adjustments of automatic faucets.
1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 LAVATORIES

A. Lavatory: Vitreous china, counter mounted.

 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

B. Lavatory: Vitreous china, wall mounted.

 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

2.2 SOLID-BRASS FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, commercial, solid-brass valve.

 2. Refer to drawings for performance and Basis of Design.
 3. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.
 4. Maximum Flow Rate: 0.5 gpm.
 5. Maximum Flow: 0.25 gal. per metering cycle.

2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
3. Refer to drawings for performance and Basis of Design.
4. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.
5. Maximum Flow Rate: 0.5 gpm.
6. Maximum Flow: 0.25 gal. per metering cycle.

2.3 SUPPORTS

A. Type II Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

B. Type III Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2.
 2. Chrome-plated, rigid-copper-pipe and brass straight or offset tailpieces riser.

2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.

C. Trap:
2. Material: Chrome-plated, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.6 SUPPORTS

A. Type II Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

B. Type III Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.

B. Examine counters and walls for suitable conditions where lavatories will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-mounted lavatories.

C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.

D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13
SECTION 224223 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Individual showers.
 2. Shower faucets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 INDIVIDUAL SHOWERS

A. Individual Showers:
 1. Refer to drawings for performance and Basis of Design.
 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

2.2 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets:
 1. Refer to drawings for performance and Basis of Design.
 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.
2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Assemble shower components according to manufacturers' written instructions.

B. Install showers level and plumb according to roughing-in drawings.

C. Install water-supply piping with stop on each supply to each shower faucet.

 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

 2. Install stops in locations where they can be easily reached for operation.

D. Install shower flow-control fittings with specified maximum flow rates in shower arms.

E. Set shower receptors in leveling bed of cement grout.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheons requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

3.2 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

The Club at Woodbridge
INDOOR ICE RINK
COMMERCIAL SHOWERS

T&M Project No: WOOD-00510

224223-2
3.3 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.4 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.

B. Clean showers, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

END OF SECTION 224223
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 Summary

A. Section includes general requirements for single-phase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 Coordination

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 General Motor Requirements

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 Motor Characteristics

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 Single-Phase Motors

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Equipment supports.
 B. Related Sections:
 1. Section 233113 "Metal Ducts" and for duct hangers and supports.

1.3 DEFINITIONS
 A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS
 A. Delegated Design: Design equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 B. Structural Performance: Hangers and supports for HVAC equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Equipment supports.
1.6 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.7 QUALITY ASSURANCE
 A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS
 A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.2 MISCELLANEOUS MATERIALS
 A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
 B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION
 B. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

The Club at Woodbridge
INDOOR ICE RINK
HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
T&M Project No: WOOD-00510 230529 - 2
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific support requirements are in Sections specifying equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized metallic coatings for Equipment that will not have field-applied finish.

D. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Freestanding and restrained spring isolators.
 2. Spring hangers.

1.2 ACTION SUBMITTALS

A. Product Data: For each product indicated.

B. Delegated-Design Submittal: For vibration isolation details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Welding certificates.

C. Field quality-control test reports.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Vibration Mountings & Controls, Inc.

B. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with limit-stop restraint.
1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch-thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

PART 3 - EXECUTION

3.1 VIBRATION-CONTROL DEVICE INSTALLATION

A. Equipment Restraints:
 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
B. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
D. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.2 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
5. Test to 90 percent of rated proof load of device.
7. Measure isolator deflection.
8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.3 ADJUSTING

A. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

B. Adjust active height of spring isolators.

C. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.4 HVAC VIBRATION-CONTROL AND RESTRAINT DEVICE SCHEDULE

A. Provide restrained spring isolators for roof mounted air handling units and air handling units mounted on grade.

B. Provide vibration control devices for all other mechanical equipment that has a fan or pump in accordance with manufacturer’s recommendations.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC DUCTWORK AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

The Club at Woodbridge
INDOOR ICE RINK
IDENTIFICATION FOR HVAC DUCTWORK AND EQUIPMENT
T&M Project No: WOOD-00510
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
 2. Letter Color: Black.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules).

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: White.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches high.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

2.6 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass beaded chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean ductwork and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.3 DUCT LABEL INSTALLATION

A. Install plastic-laminated duct labels with permanent adhesive on air ducts.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.4 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
F. TDH: Total dynamic head.

1.3 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.

1.4 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC, NEBB, or TABB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC, NEBB, or TABB.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC, NEBB, or TABB as a TAB technician.
B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

I. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

J. Examine operating safety interlocks and controls on HVAC equipment.
K. Report deficiencies discovered before and during performance of TAB procedures. Observe and
record system reactions to changes in conditions. Record default set points if different from
indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures for balancing the
systems.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness
for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Duct systems are complete with terminals installed.
 b. Volume dampers are open and functional.
 c. Clean filters are installed.
 d. Fans are operating, free of vibration, and rotating in correct direction.
 e. Variable-frequency controllers' startup is complete and safeties are verified.
 f. Automatic temperature-control systems are operational.
 g. Ceilings are installed.
 h. Windows and doors are installed.
 i. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained
in AABC's "National Standards for Total System Balance", ASHRAE 111, NEBB's "Procedural
Standards for Testing, Adjusting, and Balancing of Environmental Systems", SMACNA's
"HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the
minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness
as used to construct ducts.

2. Install and join new insulation that matches removed materials. Restore insulation,
coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation,"
Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping
Insulation."

C. Mark equipment and balancing devices, including damper-control positions fan-speed-control
levers, and similar controls and devices, with paint or other suitable, permanent identification
material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.
3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

 1. Measure total airflow.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

 2. Measure fan static pressures as follows:

 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
c. Measure static pressure across each component that makes up the air-handling system.
d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Engineer for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflow.

1. Measure airflow of submain and branch ducts.
2. Adjust submain and branch duct volume dampers for specified airflow.
3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflow.

1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
2. Measure inlets and outlets airflow.
3. Adjust each inlet and outlet for specified airflow.
4. Re-measure each inlet and outlet after they have been adjusted.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
2. Verify that the system is under static pressure control.
3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
c. When maximum airflow is correct, balance the air outlet downstream from terminal units.
d. Adjust controls so that terminal is calling for minimum airflow.
e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.

a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:

a. Measure static pressure directly at the fan outlet or through the flexible connection.
b. Measure static pressure directly at the fan inlet or through the flexible connection.
c. Measure static pressure across each component that makes up the air-handling system.
d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.

a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
b. Verify that terminal units are meeting design airflow under system maximum flow.
8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check liquid level in expansion tank.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 6. Set system controls so automatic valves are wide open to heat exchangers.
 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.

The Club at Woodbridge
INDOOR ICE RINK
TESTING, ADJUSTING, AND BALANCING FOR HVAC
T&M Project No: WOOD-00510 230593 - 7
a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Engineer and comply with requirements in Section 232123 "Hydronic Pumps."

2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.

 a. Monitor motor performance during procedures and do not operate motors in overload conditions.

3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.

4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated presettings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.

 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:

 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.

J. Check settings and operation of each safety valve. Record settings.

The Club at Woodbridge
INDOOR ICE RINK
TESTING, ADJUSTING, AND BALANCING FOR HVAC
T&M Project No: WOOD-00510
230593 - 8
3.9 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.10 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:

 a. Indicated versus final performance.
 b. Notable characteristics of systems.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outdoor, supply, return, and exhaust airflows.
 2. Water flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve size and locations.
 5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.
 2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling-coil static-pressure differential in inches wg.
 g. Outdoor airflow in cfm.
 h. Return airflow in cfm
 i. Outdoor-air damper position.
 j. Return-air damper position.

F. Apparatus-Coil Test Reports:
 1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Circuiting arrangement.
 2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Refrigerant expansion valve and refrigerant types.
 i. Refrigerant suction pressure in psig.
 j. Refrigerant suction temperature in deg F.

G. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 1. Unit Data:
 a. System identification.
 b. Location.
c. Make and type.
d. Model number and unit size.
e. Manufacturer's serial number.
f. Fuel type in input data.
g. Output capacity in Btu/h.
h. Ignition type.
i. Burner-control types.
j. Motor horsepower and rpm.
k. Motor volts, phase, and hertz.
l. Motor full-load amperage and service factor.
m. Sheave make, size in inches, and bore.
n. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

I. Air-Terminal-Device Reports:
 1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.

 2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Preliminary airflow rate as needed in cfm.
 c. Final airflow rate in cfm.
 d. Space temperature in deg F.

3.11 VERIFICATION OF TAB REPORT

A. Engineer shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

B. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

C. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

D. If TAB work fails, proceed as follows:
1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.

E. Prepare test and inspection reports.

3.12 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, concealed exhaust.
 5. Outdoor, exposed supply, return and exhaust.

B. Related Sections:
 1. Section 230716 "HVAC Equipment Insulation."
 2. Section 230719 "HVAC Piping Insulation."
 3. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 3. Detail application of field-applied jackets.
 4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

The Club at Woodbridge
INDOOR ICE RINK
DUCT INSULATION

T&M Project No: WOOD-00510

230713 - 1
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Owens Corning; SOFTR All-Service Duct Wrap.

D. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation without factory-applied jacket.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Johns Manville; 800 Series Spin-Glas.
 c. Knauf Insulation; Insulation Board.
 d. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS
A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

2.4 LAGGING ADHESIVES
A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
 3. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS
A. Metal Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 c. Mon-Eco Industries, Inc.; 44-05.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 1. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:

 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.

 2. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Factory cut and rolled to size.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.9 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

The Club at Woodbridge
INDOOR ICE RINK
DUCT INSULATION
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.
B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Comply with requirements in Section 078413 "Penetration Firestopping".

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions. Adhesive is not required on the top of the ductwork.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.

b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

d. Do not overcompress insulation during installation.

e. Impale insulation over pins and attach speed washers.

f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment.
Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Engineer. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, concealed exhaust.
5. Outdoor, exposed supply and return.

B. Items Not Insulated:

1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.10 INDOOR Duct AND PLENUM INSULATION SCHEDULE

A. Concealed supply, return, exhaust, or outdoor-air duct insulation shall be the following:

B. Exposed supply, return, exhaust, or outdoor-air duct insulation shall be the following:

1. Duct Liner: Provide a thermal resistance value of at least R-6.

3.11 ABOVEGROUND, OUTDOOR Duct AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor’s option.

B. Supply and return-air duct insulation shall be the following:

1. Mineral-Fiber Board: Provide a thermal resistance value of at least R-8.
3.12 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums:
 1. Stainless Steel, Type 304 or Type 316, Corrugated: 0.020 inch thick.

END OF SECTION 230713
SECTION 230716 - HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC equipment that is not factory insulated:
 1. Heating, hot-water pumps

B. Related Sections:
 1. Section 230719 "HVAC Piping Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail removable insulation at equipment connections.
 4. Detail application of field-applied jackets.
 5. Detail application at linkages of control devices.
 6. Detail field application for each equipment type.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with equipment Installer for equipment insulation application.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

The Club at Woodbridge
INDOOR ICE RINK
HVAC EQUIPMENT INSULATION
1. Block Insulation: ASTM C 552, Type I.
2. Special-Shaped Insulation: ASTM C 552, Type III.
3. Board Insulation: ASTM C 552, Type IV.
4. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

C. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.

D. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. Provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; CertaPro Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.

E. Mineral-Fiber, Preformed Pipe Insulation:

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

F. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Manson Insulation Inc.; AK Flex.
 e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 **ADHESIVES**

 A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

 B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 **MASTICS**

 A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

 B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.

2.4 **LAGGING ADHESIVES**

 A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
2.5 SEALANTS

A. Joint Sealants:

1. **Joint Sealants for Cellular-Glass**. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

b. **Eagle Bridges** - Marathon Industries; 405.
d. **Mon-Eco Industries, Inc.**; 44-05.
e. **Pittsburgh Corning Corporation**; Pittseal 444.

B. ASJ Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Width: 3 inches.
2. Thickness: 11.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
2.8 SECUREMENTS

A. Bands:

1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.

2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.

2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.

6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

7. Stagger joints between insulation layers at least 3 inches.

8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.

9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.

10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Insulation Installation on Pumps:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.

2. Fabricate boxes from stainless steel, at least 0.050 inch thick.

3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.5 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.

2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.

3. Completely encapsulate insulation with coating, leaving no exposed insulation.

3.6 FINISHES

A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below."

The Club at Woodbridge
INDOOR ICE RINK
HVAC EQUIPMENT INSULATION

T&M Project No: WOOD-00510 230716 - 9
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Engineer. Vary first and second coats to allow visual inspection of the completed Work.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

3.8 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

B. Insulate indoor and outdoor equipment that is not factory insulated.

C. Provide a stainless steel Field Applied Jacket to all outdoor equipment insulation.

D. Heating, hot-water pump insulation shall be one of the following:
 1. Cellular Glass: 3 inches thick.

END OF SECTION 230716
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Condensate drain piping, indoors.
2. Heating hot-water piping, indoors.

B. Related Sections:

1. Section 230713 "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

The Club at Woodbridge
INDOOR ICE RINK
HVAC PIPING INSULATION
C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

D. Mineral-Fiber, Preformed Pipe Insulation:

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.

2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
3. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. Joint Sealants:

1. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

C. ASJ Flashing Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:
1. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Factory cut and rolled to size.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 d. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Width: 3 inches.
2. Thickness: 11.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.9 SECUREMENTS

A. Bands:

1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
a. For below-ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer’s written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
1. Comply with firestopping system on architectural drawing A2.1 and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with firestopping system on architectural drawing A2.1.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
3.9 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to a single location of straight pipe.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Underground piping.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:

 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Heating-Hot-Water Supply and Return, 200 Deg F and Below:

 The Club at Woodbridge
 INDOOR ICE RINK
 HVAC PIPING INSULATION

T&M Project No: WOOD-00510 230719 - 12
1. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. Stainless Steel, Type 304 or 316, Corrugated with Z-Shaped Locking Seam: 0.020 inch thick.

END OF SECTION 230719
SECTION 230900 – INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SECTION INCLUDES

A. Integration of direct digital controls into the existing Building Management System (BMS).

1.3 RELATED WORK SPECIFIED ELSEWHERE

A. Products Supplied but Not Installed Under This Section:

1. Flow switches.
2. Automatic control dampers, where not supplied with equipment.
3. Terminal unit controllers and actuators, when installed by terminal unit manufacturer.

B. Products Installed but Not Supplied Under This Section:

1. Package unit space temperature sensors

C. Products Not Furnished or Installed but Integrated with the Work of This Section:

1. Factory BACnet controllers in package units
2. Smoke detectors (through alarm relay contacts).

D. Work Required Under Other Divisions Related to This Section:

1. Power wiring of any kind
2. Power wiring to line side of motor starters, disconnects or variable frequency drives.
3. Provision and wiring of smoke detectors and other devices relating to fire alarm system.
4. LAN (Ethernet) connection adjacent to JACE network management controller or router.

1.4 SYSTEM DESCRIPTION

A. This controls in this project shall be an extension of the existing Honeywell N4 Tridium system installed by Automated Building Controls, Inc. 732-918-8958 dgolden@automatedbuilding.com.

B. Scope: Furnish all labor, materials and equipment necessary for integration of new Direct Digital Controls into the existing Building Management System (BMS), as shown on the

The Club at Woodbridge
INDOOR ICE RINK

INSTRUMENTATION AND CONTROL FOR HVAC

T&M Project No: WOOD-00510
drawings and as described herein. Drawings are diagrammatic only. All controllers furnished in this section shall communicate on a peer-to-peer bus over a BACnet bus.

1. The intent of this specification is to provide a system that integrates into the existing BMS system throughout the owner's facilities running the Niagara 4 Framework.

2. System architecture shall be able to integrate third party systems via existing vendor protocols including, as a minimum, LonTalk, BACnet, Carrier Comfort Network, and MODBUS.

3. System architecture shall provide secure Web access using any of the current versions of Microsoft Internet Explorer, Mozilla Firefox, or Google Chrome browsers from any computer on the owner's LAN.

4. All control devices furnished with this Section shall be programmable directly from the Niagara 4 Workbench embedded toolset upon completion of this project. The use of configurable or programmable controllers that require additional software tools for post-installation maintenance shall not be acceptable.

5. Any control vendor that shall provide additional BMS server software shall be unacceptable. Only systems that utilize the Niagara 4 Framework shall satisfy the requirements of this section.

6. The existing BMS server shall host all graphic files for the control system. All graphics and navigation schemes for this project shall match those that are on the existing Township NiagaraAX or Niagara 4 Framework server.

7. on local MicroSD memory card employing encrypted "safe boot" technology.

C. All products integrated into the existing BMS shall be provided with the following agency approvals. Verification that the approvals exist for all submitted products shall be provided on request, with the submittal package. Systems or products not currently offering the following approvals are not acceptable.

2. FCC, Part 15, Subpart B, Class B
3. FCC, Part 15, Subpart C
5. UL 504 - Industrial Control Equipment.
6. UL 506 - Specialty Transformers.
7. UL 910 - Test Method for Fire and Smoke Characteristics of Electrical and Optical-Fiber Cables Used in Air-Handling Spaces.
9. UL 1449 - Transient Voltage Suppression.
 a. NEMA 250 - Enclosures for Electrical Equipment.
15. NEMA ICS 1 - Industrial Controls and Systems.
16. NEMA ST 1 - Specialty Transformers.
17. NCSBC Compliance, Energy: Performance of control system shall meet or surpass the requirements of ASHRAE/IESNA 90.1-1999.
18. CE 61326.
19. C-Tick.
20. cUL.

1.5 SPECIFICATION NOMENCLATURE

A. Acronyms used in this specification are as follows:

1. Actuator: Control device that opens or closes valve or damper in response to control signal.

2. AI: Analog Input.

3. AO: Analog Output.

4. Analog: Continuously variable state over stated range of values.

5. AUC: Advanced Unitary Controller.

6. BCT: BACnet Touchscreen Communicating Thermostat.

7. BMS: Building Management System.

8. DDC: Direct Digital Control.

10. DI: Discrete Input.

11. DO: Discrete Output.

12. FC: Fail Closed position of control device or actuator. Device moves to closed position on loss of control signal or energy source.

13. FO: Fail open (position of control device or actuator). Device moves to open position on loss of control signal or energy source.
14. GUI: Graphical User Interface.
15. HMI: Human Machine Interface.
17. IDC: Interoperable Digital Controller.
18. ILC: Interoperable Lon Controller.
19. LAN: Local Area Network.
20. Modulating: Movement of a control device through an entire range of values, proportional to an infinitely variable input value.
22. NAC: Network Area Controller.
23. NC: Normally closed position of switch after control signal is removed or normally closed position of manually operated valves or dampers.
24. NO: Normally open position of switch after control signal is removed; or the open position of a controlled valve or damper after the control signal is removed; or the usual position of a manually operated valve.
25. OSS: Operating System Server, host for system graphics, alarms, trends, etc.
26. Operator: Same as actuator.
27. PC: Personal Computer.
28. Peer-to-Peer: Mode of communication between controllers in which each device connected to network has equal status and each shares its database values with all other devices connected to network.
29. P: Proportional control; control mode with continuous linear relationship between observed input signal and final controlled output element.
30. PI: Proportional-Integral control, control mode with continuous proportional output plus additional change in output based on both amount and duration of change in controller variable (reset control).
32. PICU: Programmable IP Control Unit.
33. PID: Proportional-Integral-Derivative control, control mode with continuous correction of final controller output element versus input signal based on proportional
error, its time history (reset) and rate at which it's changing (derivative).

34. Point: Analog or discrete instrument with addressable database value.

35. PPCU: Programmable Plant Control Unit.

36. UICU: Unitary IP Control Unit.

37. WAN: Wide Area Network.

1.6 SEQUENCE OF OPERATION

A. Refer to the drawings for the Sequence of Operation.

1.7 SUBMITTALS

A. Product Data: Manufacturer's data sheets on each product to be used, including:
 1. Preparation instructions and recommendations.
 2. Storage and handling requirements and recommendations.
 3. Installation methods.

B. Submit documentation of contractor qualifications, including those indicated in "Quality Assurance" if requested by the A-E.

C. Five copies of shop drawings of the entire control system shall be submitted and shall consist of a complete list of equipment and materials, including manufacturers' catalog data sheets and installation instructions. Submit in printed electronic format. Samples of written Controller Checkout Sheets and Performance Verification Procedures for applications similar in scope shall be included for approval.

D. Shop drawings shall also contain complete wiring and schematic diagrams, sequences of operation, control system bus layout and any other details required to demonstrate that the system has been coordinated and will properly function as a system. Terminal identification for all control wiring shall be shown on the shop drawings.

E. Upon completion of the work, provide 5 complete sets of 'as-built' drawings and other project-specific documentation in 3-ring hard-backed binders and on Flash media.

F. Any deviations from these specifications or the work indicated on the drawings shall be clearly identified in the Submittals.

1.8 QUALITY ASSURANCE

A. The Control System Contractor shall have a full service DDC office within 50 miles of the job site. The office shall be staffed with applications engineers, software engineers and field technicians. This office shall maintain parts inventory and shall have all testing and
diagnostic equipment necessary to support this work, as well as staff trained in the use of this equipment.

B. Single Source Responsibility of Supplier: The Control System Contractor shall be responsible for the complete installation and proper operation/integration of the control system. The Control System Contractor shall exclusively be in the regular and customary business of design, installation and service of computerized building management systems similar in size and complexity to the system specified. The Control System Contractor shall be the manufacturer of the primary DDC system components or shall have been the authorized representative for the primary DDC components manufacturer for at least 5 years. All control panels shall be assembled by the Control System Contractor in a UL-Certified 508A panel shop.

C. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in the production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.

1.9 PRE-INSTALLATION MEETINGS

A. Convene minimum two weeks prior to starting work of this section.

1.10 DELIVERY, STORAGE AND HANDLING

A. Maintain integrity of shipping cartons for each piece of equipment and control device through shipping, storage and handling as required to prevent equipment damage. Store equipment and materials inside and protected from weather.

1.11 JOB CONDITIONS

A. Cooperation with Other Trades: Coordinate the Work of this section with that of other sections to ensure that the Work will be carried out in an orderly fashion. It shall be this Contractor's responsibility to check the Contract Documents for possible conflicts between his Work and that of other crafts in equipment location, pipe, duct and conduit runs, electrical outlets and fixtures, air diffusers and structural and architectural features.

1.12 SEQUENCING

A. Ensure that products of this section are supplied to affected trades in time to prevent interruption of construction progress.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Basis of Design: Subject to compliance with requirements, provide products and system that are an extension of the Township-wide Honeywell Tridium System.

2.2 OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURE
A. The intent of this specification is to integrate the new direct digital controls into the existing peer-to-peer networked, stand-alone, distributed control system utilizing Open protocols in one open, interoperable system.

B. The existing computer software employs object-oriented technology (OOT) for representation of all data and control devices within the system. Physical connection of any BACnet control equipment shall be via Ethernet or IP.

C. All components and controllers supplied under this contract shall be true "peer-to-peer" communicating devices. Components or controllers requiring "polling" by a host to pass data shall not be acceptable.

2.3 UNITARY IP CONTROL UNIT (UICU)

A. HVAC UICU controllers shall be fully programmable to meet the unique requirements of the HVAC equipment it shall control. The controller platform shall provide options and advanced system functions, programmable and configurable using Niagara 4 Framework, that allow standard and customizable control solutions required in executing the "Sequence of Operation".

B. All UICUs shall be application programmable and shall always maintain their certification. All control sequences within or programmed into the UICU shall be stored in non-volatile memory, which is not dependent upon the presence of a battery to be retained.

C. The controllers shall be capable of daisy-chain IP communications with other UICU’s and peer-to-peer communications with SNC’s and with any OWS connected to the BAS, whether the OWS is directly connected, connected via cellular modem or connected via the Internet.

D. The communication protocols utilized for peer-to-peer communications between UICU's will be Niagara 4 FoxS or BACnet TCP/IP. Use of a proprietary communication protocol for peer-to-peer communications between UICU's is not allowed.

E. The UICU shall be licensed and enabled to support three (3) devices and shall be licensed with the following Open protocol drivers by default:
 1. BACnet IP and BACnet MSTP
 2. Modbus TCP and Modbus RTU
 3. SNMP

F. The UICU shall be provided with Lifetime Software Maintenance license. Labor to implement not included.

G. The UICU shall be capable of executing application control programs to provide:
 1. Calendar functions.
 2. Scheduling.
 3. Trending.
5. Time synchronization.
6. Integration of all daisy-chain UICU’s.
7. Network management functions for all daisy-chain UICU’s.

H. Programming software shall be embedded into the UICU. The UICU shall not require any external configuration tool or programming tool. All configuration and programming tasks shall be accomplished and accessible from within the embedded Niagara 4 environment.

I. The UICU shall support the following security functions.

1. Module code signing to verify the author of programming tool and confirm that the code has not been altered or corrupted.
2. Role-Based Access Control (RBAC) for managing user roles and permissions.
3. Require users to use strong credentials.
4. Data in Motion and Sensitive Data at Rest be encrypted.
6. FIPS 140-2 Level 1 Cryptographic Module Compliant.

J. The minimum controller Environmental ratings.

1. Operating Temperature Ambient Rating: -4 degrees to 140 degrees F (-20 degrees to 60 degrees C).
2. Storage Temperature Ambient Rating: -40 degrees to 185 degrees F (-40 degrees to 85 degrees C).
3. Relative Humidity: 5% to 95% non-condensing.

K. The controller shall have the additional approval requirements, listings, and approvals:

2. C-UL
3. CE
4. UL916, Open Energy Management Class 2
5. RoHS2
6. REACH
7. WEEE
8. CAN/CSA-C22.2 No. 205-12
9. The controller housing shall be UL plenum rated mounting to either a panel or DIN rail (2.40” x 7.04” x 4.53”; 61mm x 179mm x 115mm).

L. The UICU shall provide the following hardware features as a minimum:

1. The UICU shall provide LED indication of Power, Fault, Ethernet TX/RX/Traffic/Speed without cover removal.
2. ARM Cortex-A9/M4 9, 800 MHz
3. 512 MB DDR SDRAM
4. 2 GB Flash Memory
5. Powered from 24VAC/DC source
6. Two 10/100 MB Ethernet ports capable of daisy chaining
7. 1 RS-485 Serial Port
8. Real Time Clock
9. Secure Boot
10. Ten [10] onboard IO points
11. Supports up to 3 devices or 50 Points

M. The UICU shall support standard Web browser access via the Intranet/Internet.

N. The UICU shall be able to route any alarm condition to any defined user location whether connected to a local network or wide-area network.

1. Alarm generation shall be selectable for annunciation type and acknowledgement requirements including but not limited to:
 a. Alarm.
 b. Return to normal.
 c. To default.

2. Alarms shall be annunciated in any of the following manners as defined by the user:
 a. Screen message text.
 b. Email of complete alarm message to multiple recipients.
 c. Pagers via paging services that initiate a page on receipt of email message.
 d. Graphics with flashing alarm object(s).

3. The following shall be recorded by the UICU for each alarm (at a minimum):
 a. Time and date.
 b. Equipment (air handler #, access way, etc.).
 c. Acknowledge time, date, and user who issued acknowledgement.

O. UICU Controllers shall support at minimum the following control techniques:

1. General-purpose control loops that can incorporate Demand Limit Control strategies, Set point reset, adaptive intelligent recovery, and time of day bypass.
2. General-purpose, non-linear control loops.
4. If/Then/Else logic loops.
5. Math Function loops (MIN, MAX, AVG, SUM, SUB, SQRT, MUL, DIV, ENTHALPY).

P. The following five [5] Universal Inputs shall be supported per each UICU:

1. Type 3 10K Thermistor
2. 0-100K ohm
3. 0-10 VDC
4. 0-20mA with external resistor
5. Dry Contact

The Club at Woodbridge
INDOOR ICE RINK
INSTRUMENTATION AND CONTROL FOR HVAC
Q. The following two [2] Analog Outputs shall be supported per each UICU:
 1. 0-10VDC, 4mA max output current

R. The following three [3] Digital Outputs shall be supported per each UICU:
 1. Triac, 24VAC @ 0.5 amp

S. The UICU shall employ a 50 Point Base License that supports one [1] IO-R-34 expansion module over a shielded RS-485 bus or three [3] devices via the embedded protocols.

T. Each UICU shall have expansion ability to support additional I/O requirements through the use of a remote input/output module connected to an RS-485 local communication bus. Each UICU shall be able to support a maximum of one [1] 34 Point Expansion I/O Modules for a maximum of 44 physical I/O points.
 1. 34 Point Mixed Expansion I/O Module shall communicate with UICU via a 2-wire RS-485m bus.
 2. Sixteen [16] Universal Inputs shall be supported via 34 Point Expansion I/O Module:
 a. Type 3 10K Thermistor
 b. 0-100K ohm
 c. 0-10 VDC
 d. 0-20mA with external resistor
 3. Eight [8] Analog Outputs shall be supported via 34 Point Expansion I/O Module:
 a. 0-10.0 Vdc
 4. Ten [10] Digital Outputs (Relay) shall be supported via 34 Point Expansion I/O Module:
 a. Form A Contacts, 24 VAC at 0.5 A rated

U. The UICU shall not include an integrated Local Operator Interface.

2.4 ADVANCED UNITARY CONTROLLER (AUC)

A. The advanced unitary controller (AUC) platform shall be designed specifically to control HVAC - ventilation, filtration, heating, cooling, humidification, and distribution. Equipment includes: constant volume air handlers, VAV air handlers, packaged RTU, heat pumps, fan and fan coils. The control shall use BACnet based devices where the application has a LonMark profile or BTL Listed PICS defined. Where LonMark devices are not available for a particular application, devices based on LonWorks shall be acceptable. For each LonWorks device that does not have LonMark certification, the device supplier shall provide an XIF file for the device. The controller platform shall provide options and advanced system functions, programmable and configurable, using Niagara 4 Framework, that allow standard and customizable control solutions required in executing the "Sequence of

The Club at Woodbridge
INDOOR ICE RINK
INSTRUMENTATION AND CONTROL FOR HVAC
T&M Project No: WOOD-00510 230900 - 10
B. Minimum Requirements:

1. The controller shall be fully programmable or configurable with full functionality on any Niagara 4 brand platform.
 a. Support downloads to the controller in Niagara 4 platform.
 b. Support uploads from the controller to Niagara 4 platform.
 c. Support simulation/debug mode of the controller.
 d. Maintain native GUI.
 e. Native function-block programming software and all controller "Setup Wizards" shall be embedded within the Niagara 4 environment.

2. The AUC shall be capable of either integrating with other devices or stand-alone operation.

3. For VAV box applications, the AUC shall have an internal velocity pressure sensor.
 a. Sensor Type: Microbridge air flow sensor with dual integral restrictors.
 b. Operating Range: 0 to 1.5 inch H2O (0 to 374 Pa).
 c. Accuracy: +/- 2% of full scale at 32 degrees to 122 degrees F (0 degrees to 50 degrees C); +/- 1% of full scale at null pressure.

4. The AUC shall have two microprocessors. The Host processor contains on-chip FLASH program memory, FLASH information memory, and RAM to run the main HVAC application. The second processor for network communications. Controller memory minimum requirements include:
 a. FLASH Memory Capacity: 60 Kilobytes with 8 Kilobytes for application program.
 b. FLASH Memory settings retained for ten years.
 c. RAM: 2 Kilobytes.

5. The AUC shall have an internal time clock with the ability to automatically revert from a master time clock on failure.
 a. Operating Range: 24 hour, 365 day, multi-year calendar including day of week and configuration for automatic day-light savings time adjustment to occur on configured start and stop dates.
 b. Accuracy: +/- 1 minute per month at 77 degrees F (25 degrees C).
 c. Power Failure Backup: 24 hours at 32 degrees to 122 degrees F (0 degrees to 50 degrees C).

6. The AUC shall have Significant Event Notification, Periodic Update capability, and Failure Detect when network inputs fail to be detected within their configurable time frame.
7. The AUC shall have an internal DC power supply to power external sensors.
 a. Power Output: 20 VDC +/- 10% at 75 mA.

8. The AUC shall have a visual indication (LED) of the status of the devise:
 a. Controller operating normally.
 b. Controller in process of download.
 c. Controller in manual mode under control of software tool.
 d. Controller lost its configuration.
 e. No power to controller, low voltage, or controller damage.
 f. Processor and/or controller are not operating.

9. The minimum AUC Environmental ratings.
 a. Operating Temperature Ambient Rating: -40 degrees to 150 degrees F (-40 degrees to 65.5 degrees C) for an AUC in unconditioned space.
 b. Storage Temperature Ambient Rating: -40 degrees to 150 degrees F (-40 degrees to 65.5 degrees C) for an AUC in unconditioned space.
 c. Operating Temperature Ambient Rating: 32 degrees to 122 degrees F (0 degrees to 50 degrees C) for an AUC in conditioned space.
 d. Storage Temperature Ambient Rating: 32 degrees to 122 degrees F (0 degrees to 50 degrees C) for an AUC in conditioned space.
 e. Relative Humidity: 5% to 95% non-condensing.

10. The AUC shall have the additional approval requirements, listings, and approvals:
 a. UL/cUL (E87741) listed under UL916 (Standard for Open Energy Management Equipment) with plenum rating.
 b. CSA (LR95329-3) Listed.
 d. Meets Canadian standard C108.8 (radiated emissions).
 e. Conforms requirements European Consortium standard EN 61000-6-1; 2001 (EU Immunity).
 f. Conforms requirements European Consortium standard EN 61000-6-3; 2001 (EU Emission).

11. The AUC housing shall be UL plenum rated mounting to either a panel or DIN rail (standard EN50022; 7.5mm x 35mm).

12. For VAV box applications, the AUC shall provide an integrated actuator option.
 a. Actuator type: Series Floating.
 b. Rotation stroke: 95 degrees +/- 177.3 degrees for CW or CCW opening dampers.
 c. Torque rating: 44 lb-inch (5 Nm).
 d. Run time for 90 degree rotation: 90 seconds at 60 Hz.
13. The AUC shall have a mix of Universal Inputs (UI), Digital Inputs (DI), Analog Outputs (AO), and Digital Triac Outputs (DO), as well as a 2-wire, polarity insensitive, AUC communication bus providing Sensor, Actuator, and I/O expandability.

a. Analog outputs (AO) shall be capable of being configured as digital outputs (DO).
b. Input and Output wiring terminal strips shall be removable from the controller without disconnecting wiring.
c. Input and Output wiring terminals shall be designated with color coded labels.
d. Universal inputs shall be capable of being configured as binary inputs, resistive inputs, voltage inputs (0-10 VDC), or current inputs (4-20 mA).

14. The AUC shall provide "continuous" automated loop tuning with an Adaptive Integral Algorithm Control Loop.

15. The AUC platform shall have standard HVAC application programs that are modifiable to support both the traditional and specialized "sequence of operations" as outlined in Section 4.

a. Discharge air control and low limit.
b. Variable air volume with return flow tracking.
c. Economizer with differential enthalpy.
d. Minimum airflow coordinated with CO2.
e. VAV terminal unit.
f. Series fan.
g. Room CO2 control.
h. Room Humidity.
i. TOD occupancy sensor stand-by set points.

2.5 BACNET TOUCHSCREEN COMMUNICATING THERMOSTAT (BCT)

A. BACnet Conformance

1. Touchscreen communicating thermostats shall be approved by the BTL as meeting the BACnet Application Specific Controller requirements.

2. Touchscreen Communicating Thermostats shall, at a minimum, support MS/TP BACnet LAN types. They shall communicate directly through this BACnet LAN at 9.6, 19.2, 38.4 and 76.8 Kbps, as a native BACnet device.

3. Standard BACnet object types supported shall include, as a minimum, Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Device, File, and Program Object Types.

4. All proprietary object types, if used in the system, shall be thoroughly documented and provided as part of the submittal data. All necessary tools shall be supplied for working with proprietary information.

B. BCT hardware shall:
1. Include a 32 Bit processor

2. Include a backlit touchscreen for the user interface, buttons are not allowed.

3. Include Three (3) universal inputs with 12-bit resolution that can accept 3K and 10K Type II thermistors, 0-10VDC, 0-5 VDC, 4-20mA, and dry contact signals. Inputs on controller may be either analog or digital.

4. Include built-in temperature sensor.

5. Include built-in humidity sensor.

6. Include Six (6) relay outputs on board.

7. Include Two (2) analog outputs with 12-bit resolution. Each auto-detecting for 0-10 V or 4-20 mA control signals.

8. Meet the requirements of Listed Underwriters Laboratory for Open Energy Management Equipment (PAZX) under the UL Standard for Safety 916.

9. Meet the requirements of EMC Directive (European CE Mark) EN 60950.

10. Meet the requirements for FCC Part 15, Class B.

11. Be powered by 24VAC power.

2.6 OTHER CONTROL SYSTEM HARDWARE

A. Motorized control dampers that will not be integral to the equipment shall be furnished by the Control System Contractor. Control damper frames shall be constructed of galvanized steel, formed into changes and welded or riveted. Dampers shall be galvanized, with nylon bearings. Blade edge seals shall be vinyl. Blade edge and tip seals shall be included for all dampers. Blades shall be 16-gauge minimum and 6 inches wide maximum and frame shall be of welded channel iron. Damper leakage shall not exceed 10 CFM per square foot, at 1.5 inches water gauge static pressure.

B. Control damper actuators shall be furnished by the Control System Contractor. Two-position or proportional electric actuators shall be direct-mount type sized to provide a minimum of 5 in-lb torque per square foot of damper area. Damper actuators shall be spring return type. Operators shall be heavy-duty electronic type for positioning automatic dampers in response to a control signal. Motor shall be of sufficient size to operate damper positively and smoothly to obtain correct sequence as indicated. All applications requiring proportional operation shall utilize truly proportional electric actuators.

C. Wall Mount Room Temperature sensors: Each room temperature sensor shall provide temperature indication to the digital controller, provide the capability for a software-limited occupant set point adjustment (warmer-cooler slider bar or switch) and limited operation override capability. Room Temperature Sensors shall be 20,000-ohm thermistor type with a temperature range of -40 to 140 degrees F (-38 to 60 degrees C). The sensor shall be complete with a decorative cover and suitable for mounting over a standard electrical utility box. These devices shall have an accuracy of 0.5 degrees F (.024 degrees C) over the entire range.

D. Duct-mounted and Outside Air Temperature Sensors: 20,000-ohm thermistor temperature sensors with an accuracy of &177; 0.2 degrees C. Outside air sensors shall include an integral sun shield. Duct-mounted sensors shall have an insertion measuring probe of a length appropriate for the duct size, with a temperature range of -40 to 160 degrees F(-38 to 200 degrees C).

The Club at Woodbridge
INDOOR ICE RINK

INSTRUMENTATION AND CONTROL FOR HVAC

T&M Project No: WOOD-00510 230900 - 14
71 degrees C) The sensor shall include a utility box and a gasket to prevent air leakage and vibration noise. For all mixed air and preheat air applications, install bendable averaging duct sensors with a minimum 8 feet (2438 mm) long sensor element. These devices shall have accuracy of 0.5 degrees F (.024 degrees C) over the entire range.

E. Humidity sensors shall be thin-film capacitive type sensor with on-board nonvolatile memory, accuracy to plus or minus two percent (2%) at 0 to 90% RH, 12 - 30 VDC input voltage, analog output (0 - 10 VDC or 4 - 20mA output). Operating range shall be 0 to 100% RH and 32 to 140 degrees F (0 to 60 degrees C). Sensors shall be selected for wall, duct or outdoor type installation as appropriate.

F. Carbon Dioxide Sensors (CO2): Sensors shall utilize Non-dispersive infrared technology (N.D.I.R.), repeatable to plus or minus 20 PPM. Sensor range shall be 0 - 2000 PPM. Accuracy shall be plus or minus five percent (5%) or 75 PPM, whichever is greater. Response shall be less than one minute. Input voltage shall be 20 to 30 VAC or DC. Output shall be 0 - 10 VDC. Sensor shall be wall or duct mounted type, as appropriate for the application, housed in a high impact plastic enclosure.

G. Current Sensitive Switches: Solid state, split core current switch that operates when the current level (sensed by the internal current transformer) exceeds the adjustable trip point. Current switch to include an integral LED for indication of trip condition and a current level below trip set point.

H. Differential Analog (duct) Static Pressure Transmitters Provide a pressure transmitter with integral capacitance type sensing and solid-state circuitry. Accuracy shall be plus or minus 1% of full range; range shall be selected for the specific application. Provide zero and span adjustment capability. Device shall have integral static pickup tube.

I. Differential Air Pressure Switches: Provide SPDT type, UL-approved, and selected for the appropriate operating range where applied. Switches shall have adjustable set points and barbed pressure tips.

J. Temperature Control Panels: Furnish temperature control panels of code gauge steel with locking doors for mounting all devices as shown. All electrical devices within a control panel shall be factory wired. Control panel shall be assembled by the BMS in a UL-Certified 508A panel shop. A complete set of 'as-built' control drawings (relating to the controls within that panel) shall be furnished within each control panel.

K. Low Air Temperature Sensors: Provide SPST type switch, with 15 to 55 degrees F (-9 to 13 degrees C), range, vapor-charged temperature sensor. Honeywell model L482A, or approved equivalent.

L. Relays: Start/stop relay model shall provide either momentary or maintained switching action as appropriate for the motor being started. All relays shall be plugged in, interchangeable, mounted on a sub base and wired to numbered terminals strips. Relays installed in panels shall all be DPDT with indicating lamp. Relays installed outside of controlled devices shall be enclosed in a NEMA enclosure suitable for the location. Relays shall be labeled with UR symbol. RIB-style relays are acceptable for remote enable/disable.
M. Emergency Stop Switches: Provide toggle-type switch with normally-closed contact. Switch shall be labeled "AIR HANDLER EMERGENCY SHUTOFF, NORMAL - OFF."

N. Transducers: Differential pressure transducers shall be electronic with a 4-20 mA output signal compatible to the Direct Digital Controller. Wetted parts shall be stainless steel. Unit shall be designed to operate in the pressure ranges involved.

O. Control Power Transformers: Provide step-down transformers for all DDC controllers and devices as required. Transformers shall be sized for the load, but shall be sized for 50 watts, minimum. Transformers shall be UL listed Class 2 type, for 120 VAC/24 VAC operation.

P. Line voltage protection: All DDC system control panels that are powered by 120 VAC circuits shall be provided with surge protection. This protection is in addition to any internal protection provided by the manufacturer. The protection shall meet UL, ULC 1449, IEEE C62.41B. A grounding conductor, (minimum 12 AWG), shall be brought to each control panel.

2.7 EXISTING BAS SERVER & WEB BROWSER GUI

A. The intent of the thin-client architecture is to provide the operator(s) complete access to the BAS system via a web browser. The existing thin-client web browser Graphical User Interface (GUI) is browser and operating system agnostic, meaning it will support HTML5 enabled browsers without requiring proprietary operator interface and configuration programs or browser plug-ins. Microsoft, Firefox, and Chrome browsers (current released versions), and Windows as well as non-Window operating systems. The Graphical User Interface associated with the direct digital controls installed as part of this project shall match the existing Graphical User Interface.

2.8 GRAPHICAL PROGRAMMING

A. The system software shall include a Graphic Programming Language (GPL) for all DDC control algorithms resident in all control modules. Any system that does not use a drag and drop method of graphical icon programming shall not be accepted. All systems shall use a GPL method used to create a sequence of operations by assembling graphic microblocks that represent each of the commands or functions necessary to complete a control sequence. Microblocks represent common logical control devices used in conventional control systems, such as relays, switches, high signal selectors etc., in addition to the more complex DDC and energy management strategies such as PID loops and optimum start. Each microblock shall be interactive and contain the programming necessary to execute the function of the device it represents.

B. Graphic programming shall be performed while on screen and using a mouse; each microblock shall be selected from a microblock library and assembled with other microblocks necessary to complete the specified sequence. Microblocks are then interconnected on screen using graphic "wires," each forming a logical connection. Once assembled, each logical grouping of microblocks and their interconnecting wires then forms a graphic function block which may be used to control any piece of equipment with a similar point configuration and sequence of operation.
C. Graphic Sequence: The clarity of the graphic sequence shall be such that the operator has the ability to verify that system programming meets the specifications, without having to learn or interpret a manufacturer's unique programming language. The graphic programming shall be self-documenting and provide the operator with an understandable and exact representation of each sequence of operation.

D. GPL Capabilities: The following is a minimum definition of the capabilities of the Graphic Programming software:

1. Function Block (FB): Shall be a collection of points, microblocks and wires which have been connected together for the specific purpose of controlling a piece of HVAC equipment or a single mechanical system.

2. Logical I/O: Input/Output points shall interface with the control modules in order to read various signals and/or values or to transmit signal or values to controlled devices.

3. Microblocks: Shall be software devices that are represented graphically and may be connected together to perform a specified sequence. A library of microblocks shall be submitted with the control contractors bid.

4. Wires: Shall be Graphical elements used to form logical connections between microblocks and between logical I/O.

5. Reference Labels: Labels shall be similar to wires in that they are used to form logical connections between two points. Labels shall form a connection by reference instead of a visual connection, i.e. two points labeled 'A' on a drawing are logically connected even though there is no wire between them.

6. Parameter: A parameter shall be a value that may be tied to the input of a microblock.

7. Properties: Dialog boxes shall appear after a microblock has been inserted which has editable parameters associated with it. Default parameter dialog boxes shall contain various editable and non-editable fields, and shall contain 'push buttons' for the purpose of selecting default parameter settings.

8. Icon: An icon shall be graphic representation of a software program. Each graphic microblock has an icon associated with it that graphically describes its function.

9. Menu-bar Icon: Shall be an icon that is displayed on the menu bar on the GPL screen, which represents its associated graphic microblock.

10. Live Graphical Programs: The Graphic Programming software shall support a 'live' mode, where all input/output data, calculated data and set points shall be displayed in a 'live' real-time mode.

2.9 LONWORKS NETWORK MANAGEMENT

A. Systems requiring the use of third-party LonWorks network management tools shall not be accepted.
B. Network management shall include the following services: device identification, device installation, device configuration, device diagnostics, device maintenance and network variable binding.

C. The Network configuration tool shall also provide diagnostics to identify devices on the network, to reset devices and to view health and status counters within devices.

D. These tools shall provide the ability to "learn" an existing LonWorks network, regardless of what network management tool(s) were used to install the existing network, so that existing LonWorks devices and newly added devices are part of a single network management database.

E. The network management database shall be resident in the Network Area Controller (NAC), ensuring that anyone with proper authorization has access to the network management database at all times. Systems employing network management databases that are not resident, at all times and within the control system shall not be accepted.

PART 3 EXECUTION

3.1 EXAMINATION

A. Do not begin installation until substrates have been properly prepared.

B. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

3.2 PREPARATION

A. Clean surfaces thoroughly prior to installation.

B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.3 GENERAL

A. Install system and materials in accordance with manufacturer's instructions, and as detailed on the project drawing set.

B. Low voltage electrical connections to control equipment shown specified or shown on the control diagrams shall be furnished and installed by the Control System Contractor in accordance with these specifications. Line voltage electrical connections shall be the responsibility of the electrical contractor.

C. Equipment furnished by the Mechanical Contractor that is normally wired before installation shall be furnished completely wired. Control wiring normally performed in the field will be furnished and installed by the Control System Contractor.

D. All control devices mounted on the face of control panels shall be clearly identified as to function and system served with permanently engraved phenolic labels.

3.4 WIRING
A. All electrical control wiring to the control panels shall be the responsibility of the Control System Contractor.

B. All wiring shall be in accordance with the Project Electrical Specifications (Division 16), the National Electrical Code and any applicable local codes. All control wiring shall be installed in raceways.

C. Excess wire shall not be looped or coiled in the controller cabinet.

D. Incorporate electrical noise suppression techniques in relay control circuits.

E. There shall be no drilling on the controller cabinet after the controls are mounted inside.

F. Careful stripping of wire while inside the cabinet is required to ensure that no wire strand fragments land on circuit boards.

G. Use manufacturer-specified wire for all network connections.

H. Use approved optical isolation and lightning protection when penetrating building envelope.

I. Read installation instructions carefully. Any unavoidable deviations shall be approved by owner's rep prior to installation.

3.5 ACCEPTANCE TESTING

A. Upon completion of the installation, the Control System Contractor shall load all system software and start-up the system. The Control System Contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to insure that the system is functioning in full accordance with these specifications.

B. The Control System Contractor shall perform tests to verify proper performance of components, routines and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the DDC system operation.

C. System Acceptance: Satisfactory completion is when the Control System Contractor has performed successfully all the required testing to show performance compliance with the requirements of the Contract Documents to the satisfaction of the Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

3.6 OPERATOR TRAINING

A. During system commissioning and at such time acceptable performance of the Control System hardware and software has been established, the Control System Contractor shall provide on-site operator instruction to the owner's operating personnel. Operator instruction shall be done during normal working hours and shall be performed by a competent representative familiar with the system hardware, software and accessories.

B. The Control System Contractor shall provide 48 total hours of comprehensive training in multiple sessions for system orientation, product maintenance and troubleshooting, programming and engineering. These classes are to be spread out during the 1st year warranty period. The first class starting after final commissioning and the last class is to be in the last month of 1-year warranty period.

3.7 WARRANTY PERIOD SERVICES
A. Equipment, materials and workmanship incorporated into the work shall be warranted for a period of two years from the time of system acceptance.

B. Within this period, upon notice by the Owner, any defects in the BMS due to faulty materials, methods of installation or workmanship shall be promptly repaired or replaced by the Control System Contractor at no expense to the Owner.

C. Maintenance of Computer Software Programs: The Control System Contractor shall maintain all software during the standard first year warranty period. In addition, all factory or sub-vendor upgrades to software during the two year warranty period shall be added to the systems, when they become available, at no additional cost. In addition to first year standard warranty, software provided by Control System Contractor shall come with a 5 Year Software Maintenance license. All SNC and BAS Servers are included in this coverage. Labor to implement upgrades in years two through five are not included in standard warranty.

D. Maintenance of Control Hardware: The Control System Contractor shall inspect, repair, replace, adjust, and calibrate, as required, the controllers, control devices and associated peripheral units during the warranty period. The Control System Contractor shall then furnish a report describing the status of the equipment, problem areas (if any) noticed during service work, and description of the corrective actions taken. The report shall clearly certify that all hardware is functioning correctly.

E. Service Period: Calls for service by the Owner shall be honored within 24 hours and are not to be considered as part of routine maintenance.

F. Service Documentation: A copy of the service report associated with each owner-initiated service call shall be provided to the owner.

3.8 WARRANTY ACCESS

A. The Owner shall grant to the Control System Contractor reasonable access to the BMS during the warranty period. Remote access to the BMS (for the purpose of diagnostics and troubleshooting, via the Internet, during the warranty period) will be allowed.

3.9 OPERATION & MAINTENANCE MANUALS

A. See Division 1 for requirements. O&M manuals shall include the following elements, as a minimum:

1. As-built control drawings for all equipment.
2. As-built Network Communications Diagram.
3. General description and specifications for all components.
5. Completed Controller Checkout/Calibration Sheets.

3.10 PROTECTION

The Club at Woodbridge
INDOOR ICE RINK
INSTRUMENTATION AND CONTROL FOR HVAC
T&M Project No: WOOD-00510
A. Protect installed products until completion of project.
B. Touch-up, repair or replace damaged products before Substantial Completion.

END OF SECTION
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 65 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Pipe, fittings and piping specialties.
2. Corrugated, stainless-steel tubing with associated components.
3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
4. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1. Shop Drawing Scale: 1/4 inch per foot.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of seismic restraints.
2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Qualification Data: For qualified professional engineer.

C. Welding certificates.

D. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

1.10 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Owner no fewer than three days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Owner's written permission.

1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black and galvanized steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
5. Mechanical Couplings:
 a. Stainless-steel flanges and tube with epoxy finish.
 b. Buna-nitrile seals.
 c. Stainless-steel bolts, washers, and nuts.
 d. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 e. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:
 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.

B. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

C. Basket Strainers:
 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

D. T-Pattern Strainers:
 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 2. End Connections: Grooved ends.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
 4. CWP Rating: 750 psig.

E. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 2. Ball: Chrome-plated brass.
 3. Stem: Bronze; blowout proof.
 4. Seats: Reinforced TFE; blowout proof.
 5. Packing: Separate packnut with adjustable-stem packing threaded ends.
 7. CWP Rating: 600 psig.
 8. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 2. Ball: Chrome-plated bronze.
 3. Stem: Bronze; blowout proof.
 4. Seats: Reinforced TFE; blowout proof.
 5. Packing: Threaded-body packnut design with adjustable-stem packing.
 7. CWP Rating: 600 psig.
 8. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

F. Bronze Plug Valves: MSS SP-78.
 2. Plug: Bronze.
 4. Operator: Square head or lug type with tamperproof feature where indicated.
 5. Pressure Class: 125 psig.
 6. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 7. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. Cast-Iron, Non-lubricated Plug Valves: MSS SP-78.
 1. Body: Cast iron, complying with ASTM A 126, Class B.
 2. Plug: Bronze or nickel-plated cast iron.
 3. Seat: Coated with thermoplastic.

The Club at Woodbridge
INDOOR ICE RINK
FACILITY NATURAL-GAS PIPING
6. Operator: Square head or lug type with tamperproof feature where indicated.
7. Pressure Class: 125 psig.
8. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

 1. Body: Cast iron, complying with ASTM A 126, Class B.
 2. Plug: Bronze or nickel-plated cast iron.
 3. Seat: Coated with thermoplastic.
 6. Operator: Square head or lug type with tamperproof feature where indicated.
 7. Pressure Class: 125 psig.
 8. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

2.5 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
 2. Steel jacket and corrosion-resistant components.
 3. Elevation compensator.
 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

 1. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 2. Springs: Zinc-plated steel; interchangeable.
 4. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 5. Orifice: Aluminum; interchangeable.
 7. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 8. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 10. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
11. Maximum Inlet Pressure: 10 psig.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 2. Springs: Zinc-plated steel; interchangeable.
 7. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
 8. Maximum Inlet Pressure: 5 psig.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
 1. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION
A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
B. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.
C. Install fittings for changes in direction and branch connections.

3.4 INDOOR PIPING INSTALLATION
A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

The Club at Woodbridge
INDOOR ICE RINK
FACILITY NATURAL-GAS PIPING

T&M Project No: WOOD-00510

231123 - 9
E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations:

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.

 a. Exception: Tubing passing through partitions or walls does not require striker barriers.

3. Prohibited Locations:

 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.5 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.6 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:

1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
2. Cut threads full and clean using sharp dies.
3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
5. **Damaged Threads:** Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. **Welded Joints:**

2. Bevel plain ends of steel pipe.
3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. **Flanged Joints:** Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

F. **Flared Joints:** Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.7 **HANGER AND SUPPORT INSTALLATION**

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.8 **CONNECTIONS**

A. Connect to gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.10 PAINTING

A. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI EXT 5.1D.
 d. Color: Gray.

B. Paint exposed, interior metal piping, valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex semigloss.
 d. Color: Yellow.

2. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd semigloss.
 d. Color: Yellow.

C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.12 OUTDOOR PIPING SCHEDULE

A. Aboveground natural-gas piping shall be one of the following:
 1. Galvanized steel pipe with malleable-iron fittings and threaded joints up to 2 inch.
 2. Galvanized steel pipe with wrought-steel fittings and welded joints 2-1/2 inch and larger.

3.13 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 2.0 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints up to 2 inch.
 2. Steel pipe with wrought-steel fittings and welded joints 2-1/2 inch and larger.

3.14 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, non-lubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
2. Bronze plug valve.
3. Cast-iron, lubricated plug valve.

E. Valves in branch piping for single appliance shall be one of the following:

1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 1. Hot-water heating piping.
 2. Condensate-drain piping.

B. Related Sections include the following:
 1. Section 232123 "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.3 DEFINITIONS

A. PTFE: Polytetrafluoroethylene.

1.4 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be appropriate for the pressures and temperatures utilized on this project.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Plastic pipe and fittings with solvent cement.
 2. Pressure-seal fittings.
 3. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 4. Air control devices.
 6. Hydronic specialties.
7. Plastic pipe and fittings with solvent cement.

B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Welding certificates.

C. Field quality-control test reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.9 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PLASTIC PIPE AND FITTINGS

A. PVC Plastic Pipe: ASTM D 1785, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.

2.2 JOINING MATERIALS

A. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

B. Solvent Cements for Joining Plastic Piping:

1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 a. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.3 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Fittings: ASME B16.22.

1. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.

2. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated.
EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.

D. Copper or Bronze Pressure-Seal Fittings:
 1. Housing: Copper.
 2. O-Rings and Pipe Stops: EPDM.
 3. Tools: Manufacturer's special tools.
 4. Minimum 200-psig working-pressure rating at 250 deg F.

E. Wrought-Copper Unions: ASME B16.22.

2.4 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

H. Grooved Mechanical-Joint Fittings and Couplings:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Victaulic Company.
 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated
steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

3. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

I. Steel Pressure-Seal Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Victaulic Company.

 2. Housing: Steel.
 3. O-Rings and Pipe Stop: EPDM.
 4. Tools: Manufacturer’s special tool.
 5. Minimum 300-psig working-pressure rating at 230 deg F.

J. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.5 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

G. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. [Jomar International Ltd.](#)
 b. [McDonald, A. Y. Mfg. Co.](#)
 c. [Watts Regulator Co.; a division of Watts Water Technologies, Inc.](#)

2. **Description:**
 b. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. [Watts Regulator Co.; a division of Watts Water Technologies, Inc.](#)

2. **Description:**
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

2.7 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping."

B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230900 "Instrumentation and Control for HVAC."

C. Bronze, Calibrated-Orifice, Balancing Valves:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Taco.

2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
4. Plug: Resin.
5. Seat: PTFE.
6. End Connections: Threaded or socket.
8. Handle Style: Lever, with memory stop to retain set position.
10. Maximum Operating Temperature: 250 deg F.

D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Taco.

2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
5. Disc: Glass and carbon-filled PTFE.
6. Seat: PTFE.
7. End Connections: Flanged or grooved.
9. Handle Style: Lever, with memory stop to retain set position.
11. Maximum Operating Temperature: 250 deg F.

E. Diaphragm-Operated Safety Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
c. Bell & Gossett Domestic Pump; a division of ITT Industries.
d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
8. Inlet Strainer: removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

2.8 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett Domestic Pump; a division of ITT Industries.
4. Taco.

B. Manual Air Vents:

1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2.
7. Maximum Operating Temperature: 225 deg F.

2.9 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
B. Stainless-Steel Bellow, Flexible Connectors:

2. End Connections: Threaded or flanged to match equipment connected.
4. CWP Rating: 150 psig.
5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
 3. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

C. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.

B. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

C. Install check valves at each pump discharge and elsewhere as required to control flow direction.

D. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
E. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

M. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."

N. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

O. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

P. Identify piping as specified in Section 230553 "Identification for HVAC Piping and Equipment."

The Club at Woodbridge
INDOOR ICE RINK
HYDRONIC PIPING
Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Spring hangers to support vertical runs.

C. Install hangers for as indicated in details on the drawings.

D. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install air separator based on manufacturer’s installation instructions.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Section 230519 "Meters and Gages for HVAC Piping."

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113

BEBT Edited October 6, 2011
SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Centrifugal pumps.

1.3 DEFINITIONS
 A. Buna-N: Nitrile rubber.
 B. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
 B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

The Club at Woodbridge
INDOOR ICE RINK
HYDRONIC PIPING
1. Mechanical Seals: One mechanical seal(s) for each pump.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS

A. Refer to drawings for product performance data and Basis of Design.

2.2 PUMP SPECIALTY FITTINGS

A. Suction Diffuser (if required):
 1. Angle pattern.
 2. Bronze startup and bronze or stainless-steel permanent strainers.
 3. Bronze or stainless-steel straightening vanes.
 4. Drain plug.
 5. Factory-fabricated support.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

A. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

B. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

C. Equipment Mounting: Install base-mounted pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases specified in Section 033000 "Cast-in-Place Concrete."
 1. Coordinate sizes and locations of concrete bases with actual equipment provided.

The Club at Woodbridge
INDOOR ICE RINK
HYDRONIC PIPING
2. Construct bases to withstand, without damage to equipment, seismic force required by code.
3. Construct concrete bases 4 inches high and extend base not less than 6 inches in all directions beyond the maximum dimensions of base-mounted pumps unless otherwise indicated or unless required for seismic-anchor support.
4. Minimum Compressive Strength: 4000 psi at 28 days.

D. Equipment Mounting: Install base-mounted pumps on cast-in-place concrete equipment base(s) using restrained spring isolators. Comply with requirements for equipment bases specified in Section 033000 "Cast-in-Place Concrete." Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

1. Minimum Deflection: 1 inch.
2. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.
3. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of concrete base.
4. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
5. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
6. Install anchor bolts to elevations required for proper attachment to supported equipment.
7. Install on 4-inch high concrete base.

E. Equipment Mounting: Install base-mounted pumps using restrained spring isolators. Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

3.3 ALIGNMENT

A. Engage a factory-authorized service representative to perform alignment service.

3.4 CONNECTIONS

A. Where installing piping adjacent to pump, allow space for service and maintenance.
B. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
C. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
D. Install check, shutoff, and throttling valves on discharge side of pumps.
E. Install Y-type strainer or suction diffuser and shutoff valve on suction side of pumps.
F. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
G. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

H. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

I. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION 232123
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular ducts and fittings.
 2. Round ducts and fittings.
 4. Duct liner.
 5. Sealants and gaskets.
 6. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:
1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-
support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

T&M Project No: WOOD-00510

INDOOR ICE RINK
METAL DUCTS

The Club at Woodbridge
1. Galvanized Coating Designation: G60.
2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. CertainTeed Corporation; Insulation Group.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning.

2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

3. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.

 a. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick stainless steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.

C. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg) static-pressure class, positive or negative.

2.6 HANGERS AND SUPPORTS
A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
F. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.
PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Provide a minimum of 15'-0" of acoustic lining downstream of all air handling equipment.

J. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

K. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

L. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

The Club at Woodbridge
INDOOR ICE RINK
METAL DUCTS

T&M Project No: WOOD-00510 233113 - 7
C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
E. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).

2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.

3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.

5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.

7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:

The Club at Woodbridge
INDOOR ICE RINK
METAL DUCTS

T&M Project No: WOOD-00510 233113 - 9
1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.7 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.8 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.

B. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam

C. Liner:
1. Supply Air Ducts: Fibrous glass, Type I, 1 inch thick for fifteen feet from air handling unit connection.
2. Return Air Ducts: Fibrous glass, Type I, 1 inch thick for fifteen feet from air handling unit connection.
3. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch thick for fifteen feet from air handling unit connection.

END OF SECTION 233113
SECTION 233300 – AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backdraft and pressure relief dampers.
 3. Control dampers.
 4. Fire dampers.
 5. Flange connectors.
 6. Turning vanes.
 7. Duct-mounted access doors.
 8. Flexible connectors.

B. Related Requirements:
 1. Section 284600 "Fire Detection and Alarm" for duct-mounted smoke detectors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control-damper installations.
 d. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60.
2. Exposed-Surface Finish: Mill phosphatized.

B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2. Nailor Industries Inc.
3. Pottorff.
4. Ruskin Company.

B. Description: Gravity balanced.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. American Warming and Ventilating; a Mestek Architectural Group company.
 b. Flexmaster U.S.A., Inc.
c. McGill AirFlow LLC.
d. Nailor Industries Inc.
e. Pottorf.
f. Ruskin Company.
g. Trox USA Inc.
h. Vent Products Co., Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Provide 1” handle offset and end bearings.

2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. McGill AirFlow LLC.
3. Nailor Industries Inc.
4. Ruskin Company.

2.6 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

2. Nailor Industries Inc.
3. Ruskin Company.

B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 hours.

E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.

1. Minimum Thickness: 0.138 inch or 0.39 inch thick, as indicated, and of length to suit application.
2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

The Club at Woodbridge
INTERIOR BUILDING REHABILITATION
AIR DUCT ACCESSORIES

T&M Project No: WOOD-00496

233300 - 3
2.7 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Ductmate Industries, Inc.
 2. Nexus PDQ.
 3. Ward Industries; a brand of Hart & Cooley, Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.8 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Elgen Manufacturing.
 4. METALAIRE, Inc.
 5. SEMCO LLC.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.9 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventilating; a Mestek Architectural Group company.
 2. Ductmate Industries, Inc.
 3. Flexmaster U.S.A., Inc.
5. Nailor Industries Inc.
6. Potterff.
7. Ventfabrics, Inc.
8. Ward Industries; a brand of Hart & Cooley, Inc.

2.10 FLEXIBLE CONNECTORS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Ward Industries; a brand of Hart & Cooley, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

2.11 FLEXIBLE DUCTS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.
 3. Ward Industries; a brand of Hart & Cooley, Inc.

B. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 2. Maximum Air Velocity: 4000 fpm
 3. Temperature Range: Minus 20 to plus 210 deg F.
 4. Insulation R-value: Comply with ASHRAE 90.1.

C. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.
2.12 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

 1. On both sides of duct coils.
 2. Upstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Control devices requiring inspection.
 7. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.
J. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. Connect diffusers to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

N. Connect flexible ducts to metal ducts with draw bands.

O. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Operate fire dampers to verify full range of movement and verify that proper heat-response device is installed.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Diffusers
 2. Registers
 3. Grilles
 B. Related Sections:
 1. Section 233300 "Air Duct Accessories" for volume-control dampers not integral to
diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and
 performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location,
 quantity, model number, size, and accessories furnished.
 B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color
 finishes.
 C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes
 to verify color selected.

PART 2 - PRODUCTS

2.1 DIFFUSERS, REGISTERS, AND GRILLES
 A. Refer to drawings for performance and Basis of Design.
1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers and air extractors.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 233716 - FABRIC AIR-DISTRIBUTION DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes continuous, tubular, fabric air-distribution devices.
 B. Extent of non-metal ductwork is indicated on drawings and by requirements of this section.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 B. Building Code Data: Submit UL file number under which product is Classified by Underwriter’s Laboratories for both NFPA 90-A and UL 2518.
 C. Provide detailed drawings confirming configuration of Textile Dispersion System (diameter, lengths, airflow, pressure, and textile permeability).
 D. Provide detailed installation instructions for components to be installed.
 E. Provide warranty and maintenance documentation. (Must be full term and cover all components including threading, webbing, support attachments, zippers, hardware, as well as performance.)
 F. Samples for Initial Selection: For diffusers with factory-applied color finishes.
 G. Samples for Verification: For diffusers, in manufacturer's standard sizes to verify color selected.
 H. Diffuser Schedule: Use same designations indicated on Drawings. Indicate room location, quantity, model number, size, and accessories furnished.

1.4 QUALITY ASSURANCE
 A. Building Codes and Standards

The Club at Woodbridge
INDOOR ICE RINK
FABRIC AIR-DISTRIBUTION DEVICES
T&M Project No: WOOD-00510 233716 - 1
1. Product must be Classified by Underwriter’s Laboratories in accordance with the 25/50 flame spread / smoke developed requirements of NFPA 90-A and UL 2518.

2. All product sections must be labeled with the logo and classification marking of Underwriter’s Laboratories.

B. Design & Quality Control

1. Manufacturer must have documented design support information including duct sizing; vent, orifice, and/or nozzle location; vent, orifice, and/or nozzle sizing; length; and suspension. Parameters for design, including maximum air temperature, velocity, pressure and textile permeability, shall be considered and documented.

1.5 WARRANTY

A. Manufacturer must provide a 10 Year Product Warranty for products supplied for the fabric portion of this system as well as a Design and Performance Warranty.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protect textile air dispersion system and Hoops (IHS) components from damage during shipping, storage, and handling.

B. Where possible, store products inside and protect from weather. Where necessary to store outside, store above grade and enclose with a vented waterproof wrapping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product by Ductsox Corp. or comparable product.

2.2 TEXTILE AIR DISPERSION SYSTEM

A. SkeleCore Pull-Tight System: Air diffusers shall be constructed with both internal retention and external tensioning.

1. System shall consist of internal tensioning baskets with cable or track stops that externally tension the system off of the suspension system selected below along with 360-degree internal retention hoops that are spaced 5’ on center between tensioning baskets.

2. Tensioning baskets are designed to self-lock when tension is applied to the system.
3. All straight sections utilize both internal retention hoops and external tensioning with the use of the tension baskets, all fittings (crosses, elbows, reducers, and tees) utilize internal retention hoops.

4. Distance between consecutive tensioning baskets should not be more than 40’.

5. System shall be installed with a one row suspension system located 1.5” above top-dead-center of the textile system.

6. System attachment to cable or U-Track shall be made using Gliders spaced no further than 12 inches apart.

7. Available for diameters from 8” – 60”.

8. One row suspension options
 a. Cable suspension hardware to include cable, eye bolts, thimbles, cable clamps, and turnbuckle(s) as required.
 1. Cable suspension options
 a. Galvanized steel cable
 b. Stainless steel cable
 b. U-Track suspension hardware to include 8’ sections of aluminum track, aluminum splice connectors, track endcaps and vertical cable support kits – consisting of a length of cable with cable connectors. Radius aluminum track must be included for all horizontal/flat radius sections.
 1. U-Track suspension options
 a. Galvanized steel cable
 b. Stainless steel cable

B. TEXTILE

1. TufTex
 a. Textile Construction: Woven polyester with non-permeable coating, fire retardant in accordance with UL 2518.
 b. Weight: 8.2 oz./yd² per ASTM D3776
 c. Air Permeability: 0 CFM/ft² per ASTM D737, Frazier
 d. Warranty: 15 years

2. Textile Color
 a. Standard: blue, white, tan, red, green, silver, black.
 b. Color options to be submitted to Owner for selection/approval.

The Club at Woodbridge
INDOOR ICE RINK
FABRIC AIR-DISTRIBUTION DEVICES
T&M Project No: WOOD-00510 233716 - 3
C. TEXTILE SYSTEM FABRICATION REQUIREMENTS:

1. Textile system to be constructed in modular lengths (zippered) with proper radial securing clips along the length of the system.

2. Integrated air dispersion shall be specified and approved by manufacturer.

 a. Linear Vents

 1. Air dispersion accomplished by engineered linear vent and permeable fabric. Linear vents for Basis-of-Design product sized in 1 CFM per linear foot increments (based on .5” SP), starting a 1 CFM through 90 CFM per linear foot. Linear vent consists of strategically engineered open orifices rather than a mesh style or sonic vent to reduce maintenance requirements of mesh and sonic style vents. Venting designed to minimize dusting on fabric surface.

 2. Size of vent openings and location of linear vents to be specified by manufacturer and approved by Engineer of record.

 b. Orifices

 1. Air dispersion and extended throws are accomplished by orifices. Dispersion orifice sizing, up to 5 inch diameter (design dependent).

 2. Diameter, quantity, and location of reinforced orifices to be specified and approved by manufacturer.

 3. Inlet connection to metal duct via fabric draw band with anchor patches as supplied by manufacturer. Anchor patches to be secured to metal duct via zip screw fastener – supplied by contractor.

 4. Inlet connection includes zipper for easy removal / maintenance.

 5. Lengths to include required intermediate zippers as specified by manufacturer.

 6. System to include Adjustable Flow Devices to balance static regain, turbulence, airflow and distribution as needed. Flow restriction device shall include ability to adjust the airflow resistance from 0.06 – 0.60 in w.g. static pressure.

 7. End cap includes zipper for easy maintenance.

 8. Each section of the textile shall include identification labels documenting order number, section diameter, section length, piece number, code certifications and other pertinent information.

D. DESIGN PARAMETERS:
1. Textile air diffusers shall be designed from 0.25” water gage minimum to 3.1” maximum, with 0.5” as the standard.

2. Textile air diffusers shall be limited to design temperatures between 0 degrees F and 180 degrees F (-17.8 degrees C and 82 degrees C).

3. System overall design; diameter, length, airflow, operating static pressure and dispersion shall be designed or approved by the manufacturer.

4. Do not use textile diffusers in concealed locations.

5. Use textile air dispersion systems only for positive pressure air distribution components of the mechanical ventilation system.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install suspension system in accordance with the requirements of the manufacturer. Instructions for installation shall be provided by the manufacturer of the product.

B. Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. Where architectural features or other items conflict with installation, notify Engineer for a determination of final location.

3.2 CLEANING AND PROTECTION

A. Clean air handling units and existing ductwork serving the Gymnasium. Clean external surfaces of foreign substance which may be corrosive deterioration of facing.

B. Temporary Closure: At ends of ducts which are not connected to equipment or distribution devices at time of ductwork installation, cover with polyethylene film or other covering which will keep the system clean until installation is complete.

C. If the fabric ductwork becomes soiled during installation, it should be removed and cleaned following the manufacturer’s standard terms of laundry.

END OF SECTION 233716
SECTION 234300.11 – BI-POLAR IONIZATION SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bi-polar Ionization Units

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For each bi-polar ionization unit.
 1. Show mounting plate, ion tube(s), ion generator, airflow switches, and other accessories.

C. Field quality-control reports.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. The bi-polar ionization system shall comply with the following classifications:
 1. UL 1995 classification
 2. UL 867 classification
 3. UL 2043 classification

B. The system shall have been independently tested to ANSI/AHAM AC-1 2002 and provide a
 minimum performance of 125 Dust CADR (Clean Aire Delivery Rate). The manufacturer of
 the equipment shall furnish proof of testing.

C. The system shall be tested to comply with UL 867 Standard 40 Revision 2103 with respect to
 ozone emission. Proof of compliance by a certified independent laboratory test shall be
 furnished by the manufacturer.

D. The system shall have been independently tested to show a 99% reduction effectiveness on
 gram negative and gram positive bacteria and MS2 virus. The manufacturer of the equipment
 shall furnish proof of testing.
The system shall be designed to increase ionization levels in the areas served by the air handling systems. System commissioning shall include ion level measurements to ensure that an increase between 500 and 1,500 ions cm³ has been achieved.

Needlepoint ion generators and glass ion tubes shall not be accepted.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design: Subject to compliance with requirements, provide Bi-Polar Ionization System by AtmosAir, or approved equal.

B. Refer to drawings for basis-of-design performance requirements.

2.2 ION TUBES

A. Ion tubes shall not require a preheat protection when the relative humidity of the entering air exceeds 85%. Relative humidity from 0-99% shall not cause damage, deterioration, or dangerous conditions with the air purification system.

B. Ion tubes shall be rated at 200°F.

C. Each ion generator shall be capable of providing an adjustable voltage output to the electrodes of between 2,000 and 3,000 VAC by means of an internal transformer.

D. Each unit shall include the required number of electrodes and power generators sized to the air handling unit capacity and contaminant conditions.
 1. Electrodes shall be installed with insulators to create the required dielectric. Glass Ion Tubes shall not be accepted.
 2. The dielectric shall consist of suitable inorganic non-corrosive insulation material so that the presence of water vapor, gasses or airborne particles will not affect the dielectric value.
 3. Electrodes of ferrous or copper composition with or without plating are not acceptable due to uncontrolled corrosion. Each electrode shall be capable of 100 cfm of airflow per inch of electrode. Electrodes that do not conform to this specification shall not be accepted. Electrodes shall also be rated to 200°F.

2.3 ELECTRICAL REQUIREMENTS

A. Electrodes and power generators shall be installed on the duct with a single point power connection, with quick disconnect.
PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install units in accordance with the manufacturer’s installation instructions.

3.2 START-UP AND TRAINING
 A. A manufacturer’s authorized representative shall provide start-up supervision and training of owner’s personnel on the proper operation and maintenance of the equipment.

3.3 WARRANTY
 A. Provide two (2) year manufacturer’s warranty on system.

END OF SECTION 234300.11
SECTION 237413 - PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:

1. Direct-expansion cooling.
2. Gas furnace.
3. Economizer outdoor- and return-air damper section.
4. Power exhaust section
5. Energy recovery wheel
6. Integral, space temperature controls.
7. Roof curbs.

1.2 DEFINITIONS

A. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

B. Supply-Air Fan: The fan providing supply-air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

C. VVT: Variable-air volume and temperature.

1.3 PERFORMANCE REQUIREMENTS

A. Refer to schedules on mechanical drawings for equipment basis of design performance requirements.

1.4 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.5 INFORMATIONAL SUBMITTALS
 A. Field quality-control test reports.
 B. Warranty.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.7 QUALITY ASSURANCE
 A. ARI Compliance:
 1. Comply with ARI 203/110 and ARI 303/110 for testing and rating energy efficiencies for RTUs.
 2. Comply with ARI 270 for testing and rating sound performance for RTUs.
 B. ASHRAE Compliance:
 1. Comply with ASHRAE 15 for refrigerant system safety.
 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
 C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."
 D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.
 E. UL Compliance: Comply with UL 1995.
 F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.8 WARRANTY
 A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.

The Club at Woodbridge
INDOOR ICE RINK
PACKAGED, OUTDOOR, CENTRAL-STATION AIR HANDLING UNITS
T&M Project No: WOOD-00510 237413 - 2
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. AAON.
2. Daikin.
3. YORK; a Johnson Controls company.

2.2 CASING

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

1. Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked enamel finish. Unit's surface shall be tested 1000 hours in a salt spray test in compliance with ASTM B117. Unit shall have a 2 inch thick Antimicrobial Insulation. All insulation edges shall be either captured or sealed. The unit's base pan shall have no penetrations within the perimeter of the curb other than the raised downflow supply/return openings to provide an added water integrity precaution, if the condensate drain backs up.

C. Condensate Drain Pans: Formed sections of stainless-steel sheet, a minimum of 2 inches deep, and complying with ASHRAE 62.1.

1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
2. Drain Connections: Threaded nipple on both sides of drain pan.
3. Pan-Top Surface Coating: Corrosion-resistant compound.

D. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.3 FANS

B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.
C. Fan Motor: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.4 COILS
A. Supply-Air Refrigerant Coil:
 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 2. Coil Split: Interlaced.

2.5 REFRIGERANT CIRCUIT COMPONENTS
A. Number of Refrigerant Circuits: Two.
B. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.
C. Refrigeration Specialties:
 1. Refrigerant: R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.

2.6 ENERGY RECOVERY WHEEL
A. Energy recovery wheel performance shall be AHRI 1060 certified and bear the AHRI certified label.
B. The rotor media shall be light weight and must be made of aluminum. Paper or fibrous media are not acceptable.
C. All surfaces must be coated with a nonmigrating adsorbent layer of desiccant prior to being formed into the media structure to ensure that all surfaces are coated and that adequate latent capacity is provided.
D. The desiccant must be a 3A molecular sieve designed for the adsorption of water vapor. The media shall be cleanable by vacuuming the media surface, without degrading the latent recovery. Dry particles up to 800 microns shall pass freely through the media.
2.7 AIR FILTRATION

A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.

2.8 GAS FURNACE

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
 1. CSA Approval: Designed and certified by and bearing label of CSA.

B. Burners: Stainless steel.
 1. Fuel: Natural gas.
 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

C. Heat-Exchanger and Drain Pan: Stainless steel.

D. Power Vent: Integral, motorized centrifugal fan interlocked with gas valve.

E. Safety Controls:
 1. Gas Control Valve: Modulating.

2.9 DAMPERS

A. Outdoor-Air Damper: Linked damper blades, for 0 to 25 percent outdoor air, with motorized damper filter.

B. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
 1. Damper Motor: Modulating with adjustable minimum position.
 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.

2.10 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

B. Unit mounted prewired convenience outlet

PACKAGED, OUTDOOR, CENTRAL-STATION AIR HANDLING UNITS

The Club at Woodbridge
INDOOR ICE RINK

T&M Project No: WOOD-00510 237413 - 5
2.11 CONTROLS

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC."

B. DDC Controller:

1. Controller shall have volatile-memory backup.

2. Safety Control Operation:
 a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire alarm control panel.
 b. Fire Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 283111 "Digital, Addressable Fire-Alarm System" and Section 283112 "Zoned (DC Loop) Fire-Alarm System."

3. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.

4. Unoccupied Period:
 a. Heating Setback: 10 deg F.
 c. Override Operation: Two hours.
 d. Night setback and morning warmup

5. Supply Fan Operation:
 a. Occupied Periods: Run fan continuously and operate to maintain system static pressure for VAV operation.
 b. Unoccupied Periods: Cycle fan to maintain setback temperature.

6. Refrigerant Circuit Operation:
 a. Occupied Periods: Cycle or stage compressors to match compressor output to cooling load to maintain room temperature. Cycle condenser fans to maintain maximum hot-gas pressure.
 b. Unoccupied Periods: Compressors off.

7. Gas Furnace Operation:
 a. Occupied Periods: Stage burners during morning warmup and night setback stages.
 b. Unoccupied Periods: Cycle burner to maintain setback temperature.

8. Fixed Minimum Outdoor-Air Damper Operation:
 a. Occupied Periods: Open to 25 percent.
 b. Unoccupied Periods: Close the outdoor-air damper.

9. Economizer Outdoor-Air Damper Operation:
a. Occupied Periods: Open to 25 percent (adjustable) fixed minimum intake, and maximum 100 percent of the fan capacity to comply with ASHRAE Cycle II. Controller shall permit air-side economizer operation when outdoor air is less than 60 deg F. Use outdoor-air enthalpy and return-air enthalpy to adjust mixing dampers. Start relief-air fan with end switch on outdoor-air damper. During economizer cycle operation, lock out cooling.

b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.

10. VVT Relays:

a. Provide heating- and cooling-mode changeover relays compatible with VVT terminal control system required in Section 230900 “Instrumentation and Control” and

C. Interface Requirements for HVAC Instrumentation and Control System:

1. Interface relay for scheduled operation.
2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
3. Provide BACnet compatible interface for central HVAC control workstation for the following:
 a. Adjusting set points.
 b. Monitoring supply fan start, stop, and operation.
 c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity.
 d. Monitoring occupied and unoccupied operations.

2.12 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

C. Hail guards of galvanized steel, painted to match casing.

2.13 ROOF CURBS

A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
 b. Thickness: 1 inch
2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C 916, Type I.

B. Curb Height: 14 inches

C. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for wind-load requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting:
 1. Install RTUs on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

B. Roof Curb: Install RTUs on roof curb provided by manufacturer and coordinate roof penetrations and flashing with roof construction.

C. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.

D. Install piping adjacent to RTUs to allow service and maintenance.
 1. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Tests and Inspections:
 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safety systems. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.3 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

END OF SECTION 237413
SECTION 238400 - DESICCANT DEHUMIDIFICATION UNITS

PART 1: GENERAL

1.1 SUMMARY
 A. This section includes factory designed, assembled, tested and packaged desiccant dehumidification units
 B. The unit shall be designed specifically for indoor or outdoor mounting, as specified, and have a clean rectangular silhouette.
 C. The unit shall be designed for curb mounting.

1.2 PERFORMANCE
 A. The unit shall be designed specifically to meet the unique dehumidification and ventilation requirements of this application.
 B. Desiccant rotor shall be sized for full airflow capacity, without the necessity for bypass airstreams, unless required by specific project requirements.

1.3 SUBMITTALS
 A. Data to be provided:
 1. Certified fan-performance curves with system operating conditions indicated.
 2. Certified fan-sound power ratings
 3. Certified coil-performance ratings with system operating conditions indicated.
 4. Motor ratings, electrical characteristics, motor and fan accessories
 5. Material gauges and finishes.
 6. Filters and their performance characteristics
 7. Dampers, including housings linkages, and operators
 8. Control components.
 9. Enthalpy rotor performance data with system operating conditions
 10. Desiccant rotor performance data with system operating conditions
 11. Include manufacturer detailing dimensions, required clearances, components, shipping splits, unit weight, method of field assembly, and location and size of each field connection.
 12. Utility requirements: gas, steam, electrical, etc…
 13. Airflow static pressure drops for each component.
 14. Owner and contractor responsibilities list that details field installation requirements to communicate activities that are to be field coordinated, provided, and supplied by others.
 B. Submittal Data Availability:
 1. All submittal data shall be available electronically. Plan and elevation views of the units shall be in scale and shall be complete with internal scaled components.

The Club at Woodbridge
INDOOR ICE RINK
DESICCANT DEHUMIDIFICATION UNITS

T&M Project No: WOOD-00510 238400 - 1
1.4 QUALITY CONTROL
 A. The unit assembly shall carry an ETL Label and be constructed in accordance to UL 1995 and ANSI Z83.8. All features and options shall be included in the listing, including controls shipped loose.

 B. Manufacturer’s Qualifications:

 1. Manufacturer shall have a minimum of 10 years experience producing substantially similar equipment, and shall be able to show evidence of at least 100 installations in satisfactory operation for at least 5 years.

1.5 DELIVERY, STORAGE, AND HANDLING

 A. Delivery of Units:

 1. Deliver units to the Site to ensure uninterrupted progress of the work.
 2. Comply with manufacturer’s recommendations for rigging of equipment.

 B. Storage of Units:

 1. Units that are stored in an outdoor environment prior to installation will require the Contractor to provide protection from outdoor weather elements.
 2. Store all units in such a manner as to permit easy access for unit inspection and/or identification. Keep all units off the ground, using pallets, platforms, or other supports.

 C. Acceptance at Site:

 1. All boxes, crates and packages shall be inspected by Contractor/customer upon delivery to the Site. Contractor/customer shall note any damage or missing components on the Bill of Lading from the carrier at time of delivery. Contractor/customer shall also notify Manufacturer’s Representative in writing, if any damaged equipment or lost components exist.

1.6 WARRANTY

 A. Manufacturer's standard form in which manufacturer agrees to replace components of desiccant air handling unit that fail in materials or workmanship within specified warranty period.

 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.

PART 2: PRODUCTS

2.1 MANUFACTURERS

 A. Refer to drawings for performance requirements and basis-of-design equipment.

2.2 UNIT CONSTRUCTION (2” DOUBLE WALL)

 A. DOUBLE WALL

 1. Base frame shall be a single frame construction for supporting the casing and internal components.

The Club at Woodbridge
INDOOR ICE RINK
DESICCANT DEHUMIDIFICATION UNITS

T&M Project No: WOOD-00510 238400 - 2
2. The casing walls and roof assemblies shall be constructed as a double wall design with the exterior and interior components mechanically attached and shall make up the insulated self supporting casing.
3. Casing wall penetrations shall be provided with a finished cover plate both on the interior and exterior of the unit casing. Additionally, any conduit passing through the unit casing shall be sealed to prevent air leakage.

B. BASE FRAME CONSTRUCTION

1. Units to have an electrically welded structurally formed 12 gauge G-90 galvanized steel base frame. All frames to be suitably reinforced and braced to permit the loading, shipping, unloading and rigging to the installation location. All frames are suitable for general handling of the completed sections without damage or misalignment to the external and internal components.
2. Lifting lugs sets shall be provided on the base. Lifting lug distance shall not exceed a distance of 100” on center.
3. The floor assembly shall be 16 gauge and 20 gauge G-90 galvanized sheet steel for the top and bottom of the floor deck, respectively. Fiberglass insulation 4” minimum nominal thickness shall be used to insulate the base. Minimum 4” deep 12 gauge formed channels shall be used in the floor for support. This floor shall sustain the equipment loading and normal maintenance loading for the unit.

C. CASING CONSTRUCTION

1. Exterior and interior wall panels shall be a minimum of 16 gauge and 20 gauge G-90 galvanized steel, respectively. The panels shall be fabricated into self-framing, double standing seam type construction. The panels shall form a self-framing casing with no additional structural support required. All joints shall be caulked airtight with a, food grade, RTV silicone sealant.
2. Exterior roof deck panels and interior roof liner shall be a minimum of 16 Gauge and 20 gauge G-90 galvanized steel, respectively. The roof shall have a minimum of 1 ½” standing seams securely fastened at intervals not exceeding 12 inches, caulked and sealed.
3. All wall and roof assemblies shall be insulated with 2” thick 3.0# density rigid fiberglass that is rot-proof and non-combustible. The 2” fiberglass insulation shall conform to 25/50 (per ASTM E 84 and UL 723 and CAN/ULC S102-M88). Meets NFPA 90A and 90B.
4. Rigid urethane board of 1.8” thickness is available. The insulation shall have a total R-Value not less than 9 for fiberglass insulation and 12 for rigid urethane board insulation. The 1.8” urethane board shall conform to ASTM C 1289, Type II, Class 1, FM Standard 4450/4470, UL 1256, UL Standard 790 (ASTM E 108) and UL Standard 263 Fire Resistance Classification (ASTM E 119).
5. All joints shall be caulked airtight with a sealant that is 100% Pure RTV (room temperature vulcanizing) silicone with a temperature range of -50F to 450F.
6. Closures around all components shall be provided and made airtight and be of minimum 16 Gauge thickness, G-90 galvanized steel.
7. Wall panels to use silicone caulk for sealing and adhesive properties. Gaskets shall not be used to seal wall panels.
D. ACCESS DOOR CONSTRUCTION

1. Access doors in the unit housing shall be provided to permit ready access to internal components. The access doors shall be provided with an inner sheet of 24 gauge, G-90 galvanized steel to protect the insulation. The exterior of the access doors shall also be 24 gauge G-90 galvanized steel. The doors shall be designed to swing against the fan static pressure in all sections; outward on negative pressurize sections and inward on positive pressure sections.

2. The doors shall be provided with heavy-duty stainless steel hinges and operable from both the exterior and interior of the unit.

3. Door latches are linked on units over 68” tall, provided the access doors are 46” or taller. This allows the doors to be opened without the use of a ladder. This also ensures complete sealing of the door.

4. Extruded aluminum frames around the perimeter of the doors shall be provided.

5. A continuous EPDM gasket is to be used on the access door frame for maximum air and water seal tightness. Gasket is to be field replaceable.

6. On outdoor units, an access door hook shall be provided on internal electrical and piping vestibule doors. This door hook assembly is manually operated.

7. When access panels are furnished in lieu of access doors, double wall access panels shall be fabricated from a minimum of 16 gauge, G-90 galvanized steel, and mechanically fastened to the unit structure.

2.3 OUTSIDE AIR INLET HOODS

A. Outside air source shall be furnished with either multiple or a single hood and bird screen which shall be sized for no more than 500 fpm at 100% of the system outside air volume.

B. Hoods and bird screen shall be manufactured of a minimum of 16 gauge, G-90 galvanized steel. “Chicken wire” is not acceptable.

2.4 DAMPERS

A. Damper frames and blades primarily shall be 16 gauge galvanized steel with plated steel linkages and shafts to ensure a long corrosion free life.

B. The blades shall be a minimum of 16 gauge galvanized steel with a maximum single blade dimension of 7” x 48”. Blades shall be of rigid design with minimal twisting, flexing or vibration at the design velocities.

C. Blade-to-blade linkage is concealed in the frame and out of the airstream to protect linkage as well as reduce pressure drop and noise. Linkage is engineered to accurately control each and every blade without need for adjustment.

D. Axles are 1/2 in. diameter square plated steel positively locked to the blades to eliminate slippage between blades and axles. Stainless steel bearings rotate in a polished extruded frame raceway.

E. Dampers shall have extruded TPE blade seals and “arc” jamb seals which shall be flexible stainless steel compression type. Leakage shall be minimum Class 1 per ANSI/AMCA 500-D.

F. Damper to be provided with appropriately sized motorized actuator.
2.5 PRE-FILTERS

A. Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic media blend, media support grid, and enclosing frame.

B. Construction

1. Filter media shall be a cotton and synthetic blend, lofted to a uniform depth, and formed into a uniform radial pleats. There shall be at least 10 pleats per linear foot for 2” thick and 9 pleats per linear foot for 4” thick filters.
2. A welded wire grid, spot-welded on centers and treated for corrosion resistance, shall be bonded to the downstream side of the media to maintain the radial pleat and prevent media oscillation.

C. Performance

1. The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2.2007.
2. Initial resistance to 500 fpm airflow shall not exceed 0.28” W.C. for a 2” filter.
3. The filter shall be classified by Underwriters Laboratories as UL Class 2.
4. Manufacturer shall provide evidence of facility certification to ISO 9001:2000 or higher.

2.6 HOT WATER COILS

A. Coils shall be of face area, rows and materials as indicated on the schedule.

B. The hot water heating coils shall be constructed of 0.020” 5/8” seamless copper tube mechanically expanded into die formed full height collars in the fins. Fins are to be 0.008” thick aluminum.

C. The casing and tube sheets shall be a minimum of 16 gauge galvanized steel.

D. The coils shall have no more than 7 fins per inch.

E. Copper Tube Coils are standard and shall be tested under water at a minimum of 350 PSIG.

F. The maximum face velocity of the air passing over the coil shall not exceed 750 feet per minute.

2.7 INDIRECT FIRED HEATER SECTION

A. The Duct Furnace module shall be indirect fired and comply with the current edition of ANSI Z83.8 Standard for Gas-Fired Duct Furnaces and be a Recognized Component by Intertek Testing Services ETL. Heaters shall be manufactured by Heatco, Inc., Cartersville, Georgia, USA.

B. The Duct Furnace module shall employ patented in-shot gas burners with integral carryovers, a tubular heat exchanger assembly, a two speed draft inducer to provide for positive venting of flue gases, air pressure switches to provide proof of air supply for combustion, direct spark ignition of the gas burners with remote flame sensor to prove carryover across all burners, an automatic reset type high limit switch to limit maximum outlet air temperature to less than 250 of, manual reset flame rollout switches and a two stage redundant safety shut-off gas valve which regulates gas pressure to burner supply manifold.
C. Duct Furnace heat exchanger tubes (Type 409 Stainless Steel .044 Min. Wall thickness produced to ASTM A268) shall incorporate patented integral formed dimple restriction to eliminate noise associated with expansion and contraction of internal flueway baffles during heating cycles.

D. Duct Furnace modules shall be listed for application downstream of refrigeration and cooling systems and shall provide means for removal of condensate that occurs in the tubes during cooling operation.

E. Heat exchanger tubes shall have the dimpled restrictors formed to provide for an unobstructed drainage path and tubes shall be formed to provide a positive pitch to promote condensate drainage. Drainage shall be configured so that burners and burner surfaces are not exposed to condensate.

F. Duct Furnace shall incorporate a Direct Spark Ignition control module which is design certified by a recognized national testing agency.

G. The control shall incorporate a 30 second minimum pre-purge period prior to trial for ignition and a 0.8 second flame failure response time. The control shall provide for up to 3 ignition retrials, each preceded by an interpurge period. Control shall provide for automatic reset after one hour, to initiate additional ignition trials if lockout occurs during a call for heat. The control shall incorporate an LED indicator light to provide a flash code to identify the operating condition of the control and conditions preventing normal operation of the ignition system should they occur.

H. The Duct Furnace shall employ a two-stage control system capable of a proven low-fire ignition sequence that minimizes the noise associated with cold start conditions. On a call for heat by the two-stage room thermostat, the control system shall initiate a low fire start sequence at 55% of its maximum input rating.

2.8 DESICCANT DEHUMIDIFICATION SYSTEM

A. Desiccant Rotor

1. The desiccant rotor shall be assembled and installed by the unit manufacturer in the same facility to control quality.
2. The desiccant shall be made “in-the-flute” encapsulating the fiberglass substrate.
3. The rotor shall be both washable and non-shedding. Rotors shall be capable of withstanding cleaning by vacuum cleaner, with a water or, water and detergent wash.
4. The substrate shall be manufactured with a fiberglass matrix meeting the International Agency for Research on Cancer (IARC) standards for non-respirable fibers.
5. The fiberglass substrate shall provide the structural support for the desiccant. The fiberglass substrate shall be combined with desiccant to form the dehumidifier rotor. The desiccant shall be self-bonding to the substrate and to itself through the substrate voids filling in all the voids in the substrate and shall totally encapsulate the fiber.
6. The desiccant dehumidification rotor shall be assembled from smooth and corrugated sheets of fiberglass substrate interleaved in a winding to form the rotor creating a large number of axial passages through which the air flows.
7. Where a face and by-pass damper arrangement is indicated the performance shall meet the dew point values of the mixed air downstream of the face and by-pass section.

The Club at Woodbridge
INDOOR ICE RINK
DESICCANT DEHUMIDIFICATION UNITS

T&M Project No: WOOD-00510

238400 - 6
8. Rotor surfaces shall be ground smooth and coated for long seal life.
9. Rated lifetime shall not be less than (87,600) hours and shall be defined by media performance meeting >90% of original specification.
10. Desiccant media is to have a Smoke Developed Index of 0 and a Flame Spread Index of 0 as tested according to ASTM E84.
11. Rotors that are 54” and larger shall have field adjustable a media tightening mechanism.

B. Desiccant Rotor – Cassette Frame
1. DH rotor cassette frames shall be manufactured from 304 tubular stainless steel. All welds shall be reasonably ground and dressed for appearance. Structural welds shall be continuous and non-structural welds shall be on 4” centers.
2. Cassette face panels and other sheet steel components shall be manufactured from 304 stainless steel material.

C. Desiccant Rotor – Drive System
1. DH Rotor Drives shall be equipped with harden carbon steel ANSI drive sprocket, nickel plated corrosion resistant drive chain and spring type automatic chain tension device.
2. For ease of maintenance and chain alignment the gearmotor shall be fastened to a 304 stainless steel gearmotor plate which is fastened onto the cassette frame with standard hardware.
3. The drive assembly shall be equipped with a rotation detection circuit which shuts down the dehumidifier and signals the operator through an indicating light on the control cabinet if the wheel is not rotating.

D. Desiccant Rotor – Seals
1. Seals are to be extruded FKM fluoropolymer. Rotor seals are rated for lifetime use (87,600 hours). Rotor seals shall be rated for 400°F continuous temperature rating. Bulb type seals are not allowed.
2. Low friction tape is to be used as the complementary seal material to the Teflon seal mentioned above. The tape shall have an operating temperature range from -65°F to 500°F.
3. If additional sealing material is needed in the rotor assembly it is to be made of 100% Pure RTV silicone is a one-component caulking material that has temperature ranges of -50°F to 450°F.
4. Rotor dividing seals contact the face of the Desiccant Rotor media to seal between the process and reactivation airstreams. Standard hardware shall fasten the dividing seals flanges to the cassette frame partitions and pop rivets shall not be used.
5. All other areas that have a potential for air bypass shall be RTV silicone sealed, this shall eliminate and ensure that no air bypasses the rotor cassette assembly.

E. Reactivation – Direct Fired Burner
1. The reactivation heat source shall be full-modulation direct-fired gas. The capacity of the burner shall be sufficient to provide scheduled performance.
2. The gas burner shall be suitable for burning with a modulating turn-down ratio of 20:1. The gas burner shall have stainless steel baffles and non-clogging gas orifices. The burner assembly and complete pre-piped manifold shall include main and pilot gas regulators, main motorized fuel valve, 2 main safety shut off valves, pilot solenoid valve, main and pilot gas hand valves and manually adjustable burner air flow profile plates. A butterfly type gas valve is not acceptable due to poor control characteristics.

3. Pilot gas shall be automatically lit after a seven-second pre-purge timing by a spark rod that utilizes a 6,000 volt ignition transformer. After a proven flame by the flame rod, the main burner valve(s) open.

4. The gas burner shall be rated at no more than 390 MBH per foot of burner length, in order to limit flame length, and minimize the generation of carbon monoxide.

5. The control safety circuit shall include, but not be limited to: air flow proving device, high temperature limit switch, electronic primary flame safeguard with flame rod rectification, red alarm light to indicate flame failure, microprocessor rate controller, reactivation fan motor starter interlock and seven second combustion area pre-purge. Complete assemblies shall be pre-piped, wired, and tested.

6. Single point reactivation leaving air temperature controls are not acceptable.

7. The direct-fired burner shall have capacities as indicated on the schedule.

8. A baffle shall be used between the direct fired burner and the desiccant rotor to prevent damage to the rotor.

F. Reactivation – Outlet Tunnel

1. The outlet tunnel casing shall be double insulated wall constructed of a minimum of 16 gauge interior panels, exterior panels, interior tunnel flooring and 16 gauge interior liners. The interior tunnel flooring shall incorporate a pan with drains. The panels shall form a self-framing casing with no additional structural support required. All joints shall be caulked airtight with silicone sealant. The interior panels, interior liner and the interior tunnel flooring material shall be 304 stainless steel.

2. The outlet tunnel casing shall be insulated with 3.0# per sq. ft. rigid, rot-proof, non-combustible glass fiber insulation.

3. The fiberglass insulation shall conform to 25/50 (per ASTM E 84 and UL 723 and CAN/ULC S102-M88). Meets NFPA 90A and 90B.

4. All joints shall be caulked airtight with silicone sealant.

5. The outlet tunnel drain pan shall have a fabricated drainage connection protruding through the floor for the purpose of condensation drainage to the unit exterior.

6. Closures around all interior components shall be provided airtight. Closures shall be exceptions but primarily of the same material used in the outlet tunnel interior and shall provide solid close-off inside of the outlet tunnel walls. No air bypass or leakage around the components will be allowed.

7. For ease of rotor shaft and bearing maintenance an access panel of the same material used in the tunnel exterior shall be provided and mounted in the bottom corner located by the rotor axis.

8. Reactivation outlet hood and bird screen are to be made of punched 16 gauge 304 stainless steel.

G. Reactivation – Fan and Motor

1. Reactivation air fan shall be single width, single inlet, airfoil type direct drive wheel and fabricated of aluminum to minimize the potential for corrosion.
2. Fan inlet cone shall be of aluminum construction.
3. Motors shall be TEFC, NEMA premium efficiency, at the scheduled voltage, 3 phase, 60 Hertz
4. Motor horsepower shall be as indicated on the schedule.
5. Fan and motor shall be dynamically balanced as an assembly at the factory to balance value BV-3 per AMCA 204 or 0.15 IPS.
6. Reactivation motor shall be completely isolated from the reactivation air stream by means of a shaft sealing plate.

H. Reactivation – Outlet Damper
1. Outlet system balancing damper is to be fabricated of 304 stainless steel material with lockable adjustment.

I. Microprocessor Reactivation Rate Controller (RRC) (Internal to unit DDC)
1. The microprocessor controller shall control the unit’s reactivation rate, and safeguard functions.
2. Reactivation energy shall be controlled as follows:
 a. Desiccant reactivation temperature shall be maintained at optimum temperature for maximum dehumidification performance regardless of outdoor temperature or filter loading.
 b. With diminished reactivation airflow (i.e. dirty filters) desiccant reactivation temperature shall be limited to prevent rotor overheat.
 c. On gas or electric reactivation units, as the moisture load decreases, the reactivation outlet temperature be controlled to ensure efficient operation. Reactivation rate control that uses a single temperature sensor in the reactivation outlet airstream is NOT acceptable.
 d. Fail-Safe Mode: In order to preserve limited performance, on gas or electric reactivation units, if the desiccant reactivation inlet sensor fails the energy modulation shall be set to 50% or less and if the reactivation outlet sensor fails, desiccant reactivation inlet shall maintain a set-point of 260˚F. On steam units if the reactivation outlet sensor fails, the react fan VFD will be set to 100%.
 e. On gas or electric reactivation units, to prevent excessive heat on the rotor and seals, the unit shall be equipped with a manually reset high temperature limit downstream of the reactivation heat source and upstream of the desiccant rotor. When tripped the reactivation heat source shall cycle off.
 f. Adequate reactivation energy shall be proven via reactivation outlet temperature. If the reactivation outlet fails to achieve a minimum temperature set-point over a set period, the controller shall signal a low reactivation outlet temperature warning. The unit shall continue to run.
 g. Lack of desiccant rotor rotation shall be detected and shutdown initiated in the event of an abnormal condition.
 h. On gas or electric reactivation units, the reactivation fan shall remain on for two minutes after the reactivation is disabled to allow for proper cool down of the reactivation tunnel.

2.9 SUPPLY FAN AND MOTOR
A. Belt Drive Plenum Fans
1. Belt drive fans shall be airfoil type plenum fans.
2. Fan inlet cone shall be of steel construction.
3. The fan wheels shall be supported by two outboard bearings which shall be of a self-aligning, ball bearing, pillow block type and shall be designed for at least 200,000 hours L50 life. The blower assembly shall be dynamically balanced at the factory to balance value BV-3 per AMCA 204 or 0.15 IPS for rigid mounted fans or 0.20 IPS for flexibly mounted fans.
4. Blower shafts shall be solid ground and polished. The shaft diameter shall be sized so that the maximum operating speed for the Class does not exceed 70% of the first critical speed and the shaft shall be coated with a rust inhibitor. All V-belt drives shall be furnished in matched sets with reinforced rubber belts. The sheaves shall be of a cast iron type and shall be complete with companion type driver sheave on drives with three belts or more. All drives shall be complete with a split taper bushing. Smooth bore sheaves are acceptable for single and dual groove adjustable pitch sheaves.
5. Motors 7.5HP and smaller shall have drive sheaves that are adjustable type
6. The service factor of the drive set shall not be less than 1.25.
7. An adjustable motor base shall be provided.
8. A piezometer flow measurement system shall be provided on all fans. It shall have pressure taps plumbed to the exterior of the unit for proper system balancing and troubleshooting.

B. Fan Motors
1. Direct drive fan motors shall be NEMA premium efficient, TEFC, inverter rated.
2. Belt drive fans motors shall be NEMA premium efficient, ODP, inverter rated.

C. 1” Internal Vibration Isolation
1. The blower, motor, and drive assembly shall be mounted isolation springs with a non-skid acoustical pad, locking screw and adjusting leveling bolt. The springs shall have a minimum of one inch nominal deflection. The isolation base shall be complete with hold down bolts and blocking to maintain the spring base in a rigid position for shipping.
2. On the inlet of the plenum fan shall be a minimum of 6” flexible ducting, rigidly fastened to the blower and the blower inlet closure.

2.10 ELECTRICAL WIRING
A. All electrical wiring shall be installed in thin wall EMT steel conduit (optional – rigid, hot dipped galvanized). Use of lengths of flexible conduit will be permitted when rigid conduit is not applicable; however, all flexible conduit shall be liquid tight, and approved by Underwriter Laboratories.
B. Where unit construction is such that wiring must be disconnected for shipment, terminal blocks in an accessible enclosure shall be provided at the section points for future field wiring.
C. Unit panel shall be provided with a terminal strip for ready connection of required external control wiring.
D. All work shall conform at the latest National Electric Code.
2.11 CONTROLS

A. The unit control panel shall be supplied with a “dead-front” style disconnect switch, control transformers, microprocessor controller, fuses, terminal strip and IEC motor starter’s with circuit breaker style overload protection. Fan/Blower motors shall be wired to the motor starters. Overall panel SCCR rating shall be as scheduled.

B. Terminal strip connection shall be available for customer’s smoke detection, fire protection, E-Stop, or “other fault” inputs to shut down the unit.

C. All terminal devices shall have a “home run” to the terminal strip for easy maintenance and troubleshooting. No daisy chaining components.

D. The controller shall include a built-in terminal display. From this display all critical unit functions and alarms may be monitored and adjusted. An optional duplicate display with all the same functions and capabilities can also be connected for remote monitoring and adjustments of the unit.

E. The controller shall include interface modules for connectivity to BAS systems using BACnet or Modbus protocols.

F. Unit manufacturer shall keep controller and display components in stock.

G. Controller and display shall be rated for 140F continuous operating temperature.

2.12 MARKINGS

A. The unit nameplate shall be 0.020" thick Aluminum with permanent fasteners. The nameplate shall be permanently engraved with: Unit model number, serial number, unit Full Load Amps, supply voltage, and filter schedule.

B. The unit shall be permanently marked with the equipment number as identified on the schedule.

C. Proper warning labels for high voltage and moving parts shall be permanently affixed to access doors and guards.

D. Advisory labels for filter access shall be affixed to applicable doors.

E. Electrical connection, lifting points, air connections, water supply/return, and drains.

F. Indication of correct rotation shall be affixed to all electric motors.

G. An O&M, including an electrical schematic, shall be provided inside of the electrical control panel. The schematic shall be specific to the project and not be a generic type encompassing features or options not present on the unit. The schematic shall include the fuse replacement values and types.

PART 3: EXECUTION

3.1 INSTALLATION

A. Install packaged units on flat and level surface or structure.

1. Support floor mounted units on concrete equipment bases. Secure units to anchor bolts installed in concrete equipment base if required.
2. Coordinate size of equipment bases with actual unit sizes provided. Construct base 4 inches larger in both directions than the overall dimensions of the supported unit.

B. The unit shall be installed in accordance with instructions contained in the operating and maintenance manual provided by the manufacturer at the time of submittal and equipment approval.

3.2 START-UP

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.

3.3 TESTING AND BALANCING

A. After start-up, perform air handling and distribution equipment tests adjustment, and balancing.
SECTION 26 05 05 - SELECTIVE DEMOLITION FOR ELECTRICAL

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Removal of existing electrical equipment, wiring, and conduit in areas to be remodeled; removal of designated construction; dismantling, cutting and alterations for completion of the Work.
 2. Disposal of materials.
 4. Identification of utilities.
 5. Salvaged items.
 6. Protection of items to remain.
 7. Relocate existing equipment to accommodate construction.

1.02 SUBMITTALS

A. Shop Drawings: Indicate demolition and removal sequence and location of salvageable items; location and construction of temporary work. Describe demolition removal procedures and schedule.

1.03 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of capped utilities conduits and equipment abandoned in place.

1.04 QUALITY ASSURANCE

A. Perform Work in accordance with Code or as specified herein.

1.05 SCHEDULING

A. Schedule work to coincide with new construction.

B. Perform noisy, malodorous, dusty or disruptive work only at times agreed in advance by Owner and Engineer.

C. Cease operations immediately when structure appears to be in danger and notify Engineer. Do not resume operations until directed.
1.06 COORDINATION

A. Conduct demolition to minimize interference with adjacent and occupied building areas.

B. Coordinate and sequence demolition so as not to cause shutdown of operation of surrounding areas.

C. Shut-down Periods:
 1. Arrange timing of shut-down periods of in-service panels with Owner. Do not shut down any utility without prior written approval.
 2. Keep shut-down period to minimum or use intermittent period as directed.
 3. Maintain life-safety systems in full operation in occupied facilities or provide notice minimum 3 days in advance. Coordinate with and obtain permission of Owner. Manning or Fire Watches and manual operation of standby and substitute equipment shall be the Contractor’s responsibility.

D. Identify salvage items in cooperation with Owner.

PART 2 - PRODUCTS

2.01 Not Used

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify wiring and equipment indicated to be demolished serve only abandoned facilities.

B. Verify termination points for demolished services.

3.02 PREPARATION

A. Erect, and maintain temporary safeguards, including warning signs and lights, barricades and similar measures, for protection of the public, Owner, Contractor's employees, and existing improvements to remain.

B. Temporary egress signage and emergency lighting

3.03 DEMOLITION

A. Where furnished, demolition Drawings are based on casual field observation and existing record documents. Report discrepancies to Owner and Engineer before disturbing existing installation.

B. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors and patch surfaces.

The Club at Woodbridge
INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

T&M Project No: WOOD-00510

260505 - 2
C. Remove conduit, wire, boxes, and fastening devices to avoid any interference with new installation.

D. Disconnect electrical systems in walls, floors, and ceilings scheduled for removal.

E. Reconnect equipment being disturbed by renovation work and required for continue service to or nearest available panel.

F. Disconnect or shut off service to areas where electrical work is to be removed. Remove electrical fixtures, equipment, and related switches, outlets, conduit and wiring which are not part of final project.

G. Install temporary wiring and connections to maintain existing systems in service during construction.

H. Perform work on energized equipment or circuits with experienced and trained personnel.

I. Remove, relocate, and extend existing installations to accommodate new construction.

J. Repair adjacent construction and finishes damaged during demolition and extension work.

K. Remove exposed abandoned grounding and bonding components, fasteners and supports, and electrical identification components, including abandoned components above accessible ceiling finishes. Cut embedded support elements flush with walls and floors.

L. Clean and repair existing equipment to remain or to be reinstalled.

M. Protect and retain power to existing active equipment remaining.

N. Cap abandoned empty conduit at both ends.

3.04 EXISTING PANELBOARDS

A. Ring out circuits in existing panel affected by the Work. Where additional circuits are needed, reuse circuits available for reuse. Install new breakers.

B. Tag unused circuits as spare.

C. Where existing circuits are indicated to be reused, use sensing measuring devices to verify circuits feeding Project area or are not in use.

D. Remove existing wire no longer in use from panel to equipment.

E. Provide new updated directories where more than three circuits have been modified or rewired.
3.05 SALVAGE ITEMS
 A. Remove and protect items indicated on Drawings, in Schedule or indicated by Owner to be salvaged and turn over to Owner.
 B. Items of salvageable value may be removed as work progresses. Transport salvaged items from site as they are removed.

3.06 REUSABLE ELECTRICAL EQUIPMENT
 A. Carefully remove equipment, materials, or fixtures which are to be reused.
 B. Disconnect, remove, or relocate existing electrical material and equipment interfering with new installation.
 C. Relocate existing lighting fixtures as necessary and as approved by the Owner. Clean fixtures and re-lamp. Test fixture to see if it is in good working condition before installation at new location.

3.07 CLEANING
 A. Remove demolished materials as work progresses. Legally dispose.
 B. Keep workplace neat.

3.08 PROTECTION OF FINISHED WORK
 A. Do not permit traffic over unprotected floor surface.

END OF SECTION
SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 GENERAL

1.01 SUMMARY

A. Section includes building wire and cable; nonmetallic-sheathed cable; direct burial cable; service entrance cable; armored cable; metal clad cable; and wiring connectors and connections.

1.02 REFERENCES

A. International Electrical Testing Association:
B. National Fire Protection Association:
 1. NFPA 70 - National Electrical Code.
 2. NFPA 262 - Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
C. Underwriters Laboratories, Inc.:
 1. UL 1277 - Standard for Safety for Electrical Power and Control Tray Cables with Optional Optical-Fiber Members.

1.03 SYSTEM DESCRIPTION

A. Product Requirements: Provide products as follows:
 1. Solid conductor for feeders and branch circuits 10 AWG and smaller.
 2. Stranded conductors for control circuits.
 3. Conductor not smaller than 12 AWG for power and lighting circuits.
 4. Conductor not smaller than 16 AWG for control circuits.
 5. Increase wire size in branch circuits to limit voltage drop to a maximum of 3 percent.
B. Wiring Methods: Provide the following wiring methods:
 1. Concealed Dry Interior Locations: Use only building wire, Type THHN/THWN insulation, in raceway, armored cable or metal clad cable.
 2. Exposed Dry Interior Locations: Use only building wire, Type THHN/THWN insulation, in raceway.
 3. Above Accessible Ceilings: Use only building wire, Type THHN/THWN insulation, in raceway, armored cable or metal clad cable.
4. Wet or Damp Interior Locations: Use only building wire, Type THHN/THWN insulation, in raceway, armored cable or metal clad cable.

5. Exterior Locations: Use only building wire, Type THHN/THWN insulation, in raceway.

6. Underground Locations: Use only building wire, Type THHN/THWN (XHHW for services) insulation, in raceway.

7. Cable Tray Locations: Use only Tray cable Type TC.

1.04 DESIGN REQUIREMENTS

A. Conductor sizes are based on copper unless indicated as aluminum or "AL".

B. When aluminum conductor is substituted for copper conductor, size to match circuit requirements, terminations, conductor ampacity and voltage drop.

1.05 SUBMITTALS

A. Product Data: Submit for building wire and each cable assembly type.

B. Design Data: Indicate voltage drop and ampacity calculations for aluminum conductors substituted for copper conductors.

C. Test Reports: Indicate procedures and values obtained.

1.06 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of components and circuits.

1.07 QUALITY ASSURANCE

A. Provide wiring materials located in plenums with peak optical density not greater than 0.5, average optical density not greater than 0.15, and flame spread not greater than 5 feet (1.5 m) when tested in accordance with NFPA 262.

B. Maintain one copy of each document on site.

1.08 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years experience.

1.09 FIELD MEASUREMENTS

A. Verify field measurements are as indicated on Drawings.

The Club at Woodbridge
INDOOR ICE RINK
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
T&M Project No: WOOD-00510
1.10 COORDINATION

A. Where wire and cable destination is indicated and routing is not shown, determine routing and lengths required.

B. Wire and cable routing indicated is approximate unless dimensioned.

PART 2 PRODUCTS

2.01 BUILDING WIRE AND CABLE

A. Product Description: Single or multi-conductor insulated wire.

B. Conductor: Copper.

C. Insulation Voltage Rating: 600 volts.

D. Insulation Temperature Rating: 75 degrees C unless otherwise noted.

2.02 ARMORED OR METAL CLAD CABLE

A. Conductor: Copper.

B. Insulation Voltage Rating: 600 volts.

C. Insulation Temperature Rating: 75 degrees C.

D. Armor Material: Steel except where Aluminum is noted on Drawings.

E. Armor Design: Interlocked metal tape.

F. Jacket: PVC where required.

2.03 TRAY CABLE

A. Product Description: Multiconductor power and control cable NFPA 70 Type TC

B. Conductor: Copper.

C. Insulation: Flame-retardant cross-linked polyethylene.

D. Overall Jacket: Polyvinyl Chlorine (PVC) in accordance with UL 1277.

E. Insulation Voltage Rating: 600 volts.

F. Insulation Temperature Rating: 90 degrees C.
G. Listings: Finished cable UL listed as Type TC, and sunlight resistant.

2.04 TERMINATIONS

A. Terminal Lugs for Wires 6 AWG and Smaller: Solderless, compression type copper.
B. Lugs for Wires 4 AWG and Larger: Color keyed, compression type copper, with insulating sealing collars.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify interior of building has been protected from weather.
B. Verify mechanical work likely to damage wire and cable has been completed.
C. Verify raceway installation is complete and supported.

3.02 PREPARATION

A. Completely and thoroughly swab raceway before installing wire.

3.03 EXISTING WORK

A. Remove exposed abandoned wire and cable, including abandoned wire and cable above accessible ceiling finishes. Patch surfaces where removed cables pass through building finishes.
B. Disconnect abandoned circuits and remove circuit wire and cable. Remove abandoned boxes when wire and cable servicing boxes is abandoned and removed. Install blank cover for abandoned boxes not removed.
C. Provide access to existing wiring connections remaining active and requiring access. Modify installation or install access panel.
D. Extend existing circuits using materials and methods compatible with existing electrical installations, or as specified.
E. Clean and repair existing wire and cable remaining or wire and cable to be reinstalled.

3.04 INSTALLATION

A. Route wire and cable to meet Project conditions.
B. Neatly train and lace wiring inside boxes, equipment, and panelboards.

C. Identify and color code wire and cable. Identify each conductor with its circuit number or other designation indicated.

D. Special Techniques--Building Wire in Raceway:
1. Pull conductors into raceway at same time.
2. Install building wire 4 AWG and larger with pulling equipment.

E. Special Techniques - Cable:
1. Protect exposed cable from damage.
2. Support cables above accessible ceiling, using spring metal clips or cable ties to support cables from structure or ceiling suspension system. Do not rest cable on ceiling panels.
3. Use suitable cable fittings and connectors.

F. Special Techniques - Wiring Connections:
1. Clean conductor surfaces before installing lugs and connectors.
2. Make splices, taps, and terminations to carry full ampacity of conductors with no perceptible temperature rise.
3. Tape uninsulated conductors and connectors with electrical tape to 150 percent of insulation rating of conductor.
4. Install split bolt connectors for copper conductor splices and taps, 6 AWG and larger.
5. Install solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and smaller.
6. Install insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.
7. Terminate aluminum conductors with tin-plated, aluminum-bodied compression connectors only. Fill with anti-oxidant compound before installing conductor.
8. Install suitable reducing connectors or mechanical connector adaptors for connecting aluminum conductors to copper conductors.

G. Install stranded conductors for branch circuits 10 AWG and smaller. Install crimp on fork terminals for device terminations. Do not place bare stranded conductors directly under screws.
H. Install terminal lugs on ends of 600 volt wires unless lugs are furnished on connected device, such as circuit breakers.

I. Size lugs in accordance with manufacturer’s recommendations terminating wire sizes. Install 2-hole type lugs to connect wires 4 AWG and larger to copper bus bars.

J. For terminal lugs fastened together such as on motors, transformers, and other apparatus, or when space between studs is small enough that lugs can turn and touch each other, insulate for dielectric strength of 2-1/2 times normal potential of circuit.

3.05 WIRE COLOR

A. General:
 1. For wire sizes 10 AWG and smaller, install wire colors in accordance with the following:
 a. Black and red for single phase circuits at 120/240 volts.
 b. Black, red, and blue for circuits at 120/208 volts single or three phase.
 c. Orange, brown, and yellow for circuits at 277/480 volts single or three phase.

 2. For wire sizes 8 AWG and larger, identify wire with colored tape at terminals, splices and boxes. Colors are as follows:
 a. Black and red for single phase circuits at 120/240 volts.
 b. Black, red, and blue for circuits at 120/208 volts single or three phase.
 c. Orange, brown, and yellow for circuits at 277/480 volts single or three phase.

B. Neutral Conductors: White. When two or more neutrals are located in one conduit, individually identify each with proper circuit number.

C. Branch Circuit Conductors: Install three or four wire home runs with each phase uniquely color coded.

D. Feeder Circuit Conductors: Uniquely color code each phase.

E. Ground Conductors:
 1. For 6 AWG and smaller: Green.
 2. For 4 AWG and larger: Identify with green tape at both ends and visible points including junction boxes.
3.06 FIELD QUALITY CONTROL

A. Balance single phase branches and feeders in panels to the Engineer’s satisfaction.

B. Inspect and test in accordance with NETA ATS, except Section 4.

C. Perform inspections and tests listed in NETA ATS, Section 7.3.1.

END OF SECTION
SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

1.01 SUMMARY
A. Section Includes:
 1. Rod electrodes.
 2. Active electrodes.
 3. Wire.
 4. Grounding well components.
 5. Mechanical connectors.

1.02 REFERENCES
A. Institute of Electrical and Electronics Engineers:
 2. IEEE 1100 - Recommended Practice for Powering and Grounding Electronic Equipment.
B. International Electrical Testing Association:
C. National Fire Protection Association:
 1. NFPA 70 - National Electrical Code.

1.03 SYSTEM DESCRIPTION
A. Grounding systems use the following elements as grounding electrodes:
 1. Metal underground water pipe.
 2. Metal building frame.
 3. Concrete-encased electrode.
 4. Ground ring.
 5. Rod electrode.
 6. Plate electrode.
1.04 DESIGN REQUIREMENTS
A. Construct and test grounding systems for access flooring systems on conductive floors accordance with IEEE 1100.

1.05 PERFORMANCE REQUIREMENTS
A. Grounding System Resistance: 25 ohms maximum.

1.06 SUBMITTALS
A. Product Data: Submit data on grounding electrodes and connections.
B. Test Reports: Indicate overall resistance to ground and resistance of each electrode.
C. Manufacturer’s Installation Instructions: Submit for active electrodes.

1.07 CLOSEOUT SUBMITTALS
A. Project Record Documents: Record actual locations of components and grounding electrodes.

1.08 QUALITY ASSURANCE
A. Provide grounding materials conforming to requirements of NEC, IEEE 142, and UL labeled.

1.09 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum three years’ experience.
B. Installer: Company specializing in performing work of this section with minimum three years’ experience.

1.010 DELIVERY, STORAGE, AND HANDLING
A. Accept materials on site in original factory packaging, labeled with manufacturer's identification.
B. Protect from weather and construction traffic, dirt, water, chemical, and mechanical damage, by storing in original packaging.
C. Do not deliver items to project before time of installation. Limit shipment of bulk and multiple-use materials to quantities needed for immediate installation.
1.011 COORDINATION
 A. Complete grounding and bonding of building reinforcing steel prior concrete placement.

PART 2 - PRODUCTS

2.01 ROD ELECTRODES
 A. Product Description:
 1. Material: Copper-clad steel.
 3. Length: 10 feet.
 B. Connector: Connector for exothermic welded connection where direct buried. U-bolt clamp where visible after installation.

2.02 ACTIVE ELECTRODES
 A. Product Description:
 2. Shape: Straight or as indicated on Drawings.
 3. Length: 8 feet.

2.03 WIRE
 A. Material: Stranded copper.
 B. Foundation Electrodes: 4 AWG.
 C. Grounding Electrode Conductor: Copper conductor.
 D. Bonding Conductor: Copper conductor.

2.04 GROUNDING WELL COMPONENTS
 A. Well Pipe: 8 inches NPS by 24 inches long clay tile or concrete pipe with belled end.
 B. Well Cover: Cast iron with legend "GROUND" embossed on cover.

2.05 MECHANICAL CONNECTORS
 A. Description: Bronze connectors, suitable for grounding and bonding applications, in configurations required for particular installation.

 The Club at Woodbridge
 INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
T&M Project No: WOOD-00510 260526 - 3
2.06 EXOTHERMIC CONNECTIONS

A. Product Description: Exothermic materials, accessories, and tools for preparing and making permanent field connections between grounding system components.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify final backfill and compaction has been completed before driving rod electrodes.

3.02 PREPARATION

A. Remove paint, rust, mill oils, surface contaminants at connection points.

3.03 EXISTING WORK

A. Modify existing grounding system to maintain continuity to accommodate renovations.

B. Extend existing grounding system using materials and methods compatible with existing electrical installations, or as specified.

3.04 INSTALLATION

A. Install in accordance with IEEE 142.

B. Install rod electrodes at locations as indicated on Drawings. Install additional rod electrodes to achieve specified resistance to ground.

C. Install grounding and bonding conductors concealed from view.

D. Install grounding well pipe with cover at rod locations as indicated on Drawings. Install well pipe top flush with finished grade.

E. Install 4 AWG bare copper wire in foundation footing.

F. Install grounding electrode conductor and connect to reinforcing steel in foundation footing. Electrically bond steel together.

G. Bond together metal siding not attached to grounded structure; bond to ground.

H. Bond together reinforcing steel and metal accessories in pool and fountain structures.

I. Install ground grid under access floors. Construct grid of 4 AWG bare copper wire installed on 24-inch centers both ways. Bond each access floor pedestal to grid.

J. Bond together each metallic raceway, pipe, duct and other metal object entering space under access floors. Bond to underfloor ground grid. Install 2 AWG bare copper bonding conductor.
K. Install isolated grounding conductor for circuits in accordance with IEEE 1100.

L. Install grounding and bonding in patient care areas to meet requirements of NFPA 99.

M. Equipment Grounding Conductor: Install separate, insulated conductor within each feeder and branch circuit raceway. Terminate each end on suitable lug, bus, or bushing.

N. Connect to site grounding system.

O. Bond to lightning protection system.

P. Install continuous grounding using underground cold-water system and building steel as grounding electrode. Where water piping is not available, install artificial station ground by means of driven rods or buried electrodes.

Q. Permanently ground entire light and power system in accordance with NEC, including service equipment, distribution panels, lighting panelboards, switch and starter enclosures, motor frames, grounding type receptacles, and other exposed non-current carrying metal parts of electrical equipment.

R. Install branch circuits feeding isolated ground receptacles with separate insulated grounding conductor, connected only at isolated ground receptacle, ground terminals, and at ground bus of serving panel.

S. Accomplish grounding of electrical system by using insulated grounding conductor installed with feeders and branch circuit conductors in conduits. Size grounding conductors in accordance with NEC. Install from grounding bus of serving panel to ground bus of served panel, grounding screw of receptacles, lighting fixture housing, light switch outlet boxes or metal enclosures of service equipment. Ground conduits by means of grounding bushings on terminations at panelboards with installed number 12 conductor to grounding bus.

T. Grounding electrical system using continuous metal raceway system enclosing circuit conductors in accordance with NEC.

U. Permanently attach equipment and grounding conductors prior to energizing equipment.

3.05 FIELD QUALITY CONTROL

A. Inspect and test in accordance with NETA ATS, except Section 4.

B. Grounding and Bonding: Perform inspections and tests listed in NETA ATS, Section 7.13.

C. Perform ground resistance testing in accordance with IEEE 142.

D. Perform leakage current tests in accordance with NFPA 99.

E. Perform continuity testing in accordance with IEEE 142.
F. When improper grounding is found on receptacles, check receptacles in entire project and correct. Perform retest.

END OF SECTION
SECTION 26 05 33 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 SUMMARY
 A. Section includes conduit and tubing, surface raceways, wireways, outlet boxes, pull and junction boxes, and handholes.

1.2 REFERENCES
 A. American National Standards Institute:
 1. ANSI C80.1 - Rigid Steel Conduit, Zinc Coated.
 2. ANSI C80.3 - Specification for Electrical Metallic Tubing, Zinc Coated.
 3. ANSI C80.5 - Aluminum Rigid Conduit - (ARC).
 B. National Electrical Manufacturers Association:
 1. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum).
 2. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit and Cable Assemblies.
 3. NEMA OS 1 - Sheet Steel Outlet Boxes, Device Boxes, Covers, and Box Supports.
 4. NEMA OS 2 - Nonmetallic Outlet Boxes, Device Boxes, Covers, and Box Supports.
 5. NEMA RN 1 - Polyvinyl Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit.
 6. NEMA TC 2 - Electrical Polyvinyl Chloride (PVC) Tubing and Conduit.
 7. NEMA TC 3 - PVC Fittings for Use with Rigid PVC Conduit and Tubing.

1.3 SYSTEM DESCRIPTION
 A. Raceway and boxes located as indicated on Drawings, and at other locations required for splices, taps, wire pulling, equipment connections, and compliance with regulatory requirements. Raceway and boxes are shown in approximate locations unless dimensioned. Provide raceway to complete wiring system.

1.4 DESIGN REQUIREMENTS
 A. Minimum Raceway Size: 3/4 inch unless otherwise specified.

1.5 SUBMITTALS
 A. Product Data: Submit for the following:
1. Flexible metal conduit.
2. Liquidtight flexible metal conduit.
3. Nonmetallic conduit.
4. Flexible nonmetallic conduit.
5. Nonmetallic tubing.
6. Raceway fittings.
7. Conduit bodies.
8. Surface raceway.
9. Wireway.
10. Pull and junction boxes.
11. Handholes.

B. Manufacturer’s Installation Instructions: Submit application conditions and limitations of use stipulated by Product testing agency specified under Regulatory Requirements. Include instructions for storage, handling, protection, examination, preparation, and installation of Product.

1.6 CLOSEOUT SUBMITTALS

A. Project Record Documents:

1. Record actual routing of conduits larger than 2 inch.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect conduit from corrosion and entrance of debris by storing above grade. Provide appropriate covering.

B. Protect PVC conduit from sunlight.

1.8 COORDINATION

A. Coordinate mounting heights, orientation and locations of outlets mounted above counters, benches, and backsplashes.

PART 2 PRODUCTS

2.1 METAL CONDUIT

A. Rigid Steel Conduit: ANSI C80.1.
B. Rigid Aluminum Conduit: ANSI C80.5.
C. Intermediate Metal Conduit (IMC): Rigid steel.
D. Fittings and Conduit Bodies: NEMA FB 1; material to match conduit.

2.2 PVC COATED METAL CONDUIT
A. Product Description: NEMA RN 1; rigid steel conduit with external PVC coating, 40 mil thick.
B. Fittings and Conduit Bodies: NEMA FB 1; steel fittings with external PVC coating to match conduit.

2.3 FLEXIBLE METAL CONDUIT
A. Product Description: Interlocked steel construction.
B. Fittings: NEMA FB 1.

2.4 LIQUIDTIGHT FLEXIBLE METAL CONDUIT
A. Product Description: Interlocked steel construction with PVC jacket.
B. Fittings: NEMA FB 1.

2.5 ELECTRICAL METALLIC TUBING (EMT)
A. Product Description: ANSI C80.3; galvanized tubing.
B. Fittings and Conduit Bodies: NEMA FB 1; steel or malleable iron compression type.

2.6 NONMETALLIC CONDUIT
A. Product Description: NEMA TC 2; Schedule 40 or 80 PVC as noted on the Drawings.
B. Fittings and Conduit Bodies: NEMA TC 3.

2.7 NONMETALLIC TUBING
A. Product Description: NEMA TC 2.
B. Fittings and Conduit Bodies: NEMA TC 3.

2.8 WIREWAY
A. Product Description: General purpose indoors, raintight outdoors type wireway.
B. Knockouts: Manufacturer's standard.
C. Cover: Screw cover.
D. Connector: Slip-in.
E. Finish: Rust inhibiting primer coating with gray enamel finish.

2.9 OUTLET BOXES
A. Sheet Metal Outlet Boxes: NEMA OS 1, galvanized steel.
 1. Luminaire and Equipment Supporting Boxes: Rated for weight of equipment supported; furnish 1/2 inch male fixture studs where required.
 2. Concrete Ceiling Boxes: Concrete type.
B. Nonmetallic Outlet Boxes: NEMA OS 2.
C. Cast Boxes: NEMA FB 1, Type FD, aluminum. Furnish gasketed cover by box manufacturer. Furnish threaded hubs.
D. Wall Plates for Finished Areas: As specified on Drawings.
E. Wall Plates for Unfinished Areas: Furnish gasketed cover.

2.10 PULL AND JUNCTION BOXES
A. Sheet Metal Boxes: NEMA OS 1, galvanized steel.
B. Hinged Enclosures: As specified in Section 26 27 16.
C. Surface Mounted Cast Metal Box: NEMA 250, Type 4X; flat-flanged, surface mounted junction box:
 1. Material: Cast aluminum.
 2. Cover: Furnish with ground flange, neoprene gasket, and stainless steel cover screws.
D. In-Ground Cast Metal Box: NEMA 250, Type 6, inside flanged, recessed cover box for flush mounting:
 1. Material: Galvanized cast iron.
 2. Cover: Nonskid cover with neoprene gasket and stainless steel cover screws.
3. Cover Legend: "ELECTRIC" or as noted on Drawings.

E. Fiberglass Concrete composite Handholes: Die-molded, glass-fiber concrete composite handholes:
 1. Cover: Glass-fiber concrete composite, weatherproof cover with nonskid finish.
 2. Cover Legend: "ELECTRIC" or as noted on Drawings.

PART 3 EXECUTION

3.01 EXAMINATION
 A. Section 01 31 00 – Project Management and Coordination, and project conditions.
 B. Verify outlet locations and routing and termination locations of raceway prior to rough-in.

3.02 EXISTING WORK
 A. Remove exposed abandoned raceway, including abandoned raceway above accessible ceiling finishes. Cut raceway flush with walls and floors, and patch surfaces.
 B. Remove concealed abandoned raceway to its source.
 C. Disconnect abandoned outlets and remove devices. Remove abandoned outlets when raceway is abandoned and removed. Install blank cover for abandoned outlets not removed.
 D. Maintain access to existing boxes and other installations remaining active and requiring access. Modify installation or provide access panel.
 E. Extend existing raceway and box installations using materials and methods compatible with existing electrical installations, or as specified.
 F. Clean and repair existing raceway and boxes to remain or to be reinstalled.

3.03 INSTALLATION
 A. Ground and bond raceway and boxes.
 B. Fasten raceway and box supports to structure and finishes.
 C. Identify raceway and boxes.
 D. Arrange raceway and boxes to maintain headroom and present neat appearance.
3.04 INSTALLATION - RACEWAY

A. Raceway routing is shown in approximate locations unless dimensioned. Route to complete wiring system.

B. Arrange raceway supports to prevent misalignment during wiring installation.

C. Support raceway using coated steel or malleable iron straps, lay-in adjustable hangers, clevis hangers, and split hangers.

D. Group related raceway; support using conduit rack. Construct rack using steel channel; provide space on each for 25 percent additional raceways.

E. Do not support raceway with wire or perforated pipe straps. Remove wire used for temporary supports.

F. Do not attach raceway to ceiling support wires or other piping systems.

G. Construct wireway supports from steel channel.

H. Route exposed raceway parallel and perpendicular to walls.

I. Route raceway installed above accessible ceilings parallel and perpendicular to walls.

J. Route conduit in and under slab from point-to-point.

K. Maximum Size Conduit in Slab Above Grade: 3/4 inch. Do not cross conduits in slab.

L. Maintain clearance between raceway and piping for maintenance purposes.

M. Maintain 12 inch clearance between raceway and surfaces with temperatures exceeding 104 degrees F.

N. Cut conduit square using saw or pipe cutter; de-burr cut ends.

O. Bring conduit to shoulder of fittings; fasten securely.

P. Join nonmetallic conduit using cement as recommended by manufacturer. Wipe nonmetallic conduit dry and clean before joining. Apply full even coat of cement to entire area inserted in fitting. Allow joint to cure for minimum 20 minutes.

Q. Install conduit hubs to fasten conduit to cast boxes.

R. Install no more than equivalent of three 90 degree bends between boxes except where noted on Drawings. Install conduit bodies to make sharp changes in direction, as around beams. Install factory elbows for bends in metal conduit larger than 2 inch size.
S. Avoid moisture traps; install junction box with drain fitting at low points in conduit system.

T. Install fittings to accommodate expansion and deflection where raceway crosses seismic, control and expansion joints.

U. Install suitable pull string or cord in each empty raceway except sleeves and nipples.

V. Install suitable caps to protect installed conduit against entrance of dirt and moisture.

W. Surface Raceway: Install flat-head screws, clips, and straps to fasten raceway channel to surfaces; mount plumb and level. Install insulating bushings and inserts at connections to outlets and corner fittings.

X. Close ends and unused openings in wireway.

3.05 INSTALLATION - BOXES

A. Install wall mounted boxes at elevations to accommodate mounting heights as indicated on Drawings.

B. Adjust box location up to 10 feet prior to rough-in to accommodate intended purpose.

C. Orient boxes to accommodate wiring devices oriented as specified on the Drawings.

D. Install pull boxes and junction boxes above accessible ceilings and in unfinished areas only.

E. In Accessible Ceiling Areas: Install outlet and junction boxes no more than 6 inches from ceiling access panel or from removable recessed luminaire.

F. Locate flush mounting box in masonry wall to require cutting of masonry unit corner only. Coordinate masonry cutting to achieve neat opening.

G. Do not install flush mounting box back-to-back in walls; install with minimum 6 inches separation. Install with minimum 24 inches separation in acoustic rated walls.

H. Secure flush mounting box to interior wall and partition studs. Accurately position to allow for surface finish thickness.

I. Install stamped steel bridges to fasten flush mounting outlet box between studs.

J. Install flush mounting box without damaging wall insulation or reducing its effectiveness.

K. Install adjustable steel channel fasteners for hung ceiling outlet box.

L. Do not fasten boxes to ceiling support wires or other piping systems.

M. Support boxes independently of conduit.
N. Install gang box where more than one device is mounted together. Do not use sectional box.
O. Install gang box with plaster ring for single device outlets.

3.06 INTERFACE WITH OTHER PRODUCTS
A. Install conduit to preserve fire resistance rating of partitions and other elements.
B. Route conduit through roof openings for piping and ductwork or through suitable roof jack with pitch pocket. Coordinate location with roofing installation.
C. Locate outlet boxes to allow luminaires positioned as indicated on Drawings.
D. Align adjacent wall mounted outlet boxes for switches, thermostats, and similar devices.

3.07 ADJUSTING
A. Adjust flush-mounting outlets to make front flush with finished wall material.
B. Install knockout closures in unused openings in boxes.

3.08 CLEANING
A. Clean interior of boxes to remove dust, debris, and other material.
B. Clean exposed surfaces and restore finish.

END OF SECTION
SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Nameplates.
 2. Labels.
 3. Wire markers.
 5. Stencils.
 7. Lockout Devices.

1.2 SUBMITTALS

A. Product Data:
 1. Submit manufacturer’s catalog literature for each product required.
 2. Submit electrical identification schedule including list of wording, symbols, letter size, color coding, tag number, location, and function.

B. Samples:
 1. Submit two samples of each type of identification products applicable to project.
 2. Submit two nameplates, 4 x 4 inch in size illustrating materials and engraving quality.

C. Manufacturer's Installation Instructions: Indicate installation instructions, special procedures, and installation.

1.3 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of tagged devices; include tag numbers.

1.4 QUALITY ASSURANCE

A. Perform Work in accordance with NJDOT standard.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum three years experience.

B. Installer: Company specializing in performing Work of this section with minimum three years experience.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Accept identification products on site in original containers. Inspect for damage.

B. Accept materials on site in original factory packaging, labeled with manufacturer's identification, including product density and thickness.

C. Protect insulation from weather and construction traffic, dirt, water, chemical, and mechanical damage, by storing in original wrapping.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Install labels and nameplates only when ambient temperature and humidity conditions for adhesive are within range recommended by manufacturer.

PART 2 PRODUCTS

2.1 NAMEPLATES

A. Product Description: Laminated three-layer plastic with engraved black letters on light contrasting background color.

B. Letter Size:
 1. 1/8 inch high letters for identifying individual equipment and loads.
 2. 1/4 inch high letters for identifying grouped equipment and loads.

C. Minimum nameplate thickness: 1/8 inch.

2.2 LABELS

A. Labels: Embossed adhesive tape, with 3/16 inch white letters on black background.

2.3 WIRE MARKERS

A. Description: Split sleeve, or tubing type wire markers.

B. Legend:
 1. Power and Lighting Circuits: Branch circuit or feeder number as indicated on Drawings or as adjusted after balancing.
 2. Control Circuits: Control wire number as indicated on schematic and interconnection diagrams or shop drawings.

2.4 CONDUIT AND RACEWAY MARKERS

A. Description: Labels fastened with adhesive.

B. Color:
1. Black lettering on white background.

C. Legend:
 1. ____ VOLTS - HIGH VOLTAGE (add system voltage)

2.5 STENCILS

 A. Stencils: With clean cut symbols and letters of following size:
 1. Up to 2 inches Outside Diameter of Raceway: 1/2 inch high letters.
 2. 2-1/2 to 6 inches Outside Diameter of Raceway: 1 inch high letters.

 B. Stencil Paint: Semi-gloss enamel, colors conforming to the following:
 1. Black lettering on white background.
 2. White lettering on gray background.
 3. Red lettering on white background.
 4. Blue lettering on white background.

2.6 UNDERGROUND WARNING TAPE

 A. Description: 4 inch wide plastic tape, detectable type, colored red or yellow with suitable warning legend describing buried electrical lines.

2.7LOCKOUT DEVICES

 1. Anodized aluminum hasp with erasable label surface; size minimum 7-1/4 x 3 inches.

PART 3 EXECUTION

3.1 PREPARATION

 A. Degrease and clean surfaces to receive adhesive for identification materials.

 B. Prepare surfaces as specified by Manufacturer for stencil painting.

3.2 EXISTING WORK

 A. Install identification on existing equipment to remain in accordance with this section.

 B. Install identification on unmarked existing equipment.

 C. Replace lost nameplates, labels and markers.

 D. Re-stencil existing equipment.

3.3 INSTALLATION

 A. Install identifying devices after completion of painting.

The Club at Woodbridge
INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

T&M Project No: WOOD-00510 260553 - 3
B. Nameplate Installation:
 1. Install nameplate parallel to equipment lines.
 2. Install nameplate for each electrical distribution and control equipment enclosure with corrosive-resistant mechanical fasteners, or adhesive.
 3. Install nameplates for each control panel and major control components located outside panel with corrosive-resistant mechanical fasteners, or adhesive.
 4. Secure nameplate to equipment front using adhesive.
 5. Secure nameplate to inside surface of door on recessed panelboard in finished locations.
 6. Install nameplates for the following:
 a. Switchboards.
 b. Panelboards.
 c. Transformers.
 d. Service Disconnects.
 e. Control Equipment
 f. Power Conversion Equipment

C. Label Installation:
 1. Install label parallel to equipment lines.
 2. Install label for identification of individual control device stations.
 3. Install labels for permanent adhesion and seal with clear lacquer.

D. Wire Marker Installation:
 1. Install wire marker for each conductor at gutters, pull boxes, outlet and junction boxes and each load connection.
 2. Mark data cabling at each end. Install additional marking at accessible locations along the cable run.
 3. Install labels at data outlets identifying patch panel and port designation as indicated on Drawings.

E. Raceway Marker Installation:
 1. Install raceway marker for each conduit or raceway longer than 6 feet.
 2. Raceway Marker Spacing: 20 feet on center.

F. Underground Warning Tape Installation:
 1. Install underground warning tape along length of each underground conduit, raceway, or cable 6 to 8 inches below finished grade, directly above buried conduit, raceway, or cable.

END OF SECTION 260553
SECTION 26 09 23 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Remote control lighting relays.
 2. Lighting contactors.
 4. Switch plates.
 5. Occupancy sensors.
 6. Photocells.
 7. Photocell control unit.

1.2 REFERENCES

A. National Electrical Manufacturers Association:
 1. NEMA FU 1 - Low Voltage Cartridge Fuses.
 2. NEMA ICS 2 - Industrial Control and Systems: Controllers, Contractors, and Overload Relays, Rated Not More Than 2000 Volts AC or 750 Volts DC.
 3. NEMA ICS 4 - Industrial Control and Systems: Terminal Blocks.
 4. NEMA ICS 5 - Industrial Control and Systems: Control Circuit and Pilot Devices.
 5. NEMA ICS 6 - Industrial Control and Systems: Enclosures.
 6. NEMA KS 1 - Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).

1.3 SYSTEM DESCRIPTION

A. Distributed switching control using self-contained individually mounted lighting relays.

B. Where indicated on Contract Documents or required by applicable code, provide automatic shutoff for lighting inside building larger than 5,000 sq. ft. Control shutoff by method conforming to ICC IECC.

C. Where indicated on Contract Documents or required by applicable code, provide automatic shutoff for lighting outside building. Control shutoff by method conforming to ICC IECC.

1.4 SUBMITTALS

A. Shop Drawings: Indicate dimensioned drawings of lighting control system components and accessories.
 1. One Line Diagram: Indicating system configuration indicating panels, number and type of switches or devices.
 2. Include typical wiring diagrams for each component.

B. Product Data: Submit manufacturer's standard product data for each system component.
C. Manufacturer’s Installation Instructions: Submit for each system component.

1.5 NJ SMART START APPLICATION

A. The contractor shall complete and submit a New Jersey Smart Start rebate application to the New Jersey Office of Clean Energy on behalf of the Owner as a contract submittal. The application shall include all information necessary for the Owner to obtain available rebates both for lighting control and for lighting fixtures.

1.6 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record following information:
 1. Actual locations of components and record circuiting and switching arrangements.
 2. Wiring diagrams reflecting field installed conditions with identified and numbered system components and devices.

B. Operation and Maintenance Data:
 1. Submit replacement parts numbers.
 2. Submit manufacturer’s published installation instructions and operating instructions.
 3. Recommended renewal parts list.

1.7 QUALITY ASSURANCE

A. Maintain one copy of each document on Site.

1.8 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years’ documented experience.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Accept components on Site in manufacturer's packaging. Inspect for damage.

B. Protect components by storing in manufacturer's containers indoor protected from weather.

1.10 WARRANTY

A. Furnish five-year manufacturer's warranty for components.

1.11 EXTRA MATERIALS

A. Furnish two of each switch type.

B. Furnish two of each occupancy sensor type.

C. Furnish two of each photocell type.
PART 2 - PRODUCTS

2.1 REMOTE CONTROL LIGHTING RELAYS

A. Product Description: Heavy duty, single-coil momentary contact mechanically held remote control relays.

B. Contacts: Rated 20 A at fixture operating voltage V. Rated for lighting applications with high intensity discharge (HID), LED, tungsten and fluorescent lamps.

C. Line Voltage Connections: Clamp type screw terminals.

D. Enclosure: NEMA ICS 6, to meet conditions. Fabricate enclosure from steel finished with manufacturer's standard gray enamel or gray plastic where approved by the Engineer.
 1. Interior Dry Locations: Type 1.
 2. Exterior Locations: Type 3R.
 3. Corrosive Locations: Type 4X.

2.2 LIGHTING CONTACTORS

A. Product Description: NEMA ICS 2, magnetic lighting contactor.

B. Configuration: Electrically held or Mechanically held, three wire control, as specified.

C. Coil Operating Voltage: 120 V, 60 Hz unless otherwise required.

D. Poles: To match circuit configuration and control function.

E. Contact Rating: Conductor overcurrent protection, considering derating for continuous loads.

F. Accessories:
 1. Cover Mounted Pilot Devices: NEMA ICS 5, standard-duty
 2. Selector Switch: ON-OFF-AUTOMATIC function, with rotary action.
 3. Indicating Light: Red lens, LED lamp.
 4. Auxiliary Contacts: One field convertible in addition to seal-in contact.
 5. Relays: NEMA ICS 2.

G. Enclosure: NEMA ICS 6, to meet conditions. Fabricate enclosure from steel finished with manufacturer's standard gray enamel or gray plastic where approved by the Engineer.
 1. Interior Dry Locations: Type 1.
 2. Exterior Locations: Type 3R.
 3. Corrosive Locations: Type 4X.

2.3 SWITCHES

A. Wall Switch: Specification Grade unlighted, momentary pushbutton type for overriding relays.
 2. Color: As approved by Owner.

The Club at Woodbridge
INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

T&M Project No: WOOD-00510
B. Key Switch: Spade key type. Match non-key switch ratings.

2.4 SWITCH PLATES

A. Product Description: Specification grade.
2. Color: As approved by Owner.

2.5 OCCUPANCY SENSOR

A. Compatible with modular relay panels. Capable of being wired directly to system wiring without auxiliary components or devices.

B. Separate sensitivity and time delay adjustments with LED indication of sensed movement. User adjustable time-delay of 30 seconds to 12 minutes.

C. Furnish with manual override.

D. Operation: Silent.

E. Room Sensors: Two-way pattern or as indicated on Contract Documents.

F. Corridor and Hallway Sensors:
1. Capable of detecting motion 14 feet wide and 80 feet long with one sensor mounted 10 feet above floor.
2. Capable of detecting motion in warehouse aisle 10 feet wide and 60 feet long or 100 feet long when mounted 22 feet above floor.
3. Capable of being wired in master-slave configuration to extend area of coverage.

2.6 PHOTOCUELLS

A. General: Consist of sensor mounted as indicated on Contract Documents with separate control-calibration module. Sensor connected to control-calibration module via single shielded conductor with maximum distance of 500 feet. Control unit powered by 24 V ac.

B. Control-Calibration Module: Furnish with following:
1. Capable of being switched between 4 measurement ranges.
2. Separate trip points for high and low response settings.
3. Momentary contact device to override photocell relays.
4. Three-minute time delay between switching outputs to avoid nuisance tripping.

C. Sensor Devices: Each sensor employs photo diode technology to allow linear response to daylight within illuminance range.
1. Exterior Lighting: Hooded sensor, horizontally mounted, employing flat lens, and working range 1-100 fc in 10 percent increments. Entire sensor encased in optically clear epoxy resin.
2. Indoor Lighting: Sensor with Fresnel lens providing for 60-degree cone shaped response area to monitor indoor office lighting levels.
3. Atriums: Sensor with translucent dome with 180-degree field of view and respond in range of 100-1,000 fc.
4. Skylights: Sensor with translucent dome with 180-degree field of view and respond in range of 1,000-10,000 fc.

2.7 PHOTOCCELL CONTROL UNIT

A. Product Description: Photodiode control unit with PHOTOCELL ENABLE and MASTER OVERRIDE inputs for remote control, 3-minute time delay, and with selectable ranges for 1-10 fc, 10-100 fc, 100-1,000 fc, and 1,000-10,000 fc.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Mount switches, occupancy sensors, and photocells as listed in the schedules, except that where the schedule lists a wall switch and one already exists, do not replace unless damaged or inoperable.

B. Identify power wiring with circuit breaker number controlling load. When multiple circuit breaker panels are feeding into relay panel, label wires to indicate originating panel designation.

C. Label each low voltage wire with relay number at each switch or sensor.

D. If and where directed, provide additional occupancy sensors. The bid cost per sensor shall include installation including wiring to constitute a complete and operating system.

3.2 MANUFACTURER'S FIELD SERVICES

A. Furnish services for minimum of two days for check, test, and startup. Perform following services:
 1. Check installation of panelboards.
 2. Test operation of remote controlled devices.
 3. Repair or replace defective components.

3.3 ADJUSTING

A. Test each system component after installation to verify proper operation.

B. Test relays, contactors, and switches after installation to confirm proper operation.

C. Confirm correct loads are recorded on directory card in each panel.

3.4 DEMONSTRATION

A. Demonstrate operation of following system components:
2. Each type of occupancy sensors.
3. Each type of photocell.

B. Furnish four hours to instruct Owner's personnel in operation and maintenance of system. Schedule training with Owner, provide at least seven days' notice to Owner and Engineer of approved training date.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Two-winding transformers.
 2. Shielded transformers.
 3. Autotransformers.

1.2 REFERENCE STANDARDS

A. National Electrical Manufacturers Association:
 1. NEMA ST 1 - Specialty Transformers (Except General Purpose Type).
 2. NEMA ST 20 - Dry Type Transformers for General Applications.

B. International Electrical Testing Association:

1.3 SUBMITTALS

A. Product Data: Submit outline and support point dimensions of enclosures and accessories, unit weight, voltage, kVA, and impedance ratings and characteristics, tap configurations, insulation system type, and rated temperature rise.

B. Test and Evaluation Reports: Indicate loss data, efficiency at 25, 50, 75 and 100 percent rated load, and sound level.

C. Source Quality Control Submittals: Indicate results of factory tests and inspections.

D. Field Quality Control Submittals: Indicate results of Contractor furnished tests and inspections.

1.4 CLOSEOUT SUBMITTALS

A. Record Documentation: Record actual locations of transformers.
1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years documented experience.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store in clean, dry space. Maintain factory wrapping or provide additional canvas or plastic cover to protect units from dirt, water, construction debris, and traffic.

B. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided. Handle carefully to avoid damage to transformer internal components, enclosure, and finish.

PART 2 - PRODUCTS

2.1 TWO-WINDING TRANSFORMERS

A. Description: NEMA ST 20, factory-assembled, air-cooled, dry type transformers, ratings as indicated on Drawings.

B. Operation:

1. Primary and Secondary Voltage as shown on Drawings.
2. Insulation system and average winding temperature rise for rated kVA as follows:
3. 1-15 kVA: Class 185 with 80 degrees C rise.
4. 16-500 kVA: Class 220 with 80 degrees C rise.
5. Case temperature: Do not exceed 35 degrees C rise above ambient at warmest point at full load.
6. Winding Taps:
 a. Transformers Less than 15 kVA: Two 5 percent below rated voltage, full capacity taps on primary winding.
7. Sound Levels: NEMA ST 20.
8. Basic Impulse Level: 10 kV for transformers less than 300 kVA, 30 kV for transformers 300 kVA and larger.
9. Mounting:
 a. 1-15 kVA: Suitable for wall mounting.
 b. 16-75 kVA: Suitable for wall, floor, or trapeze mounting.
 c. Larger than 75 kVA: Suitable for floor or trapeze mounting.

C. Materials:
1. Ground core and coil assembly to enclosure by means of visible flexible copper grounding strap.
2. Coil Conductors: Continuous copper windings with terminations brazed or welded.
3. Enclosure: NEMA ST 20, Type as specified on the Drawings. Furnish lifting eyes or brackets.

D. Fabrication:

1. Isolate core and coil from enclosure using vibration-absorbing mounts.
2. Nameplate: Include transformer connection data and overload capacity based on rated allowable temperature rise.

2.2 SHIELDED TRANSFORMERS

A. Description: NEMA ST 20, factory-assembled, air-cooled, dry type shielded isolation transformers, ratings as indicated on Drawings.

B. Operation:

1. Primary and Secondary Voltage as shown on the Drawings.
2. Insulation system and average winding temperature rise for rated kVA as follows:
 a. 10-15 kVA: Class 185 with 115 degrees C rise.
 b. 16-500 kVA: Class 220 with 150 degrees C rise.
3. Case temperature: Do not exceed 50 degrees C rise above ambient at warmest point at full load.
4. Winding Taps:
 a. Transformers Less than 15 kVA: Two 5 percent below rated voltage, full capacity taps on primary winding.
6. Basic Impulse Level: 10 kV for transformers less than 300 kVA, 30 kV for transformers 300 kVA and larger.
7. Winding Shield: Electrostatic, with separate insulated grounding connection.
8. Mounting:
 a. 1-15 kVA: Suitable for wall mounting.
 b. 16-75 kVA: Suitable for wall, floor, or trapeze mounting.
 c. Larger than 75 kVA: Suitable for floor or trapeze mounting.

C. Materials:

1. Ground core and coil assembly to enclosure with visible flexible copper grounding strap.
2. Coil Conductors: Continuous copper windings with terminations brazed or welded.

The Club at Woodbridge
INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

T&M Project No: WOOD-00510
2.3 AUTOTRANSMFORMERS

A. Description: NEMA ST 20, factory-assembled, air-cooled, dry type autotransformers, ratings as indicated on Drawings.

B. Operation:

1. Primary and Secondary Voltage as shown on the Drawings.
2. Insulation system and average winding temperature rise for rated kVA as follows:
 a. 10-15 kVA: Class 185 with 115 degrees C rise.
 b. 16-500 kVA: Class 220 with 150 degrees C rise.
3. Case temperature: Do not exceed 35 degrees C rise above ambient at warmest point at full load.
4. Winding Taps:
 a. Transformers Less than 15 kVA: Two 5 percent below rated voltage, full capacity taps on primary winding.
6. Use three-legged core construction.
7. Mounting:
 a. 1-15 kVA: Suitable for wall mounting.
 b. 16-75 kVA: Suitable for wall, floor, or trapeze mounting.
 c. Larger than 75 kVA: Suitable for floor or trapeze mounting.

C. Materials:

1. Ground core and coil assembly to enclosure by means of visible flexible copper grounding strap.
2. Coil Conductors: Continuous copper windings with terminations brazed or welded.
3. Enclosure: NEMA ST 20, Type as indicated on the Drawings. Furnish lifting eyes or brackets.

D. Fabrication:
1. Isolate core and coil from enclosure using vibration-absorbing mounts.
2. Nameplate: Include transformer connection data.

2.4 BUCK-AND-BOOST TRANSFORMERS

A. Description: NEMA ST 1, factory-assembled, dry type two winding buck and boost transformers, ratings as indicated on Drawings.

B. Operation:

1. Insulation system and average winding temperature rise for rated kVA as follows:
 a. 0.25-2 kVA: Class 185 with 80 degrees C rise.
 b. 3-7.5 kVA: Class 220 with 80 degrees C rise.

2. Primary Voltage: 120 x 240 volts, single phase.

C. Materials:

1. Coil Conductors: copper Continuous windings.
2. Lugs: Suitable for terminating conductors sized for full load ampacity of transformer unit when operating in buck-and-boost configuration shown.
3. Enclosure: NEMA ST 1, Type 1.

D. Fabrication:

1. Isolate core and coil from enclosure using vibration-absorbing mounts.
2. Nameplate: Include transformer connection data.

2.5 SPECIALTY TRANSFORMERS

A. Description: KraftPowercon 3-phase transformer, 480VAC primary voltage, 100kV, 200mA 24kVA secondary power. NEMA 4 enclosure.

B. Control: KraftPowercon Control Cubicle including MicroKraft III Controller in NEMA 4 enclosure.

2.6 SOURCE QUALITY CONTROL

A. Production test each unit according to NEMA ST 20.
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify mounting supports are properly sized and located including concealed bracing in walls.

3.2 DEMOLITION
 A. Disconnect and remove abandoned transformers.
 B. Maintain access and adequate ventilation to existing transformers and other installations remaining active and requiring access and ventilation. Modify installation or provide access panel or ventilation grilles.

3.3 INSTALLATION
 A. Set transformer plumb and level.
 B. Use flexible conduit, 2 feet minimum length, for connections to transformer case. Make conduit connections to side panel of enclosure.
 C. Support transformers as shown on the Drawings.
 1. Mount wall-mounted transformers using integral flanges or accessory brackets furnished by manufacturer.
 2. Mount floor-mounted transformers on vibration isolating pads suitable for isolating transformer noise from building structure.
 3. Mount trapeze-mounted transformers as indicated on Drawings.
 D. Provide seismic restraints.
 E. Install grounding and bonding.

3.4 REPAIR
 A. Repair existing transformers to remain or to be reinstalled.

3.5 FIELD QUALITY CONTROL
 A. Inspect and test in accordance with NETA ATS, except Section 4.
 B. Perform inspections and tests listed in NETA ATS, Section 7.2.1.
3.6 ADJUSTING
 A. Measure primary and secondary voltages and make appropriate tap adjustments.

3.7 CLEANING
 A. Clean existing transformers to remain or to be reinstalled.

END OF SECTION 262200
SECTION 26 24 16 - PANELBOARDS

PART 1 GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Distribution and branch circuit panelboards.
 2. Electronic grade branch circuit panelboards.
 3. Load centers.

1.02 REFERENCE STANDARDS

A. Institute of Electrical and Electronics Engineers:
 1. IEEE C62.41 - Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits.

B. National Electrical Manufacturers Association:
 1. NEMA FU 1 - Low Voltage Cartridge Fuses.
 2. NEMA ICS 2 - Industrial Control and Systems: Controllers, Contactors, and Overload Relays, Rated Not More Than 2000 Volts AC or 750 Volts DC.
 3. NEMA ICS 5 - Industrial Control and Systems: Control Circuit and Pilot Devices.
 4. NEMA KS 1 - Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).
 5. NEMA PB 1 - Panelboards.
 6. NEMA PB 1.1 - General Instructions for Proper Installation, Operation, and Maintenance of Panelboards Rated 600 Volts or Less.

C. International Electrical Testing Association:

D. National Fire Protection Association:
 1. NFPA 70 - National Electrical Code.

E. Underwriters Laboratories Inc.:
 1. UL 50 - Cabinets and Boxes
 2. UL 67 - Safety for Panelboards.
4. UL 1283 - Electromagnetic Interference Filters.
5. UL 1449 - Transient Voltage Surge Suppressors.
6. UL 1699 - Arc-Fault Circuit Interrupters.

1.03 SUBMITTALS

A. Product Data: Submit catalog data showing specified features of standard products.

B. Shop Drawings: Indicate outline and support point dimensions, voltage, main bus ampacity, integrated short circuit ampere rating, circuit breaker and fusible switch arrangement and sizes.

C. Source Quality control submittals: Indicate results of [shop] [factory] tests and inspections.

D. Field Quality Control Submittals: Indicate results of Contractor furnished tests and inspections.

1.04 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of panelboards and record actual circuiting arrangements.

B. Operation and Maintenance Data: Submit spare parts listing; source and current prices of replacement parts and supplies; and recommended maintenance procedures and intervals.

1.05 MAINTENANCE MATERIAL SUBMITTALS

A. Extra Stock Materials:
 1. Furnish two of each panelboard key. Panelboards keyed alike or to Owner’s current keying system.

1.06 QUALITY ASSURANCE

A. Qualifications
 1. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years’ experience.

PART 2 PRODUCTS

2.01 DISTRIBUTION PANELBOARDS

A. Description: NEMA PB 1, circuit breaker type panelboard.

B. Operation:
1. Minimum integrated short circuit rating: 22,000 amperes rms symmetrical or as indicated on Drawings.

C. Materials
1. Panelboard Bus: Copper, current carrying components, ratings as indicated on Drawings. Furnish copper ground bus in each panelboard.
2. Molded Case Circuit Breakers: UL 489, circuit breakers with integral thermal and instantaneous magnetic trip in each pole. Furnish circuit breakers UL listed as Type HACR for air conditioning equipment branch circuits.
3. Molded Case Circuit Breakers with Current Limiters: UL 489, circuit breakers with replaceable current limiting elements, in addition to integral thermal and instantaneous magnetic trip in each pole.
4. Current Limiting Molded Case Circuit Breakers: UL 489, circuit breakers with integral thermal and instantaneous magnetic trip in each pole, coordinated with automatically resetting current limiting elements in each pole. Interrupting rating 100,000 symmetrical amperes, let-through current and energy level less than permitted for same size NEMA FU 1, Class RK-5 fuse.
5. Circuit Breaker Accessories: Trip units and auxiliary switches as indicated on Drawings.
6. Cabinet Front: As shown on plans.

D. Finishes
1. Manufacturer's standard gray enamel.

2.02 RETROFIT PANELBOARDS
A. Description: NEMA PB1, circuit breaker type, lighting and appliance branch circuit interiors. UL67 Listed.

B. Materials:
1. Panelboard Bus: Copper, current carrying components, ratings as indicated on Drawings. Furnish copper ground bus in each panelboard
2. Minimum Integrated Short Circuit Rating to match existing.
3. Use existing back-boxes unless noted otherwise on the Drawings. Drill back-box to suit mounting of new panel interior.
4. Provide adjustable riser to set interior at proper depth to meet new cover assembly. Install using plated self-tapping screws of the size recommended by the interior manufacturer.
5. Install new circuit breakers in approximate location of existing and reattach conductors.
6. Provide new cover assembly and trim. Furnish “picture-frame” trim where necessary to cover openings in existing back-box or surrounding area.
7. Molded Case Circuit Breakers: UL 489, plug-on type thermal magnetic trip circuit breakers with common trip handle for all poles, to match existing special functions including SWD, HACR, GFCI or UL class 760 arc-fault interrupter circuit breakers.
8. Surge Suppresser: Integrated in panelboard where existing is removed.
9. Enclosure: NEMA PB 1, Type 1 indoors. Retrofit panelboards shall not be used in outdoor locations.

2.03 BRANCH CIRCUIT PANELBOARDS

A. Description: NEMA PB1, circuit breaker type, lighting and appliance branch circuit panelboard.

B. Materials:
1. Panelboard Bus: Copper, current carrying components, ratings as indicated on Drawings. Furnish copper ground bus in each panelboard
2. For non-linear load applications subject to harmonics furnish 200 percent rated, plated copper, solid neutral.
3. Minimum Integrated Short Circuit Rating: 22,000 A or as indicated on Drawings.
4. Molded Case Circuit Breakers: UL 489, plug-on type thermal magnetic trip circuit breakers, with common trip handle for all poles, listed as Type SWD for lighting circuits, Type HACR for air conditioning equipment circuits, Class A ground fault interrupter circuit breakers as indicated on Drawings. Provide UL class 760 arc-fault interrupter circuit breakers as indicated on Drawings. Do not use tandem circuit breakers.
5. Current Limiting Molded Case Circuit Breakers: UL 489, circuit breakers with integral thermal and instantaneous magnetic trip in each pole, coordinated with automatically resetting current limiting elements in each pole. Interrupting rating 100,000 symmetrical amperes, let-through current and energy level less than permitted for same size NEMA FU 1, Class RK-5 fuse.
6. Surge Suppresser: Integrated in panelboard when specified on Drawings
7. Enclosure: NEMA PB 1, Type 1 indoors, Type 3R outdoors.
8. Cabinet Box: 6 inches deep, 20 inches wide unless shown otherwise on the Drawings.

C. Cabinet Front: Surface cabinet front with concealed trim clamps, concealed hinge, metal directory frame, and flush lock keyed alike. Finishes:
1. Finish in manufacturer's standard gray enamel.

2.04 ELECTRONIC GRADE PANELBOARD

A. Description:
1. Integral Surge Suppresser: Component recognized in accordance with UL 1449 and UL 1283.
2. Panelboard: UL 67 listed and TVSS device UL 1449 Component Recognized. TVSS device meets UL 1449. Furnish panelboard markings with clamp voltage at TVSS terminals and clamp voltage at panelboard line terminals.

B. Performance:
1. Integral Surge Suppressers:
 a. Meet or exceed the following criteria:
 1) Maximum single impulse current rating not less than 120 kA for each phase.
 2) Pulse Lift Test: Capable of protecting against and surviving 5000 IEEE C62.41 Category C transients without failure or degradation.
 3) Clamping voltage not exceeding the following:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>L-N</th>
<th>N-G</th>
<th>L-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Y/120</td>
<td>500 V</td>
<td>500 V</td>
<td>500 V</td>
</tr>
<tr>
<td>480Y/277</td>
<td>1000 V</td>
<td>1000 V</td>
<td>1000 V</td>
</tr>
</tbody>
</table>

C. Fabrication:
1. Integral Surge Suppresser:
 a. Furnish copper bus bars for surge current path.
 b. Construct using surge current modules (MOV based). Each module fused with user replaceable 200,000 AIR rated fuses. Status of each module monitored on front cover of panelboard enclosure and on module.
 c. Furnish with audible alarm activated when one of surge current modules has failed. Furnish alarm on/off to silence alarm and alarm push-to-test switch to test alarm. Locate switches and alarm on front cover of panelboard enclosure.
 d. Furnish response time no greater than five nanoseconds for individual protection modes.
 e. Designed to withstand maximum continuous operating voltage (MCOV) of not less than 115 percent of nominal RMS voltage.
 f. Furnish visible indication of proper suppresser connection and operation. Lights indicate operable phase and module.
 g. Furnish minimum EFI/RFI filtering of 34 dB at 100 kHz with insertion loss ratio of 50:1 using Mil Std. 220A methodology.

2. Panelboards
 a. Top or bottom feed as indicated on Drawings. Furnish circuit directory inside door.
 b. Construct box of galvanized steel. Box size as indicated on Drawings.
c. Main bus constructed of copper and rated for load current.
d. Furnish interior with branch circuit breakers. Furnish one 60 amp circuit
 breaker, with appropriate number of poles, as dedicated disconnect for
 TVSS.
e. Furnish standard rated, neutral assembly with copper neutral bus.
f. Furnish with insulated ground bus and safety ground bus.
g. Furnish wiring gutters in accordance with NEC.
h. Furnish with branch breaker positions and nominal current rating as
 indicated on Drawings.

2.05 LOAD CENTERS

A. Description: Circuit breaker load center, with bus ratings as indicated on Drawings.

B. Performance:
 1. Minimum Integrated Short Circuit Rating: 10,000 amperes rms symmetrical or as
 shown on Drawings.

C. Materials:
 1. Molded Case Circuit Breakers: UL 489, plug-on type thermal magnetic trip circuit
 breakers, with common trip handle for poles, listed as Type SWD for lighting
 circuits, Class A ground fault interrupter circuit breakers where indicated on
 Drawings. Do not use tandem circuit breakers.
 2. Enclosure: General Purpose.
 3. Finish in manufacturer's standard gray enamel.

2.06 SOURCE QUALITY CONTROL

A. Independently test integral surge suppressers with category C3 high exposure waveform (20
 kV-1.2/50us, 10kA-8/20 us) per IEEE C62.41.

PART 3 EXECUTION

3.01 DEMOLITION

A. Disconnect abandoned panelboards and load centers. Remove abandoned panelboards and
 load centers.

B. Maintain access to existing panelboard and load centers remaining active and requiring
 access. Modify installation or provide access panel.

The Club at Woodbridge
INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

T&M Project No: WOOD-00510
3.02 INSTALLATION

A. Install panelboards and load centers in accordance with NEMA PB 1.1.

B. Install panelboards and load centers plumb.

C. Install recessed panelboards and load centers flush with wall finishes.

D. Height: 6 feet to top of panelboard and load center; install panelboards taller than 6 feet with bottom no more than 4 inches above floor.

E. Install filler plates for unused spaces in panelboards.

F. Provide typed circuit directory for each branch circuit panelboard and load center. Revise directory to reflect circuiting changes to balance phase loads. Identify each circuit as to its clear, evident and specific purpose of use.

G. Install engraved plastic nameplates.

H. Install spare conduits out of each recessed panelboard to accessible location above ceiling or below floor as applicable. Minimum spare conduits: 5 empty 1 inch. Identify each as SPARE.

I. Ground and bond panelboard enclosure. Connect equipment ground bars of panels in accordance with NFPA 70.

3.03 REPAIR AND RESTORATION

A. Repair existing panelboards and load centers to remain or to be reinstalled.

3.04 FIELD QUALITY CONTROL

A. Inspect and test in accordance with NETA ATS, except Section 4.

B. Perform circuit breaker inspections and tests listed in NETA ATS, Section 7.6.

C. Perform switch inspections and tests listed in NETA ATS, Section 7.5.

D. Perform controller inspections and tests listed in NETA ATS, Section 7.16.1.

3.05 ADJUSTING

A. Measure steady state load currents at each panelboard feeder; rearrange circuits in panelboard to balance phase loads to within 20 percent of each other. Maintain proper phasing for multi-wire branch circuits.
3.06 CLEANING

A. Clean existing panelboards and load centers to remain or to be reinstalled.

END OF SECTION
PART 1 GENERAL

1.1 SUMMARY

A. Section includes wall switches; wall dimmers; receptacles; multioutlet assembly; and device plates and decorative box covers.

1.2 REFERENCES

A. National Electrical Manufacturers Association:
 1. NEMA WD 1 - General Requirements for Wiring Devices.
 2. NEMA WD 6 - Wiring Devices-Dimensional Requirements.

1.3 SUBMITTALS

A. Product Data: Submit manufacturer's catalog information showing dimensions, colors, and configurations.

B. Samples: Submit two samples of each wiring device and wall plate illustrating materials, construction, color, and finish.

1.4 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years experience.

1.5 EXTRA MATERIALS

A. Furnish two of each style, size, and finish wall plate.

PART 2 PRODUCTS

2.1 WALL SWITCHES

A. Product Description: NEMA WD 1, General-Duty, AC only general-use snap switch.

B. Ratings: Match branch circuit and load characteristics.

2.2 WALL DIMMERS

A. Product Description: NEMA WD 1; Semiconductor dimmer for incandescent lamps, Type as indicated on Drawings.
B. Power Rating: As indicated on Drawings.
C. Accessory Wall Switch: Match dimmer appearance.

2.3 RECEPTACLES
A. Product Description: NEMA WD 1, Heavy-duty general use receptacle.
B. Configuration: NEMA WD 6, type as indicated on Drawings.
C. Convenience Receptacle: Type 5-20.
D. GFCI Receptacle: Convenience receptacle with integral ground fault circuit interrupter to meet regulatory requirements.

2.4 WALL PLATES
A. As selected by the Owner.

2.5 MULTIOUTLET ASSEMBLY
A. Multi-outlet Assembly: Sheet metal channel with fitted cover, with pre-wired receptacles, suitable for use as multi-outlet assembly.
B. Receptacles: Furnish covers and accessories to accept convenience receptacles specified in this Section.

PART 3 EXECUTION
3.1 EXAMINATION
A. Verify outlet boxes are installed at proper height.
B. Verify wall openings are neatly cut and completely covered by wall plates.
C. Verify branch circuit wiring installation is completed, tested, and ready for connection to wiring devices.

3.2 PREPARATION
A. Clean debris from outlet boxes.

3.3 EXISTING WORK
A. Disconnect and remove abandoned wiring devices.
B. Modify installation to maintain access to existing wiring devices to remain active.
C. Clean and repair existing wiring devices to remain or to be reinstalled.

3.4 INSTALLATION

A. Install devices plumb and level.
B. Install switches with OFF position down.
C. Install wall dimmers to achieve full rating specified and indicated after derating for ganging as instructed by manufacturer.
D. Do not share neutral conductor on load side of dimmers.
E. Install receptacles with grounding pole on bottom.
F. Install decorative plates on switch, receptacle, and blank outlets in finished areas.
G. Connect wiring devices by wrapping solid conductor around screw terminal. When stranded conductors are used in lieu of solid, use crimp on fork terminals for device terminations. Do not place bare stranded conductors directly under device screws.
H. Use jumbo size plates for outlets installed in masonry walls.
I. Install galvanized steel plates on outlet boxes and junction boxes in unfinished areas, above accessible ceilings, and on surface mounted outlets.

3.5 INTERFACE WITH OTHER PRODUCTS

A. Coordinate locations of outlet boxes to obtain mounting heights as specified and as indicated on drawings.
B. Install wall switch or dimmer 48 inches above finished floor.
C. Install convenience receptacle 18 inches above finished floor.
D. Install convenience receptacle 6 inches above back splash of counter.

3.6 FIELD QUALITY CONTROL

A. Inspect each wiring device for defects.
B. Operate each wall switch with circuit energized and verify proper operation.
C. Verify each receptacle device is energized.
D. Test each receptacle device for proper polarity.
E. Test each GFCI receptacle device for proper operation.

3.7 ADJUSTING
A. Adjust devices and wall plates to be flush and level.

3.8 CLEANING
A. Clean exposed surfaces to remove splatters and restore finish.

END OF SECTION
PART 1 – GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.

1.02 REFERENCE STANDARDS

A. National Electrical Manufacturers Association:
 1. NEMA FU 1 - Low Voltage Cartridge Fuses.
 2. NEMA KS 1 - Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).

B. International Electrical Testing Association:

1.03 SUBMITTALS

A. Product Data: Submit switch ratings and enclosure dimensions.

1.04 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of enclosed switches and ratings of installed fuses.

1.05 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years’ experience.

PART 2 – PRODUCTS

2.01 FUSIBLE SWITCH ASSEMBLIES

A. Description: NEMA KS 1, Type HD or as indicated on Drawings, enclosed load interrupter knife switch. Handle lockable in OFF position.

B. Operation:
 1. Switch Ratings
a. Switch Rating: Horsepower rated for AC or DC as indicated on Drawings.
b. Short Circuit Current Rating: UL listed for 10,000 rms symmetrical amperes when used with or protected by Class H or K fuses (30-600 ampere), 200,000 rms symmetrical amperes when used with or protected by Class R or Class J fuses (30-600 ampere switches employing appropriate fuse rejection schemes), 200,000 rms symmetrical amperes when used with or protected by Class L fuses (800-1200 ampere).

C. Materials:
1. Fuse clips: Designed to accommodate NEMA FU 1, Class R or J fuses.
2. Enclosure: NEMA KS 1, to meet conditions. Fabricate enclosure from steel finished with manufacturer's standard gray enamel unless otherwise noted on the Drawings.
 a. Interior Dry Locations: Type 1.
 b. Exterior Locations: Type 3R unless otherwise noted.
 c. Industrial Locations: Type 4X unless otherwise noted.
3. Service Entrance: Switches identified for use as service equipment are to be labeled for this application. Furnish solid neutral assembly and equipment ground bar.
4. Furnish switches with entirely copper current carrying parts.

2.02 NONFUSIBLE SWITCH ASSEMBLIES

A. Description: NEMA KS 1, Type HD or as indicated on Drawings, enclosed load interrupter knife switch. Handle lockable in OFF position.

B. Operation:
1. Switch Ratings
 a. Switch Rating: Horsepower rated for AC or DC as indicated on Drawings.
 b. Short Circuit Current Rating: UL listed for 10,000 rms symmetrical amperes when used with or protected by Class H or K fuses (30-600 ampere), 200,000 rms symmetrical amperes when used with or protected by Class R or Class J fuses (30-600 ampere switches employing appropriate fuse rejection schemes), 200,000 rms symmetrical amperes when used with or protected by Class L fuses (800-1200 ampere).

C. Materials:
1. Enclosure: NEMA KS 1, to meet conditions. Fabricate enclosure from steel finished with manufacturer's standard gray enamel unless otherwise noted on the Drawings.
 a. Interior Dry Locations: Type 1.
 b. Exterior Locations: Type 3R unless otherwise noted.
 c. Industrial Locations: Type 4X unless otherwise noted.
2. None fusible switches shall not be used for Service Entrance.
3. Furnish switches with entirely copper current carrying parts.

PART 3 – EXECUTION

3.01 DEMOLITION
 A. Disconnect and remove abandoned enclosed switches.
 B. Maintain access to existing enclosed switches and other installations remaining active and requiring access. Modify installation or provide access panel.

3.02 INSTALLATION
 A. Install enclosed switches where indicated.
 B. Install enclosed switches plumb.
 C. Height: 5 feet to operating handle.
 D. Install fuses for fusible disconnect switches.
 E. Install engraved plastic nameplates. Engrave nameplates with the equipment served and the panel and circuit number supplying the switch.
 F. Apply adhesive tag on inside door of each fused switch indicating NEMA fuse class and size installed.

3.03 REPAIR AND RESTORATION
 A. Repair existing enclosed switches to remain or to be reinstalled.

3.04 FIELD QUALITY CONTROL
 A. Closeout Requirements: Requirements for testing, adjusting, and balancing.
 B. Inspect and test in accordance with NETA ATS, except Section 4.
 C. Perform inspections and tests listed in NETA ATS, Section 7.5.

3.05 CLEANING
 A. Clean existing enclosed switches to remain or to be reinstalled.

END OF SECTION
SECTION 26 28 23 - ENCLOSED CIRCUIT BREAKERS

PART 1 GENERAL

1.01 SUMMARY
 A. Section includes molded-case and insulated-case circuit breakers in individual enclosures.

1.02 REFERENCES
 A. International Electrical Testing Association:
 B. Underwriters Laboratories Inc.:
 1. UL 489 - Molded-Case Circuit Breakers, Molded-Case Switches, and Circuit-Breaker Enclosures.

1.03 SUBMITTALS
 A. Product Data: Submit catalog sheets showing ratings, trip units, time current curves, dimensions, and enclosure details.

1.04 CLOSEOUT SUBMITTALS
 A. Project Record Documents: Record actual locations and continuous current ratings of enclosed circuit breakers.

1.05 QUALIFICATIONS
 A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years experience.

PART 2 PRODUCTS

2.01 MOLDED CASE CIRCUIT BREAKER
 A. Product Description: Enclosed, molded-case circuit breaker conforming to UL 489, suitable for use as service entrance equipment where applied.
 B. Field-Adjustable Trip Circuit Breaker: Circuit breakers with frame sizes 200 amperes and larger have mechanism for adjusting long time, short time and continuous current settings for automatic operation.
C. Current Limiting Circuit Breaker: Circuit breaker indicated as current-limiting have automatically-resetting current limiting elements in each pole. Let-through Current and Energy: Less than permitted for same size Class RK-5 fuse.

D. Solid-State Circuit Breaker: Electronic sensing, timing, and tripping circuits for adjustable current settings; ground fault trip with integral ground fault sensing; instantaneous trip; and adjustable short time trip.

E. Current Limiter: Designed for application with molded case circuit breaker.
 1. Coordinate limiter size with trip rating of circuit breaker to prevent nuisance tripping and to achieve interrupting current rating specified for circuit breaker.
 2. Interlocks trip circuit breaker and prevent closing circuit breaker when limiter compartment cover is removed or when one or more limiter is not in place or has operated.

F. Accessories: As indicated on Drawings. Conform to UL 489.

G. Enclosure: UL 489, to meet conditions. Fabricate enclosure from steel finished with manufacturer's standard gray enamel.
 1. Interior Dry Locations: Type 1.
 2. Exterior Locations: Type 3R.
 3. Industrial Locations: Type 4X.

H. Service Entrance: Switches identified for use as service equipment are to be labeled for this application. Furnish solid neutral assembly and equipment ground bar.

2.02 INSULATED CASE CIRCUIT BREAKER

A. Product Description: Enclosed, insulated-case circuit breaker conforming to UL 489, suitable for use as service entrance equipment where applied.

B. Trip Unit: Electronic sensing, timing, and tripping circuits for adjustable current settings; ground fault trip with zero sequence type ground fault sensor; instantaneous trip; and adjustable short time trip.

C. Accessories: As indicated on Drawings. Conform to UL 489.

D. Enclosure: UL 489, to meet conditions. Fabricate enclosure from steel finished with manufacturer's standard gray enamel.
 1. Interior Dry Locations: Type 1.
 2. Exterior Locations: Type 3R.
 3. Industrial Locations: Type 4X.
E. Service Entrance: Switches identified for use as service equipment are to be labeled for this application. Furnish solid neutral assembly and equipment ground bar.

PART 3 EXECUTION

3.01 EXISTING WORK

A. Disconnect and remove abandoned enclosed circuit breakers.

B. Maintain access to existing enclosed circuit breakers and other installations remaining active and requiring access. Modify installation or provide access panel.

C. Clean and repair existing enclosed circuit breakers to remain or to be reinstalled.

3.02 INSTALLATION

A. Install enclosed circuit breakers plumb. Provide supports.

B. Height: 5 feet to operating handle.

C. Install grounding and bonding.

D. Locate and install engraved plastic nameplates.

3.03 FIELD QUALITY CONTROL

A. Inspect and test in accordance with NETA ATS, except Section 4.

B. Perform inspections and tests listed in NETA ATS, Section 7.6.1.1.

3.04 ADJUSTING

A. Adjust trip settings to coordinate circuit breakers with other overcurrent protective devices in circuit.

B. Adjust trip settings to provide adequate protection from overcurrent and fault currents.

END OF SECTION
SECTION 26 51 19 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes the following types of LED luminaires:
 1. Replacement Lamps.
 2. New LED Fixtures.
 4. Finishes.
 5. Luminaire support.

1.2 DEFINITIONS

1.3 CCT: Correlated color temperature.

A. CRI: Color Rendering Index.
B. Efficacy: Number of lumens per watt of electricity.
C. Fidelity Index: How closely the observed light can render colors like the sun, using 99 color samples.
D. Fixture: See "Luminaire."
E. Gamut Index: Measurements of how saturated or desaturated colors appear under the emitted light.
F. IP: International Protection or Ingress Protection Rating.
G. LED: Light-emitting diode.
H. Lumen: Measured output of lamp and luminaire, or both.
I. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type.
luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire used in this Project according to IES LM-79 and IES LM-80.

a. Manufacturers’ Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.

D. Samples for Initial Selection: For each type of luminaire with custom factory-applied finishes.
 1. Include Samples of luminaires and accessories involving color and finish selection.

E. Samples for Verification: For each type of luminaire.
 1. Include Samples of luminaires and accessories to verify finish selection.

F. Product Schedule: For luminaires and lamps.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing laboratory providing photometric data for luminaires.

B. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

C. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of luminaire.

E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency or performed by a qualified testing agency.
F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: One for every 50 of each type and rating installed. Furnish at least five of each type. Spare driver modules shall be provided for each spare lamp that requires an external driver.
 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least two of each type.
 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least two of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.
 1. Obtain Owner’s approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Owner specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

The Club at Woodbridge
INDOOR ICE RINK

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
1.9 DELIVERY, STORAGE, AND HANDLING
 A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY
 A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 B. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 REPLACEMENT LAMP REQUIREMENTS
 A. Furnish UL Type C LED lamp replacements for fixtures scheduled to be relamped.
 B. Furnish UL Type C LED lamp replacements for fixtures scheduled to be relamped and reballasted.
 C. Unrequired ballasts are to be removed and are to be disposed of off-site in a permitted manner.
 D. All lamps to be removed under this project shall be recycled in accordance with the recommendations of the Association of Lighting and Mercury Recyclers (ALMR). If lamps are to be recycled using a drum top crusher on site, the crusher shall be housed and operated in a Contractor furnished vehicle or housing to effectively prevent the spread of waste materials. Drum top crushers shall not be operated within the Owner’s buildings due to the risk of exposure to mercury.

2.3 LUMINAIRE REQUIREMENTS
 A. Luminaire requirements apply to new fixtures only, not to relamped existing fixtures
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Standards:
 1. ENERGY STAR certified.
 2. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
 3. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
 4. UL Listing: Listed for location.
 5. Recessed luminaires shall comply with NEMA LE 4.
 6. User Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61.

D. CRI of 90 minimum. CCT of 3000-6200 K, as approved by Engineer.

E. Minimum rated lamp life of 50,000 hours to L70.

F. Lamps dimmable from 100 percent to 0 percent of maximum light output.

G. Internal driver.

H. Nominal Operating Voltage to suit line voltage of existing.

I. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Colored anodized or powder-coat finish. Color to be selected by the Owner.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Prismatic acrylic or clear, UV-stabilized acrylic as approved
 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Glass: Annealed crystal glass unless otherwise indicated.
4. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Colored anodized or powder-coat finish. Color to be selected by the Owner.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.5 METAL FINISHES
 A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT
 A. Comply with NEC requirements and manufacturer’s recommendations for support of fixtures.
 B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
 C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage or larger.
 D. Rod Hangers: 3/16-inchminimum diameter, cadmium-plated, threaded steel rod.
 E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls if over 10 pounds, attached using wall anchors and box ears if under 10 pounds.
 2. Do not attach luminaires solely using #6 electrical screws in box ears.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with standard ceiling box or as shown in Manufacturer’s literature.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing, rod or wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.

3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements herein for wiring connections.

K. If and where directed, provide additional interior lighting fixtures as described in the proposal section. The bid cost per fixture shall include installation including wiring to constitute a complete and operating system.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified herein.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 24 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 3. Adjust the aim of luminaires in the presence of the Owner and Engineer.

END OF SECTION
SECTION 26 56 19 - EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes exterior luminaries, poles, and accessories.

1.2 SUBMITTALS
 A. Shop Drawings: Indicate dimensions and components for each luminaire not standard Product of manufacturer.
 B. Product Data: Submit dimensions, ratings, and performance data.
 C. Samples: Submit two color chips 3 x 3 inch in size illustrating luminaire finish color where indicated in luminaire schedule.

1.3 QUALIFICATIONS
 A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years’ experience.

1.4 COORDINATION
 A. Furnish bolt templates and pole mounting accessories to installer of pole foundations.

PART 2 - PRODUCTS

2.1 LUMINAIRES
 A. Product Description: Complete exterior luminaire assemblies, with features, options, and accessories as scheduled.

2.2 LED DRIVER AND ARRAYS
 A. UL 1598 listing.
 B. LED arrays shall have LED’s that produce minimum 80 lumens/watt @ 525mA.
 1. Lumen Depreciation Data: Maintain greater than 95% lumen maintenance at 60,000 hours per IES TM-21.
2. LED color: Neutral white, 4000 deg K, minimum CRI of 70, or as scheduled.

C. LED arrays shall have an IP66 enclosure rating.

D. Driver + LED Life Rating not less than 100,000 hours.

E. Power supply / driver shall be field replaceable by means quick-disconnect connectors and easy access mounting hardware.

F. Drives shall accept 120 – 277 volts or 480 volts, 60 Hz.

G. Power Factor > 0.9@ full load.

H. THD < 20% @ full load.

I. Surge protection: 10kA/10kV per ANSI/IEEE C136.2-2014

J. The housing shall have an integral thermal management system with extruded aluminum radiation fins and lateral airways for passive cooling, no devices using moving parts are permitted.

K. Minimum starting temperature: minus 30 deg C, 40 deg C ambient.

M. Comply with In-Situ testing for more reliable results.

N. LED’s shall be Restriction of Hazardous Substances Directive (RoHS) compliant.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify foundations or mountings are ready to receive fixtures.

3.2 EXISTING WORK

A. Disconnect and remove abandoned exterior luminaries.

B. Extend existing exterior luminaire installations using materials and methods compatible with existing installations, or as specified.

C. Clean and repair existing exterior luminaries to remain or to be reinstalled.

D. Examine all below-grade junction points for circuits to all exterior lighting. Any junction using devices not listed for submersion shall be disassembled, cleaned and restored using direct-bury splice kits or waterproof listed devices such as 3M DBY or DBR devices.
E. Provide in-line watertight breakaway fusing in every exterior light pole, Littelfuse POWER-GARD, Bussman HEB Series, or equal.

3.3 INSTALLATION
A. Install concrete bases for lighting poles at locations if and where indicated.
B. Install poles plumb. Install double nuts to adjust plumb. Grout around each base.
C. Install lamps in each luminaire.
D. Bond and ground luminaries, metal accessories and metal poles. Install supplementary grounding electrode at each pole.
E. If and where directed, provide additional exterior lighting fixtures as described in the proposal section. The bid cost per fixture shall include installation including wiring to constitute a complete and operating system.

3.4 FIELD QUALITY CONTROL
A. Operate each luminaire after installation and connection. Inspect for improper connections and operation.
B. Measure illumination levels to verify conformance with performance requirements.
C. Take measurements during night sky, without moon or with heavy overcast clouds effectively obscuring moon.

3.5 ADJUSTING
A. Aim and adjust luminaries to provide illumination levels and distribution.

3.6 CLEANING
A. Clean photometric control surfaces as recommended by manufacturer.
B. Clean finishes and touch up damage.

3.7 PROTECTION OF FINISHED WORK
A. Relamp luminaries having failed lamps at Substantial Completion.

END OF SECTION 265619
SECTION 28 46 00 - FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fire-alarm control panels.
3. Automatic smoke and heat detectors.
5. Auxiliary fire-alarm equipment.
6. Power and signal wire and cable.

1.2 REFERENCE STANDARDS

A. National Fire Protection Association:

2. NFPA 262 - Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

B. UL:

1. UL 268 - Smoke Detectors for Fire Protective Signaling Systems.

1.3 COORDINATION

A. Coordinate Work of this Section with Work of other Sections.

1.4 SUBMITTALS

A. Product Data: Submit manufacturer's catalog information showing electrical characteristics and connection requirements.

B. Shop Drawings:

1. Indicate system wiring diagram showing each device and wiring connections.
2. Indicate annunciator layout.

C. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.
D. Delegated Design Submittals: Submit signed and sealed Shop Drawings with design calculations and assumptions for fire-alarm system.

E. Manufacturer Instructions: Submit detailed instructions on installation requirements, including storage and handling procedures.

F. Field Quality-Control Submittals: Indicate results of Contractor-furnished tests and inspections.

G. Manufacturer Reports:
 1. Certify that equipment has been installed according to manufacturer instructions.
 2. Indicate activities on Site, adverse findings, and recommendations.

H. Qualifications Statements:
 1. Submit qualifications for manufacturer, installer, and licensed professional.
 2. Submit manufacturer's approval of installer.

1.5 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of fire-alarm equipment.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Spare Parts:
 1. Furnish three automatic smoke detectors of each type provided.

B. Extra Stock Materials:
 1. Furnish 10 manual-station, break-glass rods.
 2. Furnish six keys of each type provided.

1.7 QUALITY ASSURANCE

A. Wiring Materials Located in Plenums:
 1. Peak Optical Density: Not greater than 0.5.
 2. Average Optical Density: Not greater than 0.15.
 3. Flame Spread: Not greater than 5 feet when tested according to NFPA 262.
1.8 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years' experience.

B. Installer: Company specializing in performing Work of this Section with minimum three years' experience and approved by manufacturer.

C. Licensed Professional: Professional engineer experienced in design of specified Work and licensed in State.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Inspection: Accept materials on Site in manufacturer's original packaging and inspect for damage.

B. Store materials according to manufacturer instructions.

C. Protection:
 1. Protect materials from moisture and dust by storing in clean, dry location remote from construction operations areas.
 2. Provide additional protection according to manufacturer instructions.

1.10 EXISTING CONDITIONS

A. Field Measurements:
 1. Verify field measurements prior to fabrication.
 2. Indicate field measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Fire-Alarm System:
 1. Manual and automatic local fire-alarm system, with connections to central station.
 2. Comply with NFPA 72.

B. Alarm Sequence of Operation:
 1. Actuation of initiating device causes following system operations:
a. Local fire-alarm signaling devices sound and display.
b. Non-coded signal transmits to central station.
c. Location of alarm zone indicates on fire-alarm control panel and on remote annunciator panel.
d. Signal transmits by zone to building smoke-removal system.
e. Signal transmits to building elevator control panel, initiating return to main floor or alternative floor, and lockout for fire service.
f. Signal transmits to building mechanical controls, shutting down fans and operating dampers.
g. Signal transmits by zone to release door hold-open devices.
h. Signal releases magnetic door hold-open devices.
i. Signal releases electric door locks.

C. Drill Sequence of Operation: Manual drill function causes alarm mode sequence of operation.

D. Trouble Sequence of Operation:

1. System or circuit trouble causes following system operations:
 a. Visual and audible trouble alarm annunciates by zone at fire-alarm control panel.
 b. Visual and audible trouble alarm annunciates at remote annunciator panel.
 c. Trouble signal transmits to remote station and central station.

E. Zoning: As indicated on Drawings.

2.2 CONTROL PANELS

A. Description: Modular fire-alarm control panel, with flush, wall-mounted enclosure.

B. Power Supply:

1. Adequate to serve control panel modules, remote detectors, remote annunciators, smoke dampers, relays and alarm signaling devices as shown and described on he Drawings.
 2. Furnish battery-operated emergency power supply with capacity for operating system in standby mode for 24 hours, followed by alarm mode for 10 minutes.

C. System Supervision: Failure of component or power supply places system in trouble mode.

D. Initiating Device Circuits:

1. Furnish supervised zone module with alarm and trouble indication.
2. Occurrence of single ground or open condition places circuit in trouble mode but does not disable circuit from initiating alarm.

E. Indicating Appliance Circuits:

1. Occurrence of single ground or open condition places circuit in trouble mode but does not disable circuit from signaling alarm.

F. Remote Station Signal Transmitter: Electrically supervised digital alarm communicator transmitter, capable of transmitting alarm and trouble signals over telephone lines to central station receiver.

G. Auxiliary Relays: Sufficient SPDT auxiliary relay contacts for each detection zone to provide accessory functions specified.

2.3 MANUAL FIRE-ALARM STATIONS

A. Description: Manual double-action station with break-glass rod.

B. Mounting: Semiflush.

C. Type: Coded.

D. Backbox: Manufacturer's standard.

2.4 SPOT HEAT DETECTORS

A. Description: Fixed temperature, Combination rate-of-rise and fixed temperature, spot heat detector.

2.5 CEILING SMOKE DETECTORS

A. Description:

1. Comply with NFPA 72 and UL 268.
4. Furnish auxiliary relay contact.
5. Integral Thermal Element Rating: 135 degrees F.
6. Furnish visual indication of detector actuation.

B. Mounting: 4-inch outlet box.

C. Furnish two-wire detector with common power supply and signal circuits.
2.6 DUCT-MOUNTED SMOKE DETECTORS

A. Description:

1. Comply with NFPA 72 and UL 268A.
2. Furnish auxiliary SPDT relay contact.
3. NORMAL-RESET-TEST Switch: Key operated.
4. Duct Sampling Tubes: Extend width of duct.
5. Furnish visual indication of detector actuation.
6. Housing: Duct mounted.

B. Furnish two-wire detector with common power supply and signal circuits.

2.7 FLAME DETECTORS

A. Description:

1. Type: Ultraviolet or Infrared radiation.
2. Comply with NFPA 72.

2.8 ALARM HORN/STROBE

A. Description:

1. Comply with NFPA 72.
2. Sound Rating: 87 dB at 10 feet.
3. Furnish integral strobe lamp and flasher with red-lettered FIRE on white lens.

2.9 REMOTE ANNUNCIATORS

A. Description: Supervised remote annunciator, including audible and visual indication of fire alarm by zone, and audible and visual indication of system trouble.

2.10 DOOR RELEASES

A. Description: Magnetic door holder with integral diodes to reduce buzzing.

2.11 WIRE AND CABLE

A. Description:

1. Power-limited, fire-protective signaling cable.
2. Conductor: Copper.
3. Insulation Rating: 300 V at 105 degrees C.

B. Cable Located Exposed in Plenums:
 1. Power-limited, fire-protective signaling cable classified for fire and smoke characteristics.
 2. Conductor: Copper.
 3. Insulation Rating: 300 V at 105 degrees C.
 4. Suitable for use in air handling ducts, hollow spaces used as ducts, and plenums.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify that products and systems receiving devices are ready for installation.

3.2 INSTALLATION
 A. Install manual station with operating handle 4-1/2 feet above operating floor.
 B. Install audible and visual signal devices 7-1/2 feet above operating floor.
 C. Install 16-AWG minimum size conductors for fire-alarm detection and signal circuit conductors in cable except where conduit is noted on Drawings.
 D. Mount end-of-line devices in box, with last device or separate box adjacent to last device in circuit.
 E. Mount outlet box for electric door holder in a manner to withstand 80 lb of pulling force.
 F. Connect conduit and wire to door release devices, sprinkler flow switches, sprinkler valve tamper switches, fire suppression system control panels, and duct smoke detectors.
 G. Automatic Detector Installation: Comply with NFPA 72.
 H. Install engraved plastic nameplates.
 I. Ground and bond fire-alarm equipment and circuits.
3.3 FIELD QUALITY CONTROL

A. Test fire detection and alarm devices and systems according to NFPA 72 and local fire department requirements.

B. Manufacturer Services: Furnish services of manufacturer's representative experienced in installation of products furnished under this Section for not less than 8 hours on Site for installation, inspection, startup, field testing, adjustments, and instructing Owner's personnel in maintenance of equipment.

C. Equipment Acceptance:
 1. Adjust, repair, modify, or replace components failing to perform as specified and rerun tests.
 2. Make final adjustments to equipment under direction of manufacturer's representative.

D. Furnish installation certificate from equipment manufacturer's representative attesting that equipment has been properly installed and is ready for startup and testing.

3.4 DEMONSTRATION AND TRAINING

A. Demonstrate equipment startup, shutdown, routine maintenance, and emergency repair procedures to Owner's personnel.

3.5 MAINTENANCE

A. Provide service and maintenance of fire-alarm equipment for two years from date of Substantial Completion.

END OF SECTION 284600
SECTION 310513 - SOILS FOR EARTHWORK

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Subsoil materials.
 2. Topsoil materials.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Subsoil:
 1. Basis of Payment: Includes excavating existing subsoil, supplying subsoil materials, and stockpiling.

B. Topsoil:
 1. Basis of Payment: Includes excavating existing topsoil, supplying topsoil materials, and stockpiling.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:
 1. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)).
 2. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)).
 3. ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).

1.4 SUBMITTALS

A. Samples: Submit, in air-tight containers 10 lb sample of each type of fill to testing laboratory.

B. Materials Source: Submit name of imported materials source.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, Section 804, as currently amended.
PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 SUBSOIL MATERIALS

A. Subsoil Type S1: Conforming to NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

2.3 TOPSOIL MATERIALS

A. Topsoil Type S3: Conforming to NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

2.4 ON-GRADE PLANTING MIXTURE

A. 1. Shall be a mixture by volume of the following materials in quantities specified: 20% peat moss, 70% topsoil, 10% course sand. Add 5 pounds of 0-20-20 fertilizer per cubic yard of planting mixture.

B. Offsite Topsoil: If on-site topsoil is insufficient in quantity to provide specified thickness, provide topsoil from approved off-site sources as required to complete the work. Off-site topsoil shall meet the following minimum requirements.

1. Topsoil shall be fertile, friable, well drained, pH range of 6.0 to 6.5, free of sub-soil, toxic substances harmful to plant growth without clay lumps, stones, roots or debris. Analysis of content shall be as follows:

 (a) Sand - 35% to 40%
 (b) Clay - 15% to 20%
 (c) Organic Matter - 2% - 10% max.
 (d) Silt - Balance

2. The contractor shall be responsible for the screening of topsoil should the topsoil warrant the need. The topsoil will be tested for both the physical composition and the chemical properties.

2.5 SOURCE QUALITY CONTROL

A. Testing and Analysis of Subsoil Material: Perform in accordance with ASTM D698.

B. Testing and Analysis of Topsoil Material: Perform in accordance with ASTM D698.

C. When tests indicate materials do not meet specified requirements, change material and retest.
D. Furnish materials of each type from same source throughout the Work.

PART 3 – EXECUTION

3.1 EXCAVATION

A. Excavate subsoil and topsoil from areas designated. Strip topsoil to full depth of topsoil in designated areas.

B. Stockpile excavated material meeting requirements for subsoil materials and topsoil materials

C. Remove excess excavated materials not intended for reuse, from site.

D. Remove excavated materials not meeting requirements for subsoil and topsoil from site.

3.2 STOCKPILING

A. Stockpile materials on site at locations indicated by Engineer.

B. Stockpile in sufficient quantities to meet Project schedule and requirements.

C. Separate differing materials with dividers or stockpile apart to prevent mixing.

D. Stockpile topsoil 8 feet high maximum.

E. Prevent intermixing of soil types or contamination.

F. Direct surface water away from stockpile site to prevent erosion or deterioration of materials.

G. Stockpile unsuitable materials on impervious material and cover to prevent erosion and leaching, until disposed of.

3.3 STOCKPILE CLEANUP

A. Remove stockpile, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

B. When borrow area is indicated, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

END OF SECTION
SECTION 310516 - AGGREGATES FOR EARTHWORK

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Fine aggregate materials.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Aggregate:
 1. Basis of Payment: Includes supplying aggregate materials, stockpiling.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:
 1. AASHTO M147 - Standard Specification for Materials for Aggregate and Soil-Aggregate
 Subbase, Base and Surface Courses.
 2. AASHTO T180 - Standard Specification for Moisture-Density Relations of Soils Using a
 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop.

B. ASTM International:
 2. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil
 Using Standard Effort (12,400 ft-lb/ft³ (600 kN-m/m³)).
 3. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil
 Using Modified Effort (56,000 ft-lb/ft³ (2,700 kN-m/m³)).
 4. ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil
 Classification System).
 5. ASTM D4318 - Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index
 of Soils.

1.4 SUBMITTALS

A. Samples: Submit, in air-tight containers, 10 lb. sample of each type of fill to testing laboratory.

B. Materials Source: Submit name of imported materials suppliers.

C. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Furnish each aggregate material from single source throughout the Work.
B. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, Section 901, as currently amended.

C. Maintain one copy of each document on site.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 COARSE AGGREGATE MATERIALS
 A. Coarse Aggregate Type A1: Conforming to NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

2.3 FINE AGGREGATE MATERIALS
 A. Fine Aggregate Type A5: Conforming to NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

2.4 SOURCE QUALITY CONTROL
 C. When tests indicate materials do not meet specified requirements, change material and retest.

PART 3 – EXECUTION

3.1 EXCAVATION
 A. Excavate aggregate materials from on-site locations designated by Engineer as specified in Section 31 22 13.
 B. Stockpile excavated material meeting requirements for coarse aggregate materials and fine aggregate materials.
 C. Remove excess excavated materials not intended for reuse, from site.
 D. Remove excavated materials not meeting requirements for coarse aggregate materials and fine aggregate materials from site.

3.2 STOCKPILING
 A. Stockpile materials on site at location designated by Engineer.
 B. Stockpile in sufficient quantities to meet Project schedule and requirements.

The Club at Woodbridge
INDOOR ICE RINK
AGGREGATES FOR EARCHWORK
C. Separate different aggregate materials with dividers or stockpile individually to prevent mixing.

D. Direct surface water away from stockpile site to prevent erosion or deterioration of materials.

E. Stockpile unsuitable materials on impervious material and cover to prevent erosion and leaching, until disposed of.

3.3 STOCKPILE CLEANUP

A. Remove stockpile, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

B. When borrow area is indicated, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

END OF SECTION
SECTION 312213 – ROUGH GRADING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Excavating topsoil.
 2. Excavating subsoil.
 3. Cutting, grading, filling, rough contouring, compacting, and grading for future building pads.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Topsoil Fill Type:
 1. Basis of Payment: Includes excavating existing soil, supplying soil materials, stockpiling, scarifying substrate surface, placing where required, and compacting.

B. Subsoil Fill Type:
 1. Basis of Payment: Includes excavating existing subsoil, supplying subsoil materials, stockpiling, scarifying substrate surface, placing where required, and compacting.

C. Structural Fill Type:
 1. Basis of Payment: Includes excavating existing subsoil, supplying structural fill materials, stockpiling, scarifying substrate surface, placing where required, and compacting.

D. Granular Fill Type:
 1. Basis of Payment: Includes supplying granular fill materials, stockpiling, scarifying substrate surface, placing where required, and compacting.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:
 2. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lb/ft³ (600 kN-m/m³)).
 3. ASTM D1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
 4. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft³ (2,700 kN-m/m³)).
 5. ASTM D2167 - Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.

1.4 SUBMITTALS

A. Samples: Submit, in air-tight containers, 10 lb sample of each type of fill to testing laboratory.

B. Materials Source: Submit name of imported materials suppliers.

C. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 CLOSEOUT SUBMITTALS

A. Project Record Documents: Accurately record actual locations of utilities remaining by horizontal dimensions, elevations or inverts, and slope gradients.

1.7 QUALITY ASSURANCE

A. Perform Work in accordance with ASTM C136 and ASTM D2434.

B. Perform Work in accordance with State and local Public Work's standard.

C. Maintain one copy of each document on site.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 MATERIALS

A. Topsoil: Type S3 as specified in Section 31 05 13.

B. Subsoil Fill: Type S1 as specified in Section 31 05 13.

C. Structural Fill: Type S1 as specified in Section 31 05 16.

D. Granular Fill: Type A1 as specified in Section 31 05 16.
PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify survey bench mark and intended elevations for the Work are as indicated on Drawings.

3.2 PREPARATION

A. Call Local Utility Line Information service not less than three working days before performing Work.
 1. Request underground utilities to be located and marked within and surrounding construction areas.

B. Identify required lines, levels, contours, and datum.

C. Notify utility company to remove and relocate utilities.

D. Protect utilities indicated to remain from damage.

E. Protect plant life, lawns, rock outcropping, and other features remaining as portion of final landscaping.

F. Protect bench marks, survey control point, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.

3.3 TOPSOIL EXCAVATION

A. Excavate topsoil from areas to be further excavated, relandscaped, or regraded, without mixing with foreign materials for use in finish grading.

B. Do not excavate wet topsoil.

C. Stockpile in area designated on site to depth not exceeding 8 feet and protect from erosion. Stockpile material on impervious material until disposal.

D. Remove excess topsoil not intended for reuse, from site.

3.4 SUBSOIL EXCAVATION

A. Excavate topsoil from areas to be further excavated, relandscaped, or regraded, without mixing with foreign materials for use in finish grading.

B. Do not excavate wet topsoil.

C. Stockpile in area designated on site to depth not exceeding 8 feet and protect from erosion. Stockpile material on impervious material until disposal.

D. Remove excess topsoil not intended for reuse, from site.
E. Stockpile excavated material in area designated on site in accordance with Section 31 05 13 and 31 05 16.

F. Benching Slopes: Horizontally bench existing slopes greater than 1: 4 to key placed fill material to slope to provide firm bearing.

G. Stability: Replace damaged or displaced subsoil as specified for fill.

3.5 FILLING

A. Fill areas to contours and elevations with unfrozen materials.

B. Place fill material in continuous layers and compact in accordance with schedule at end of this section.

C. Maintain optimum moisture content of fill materials to attain required compaction density.

D. Make grade changes gradual. Blend slope into level areas.

E. Repair or replace items indicated to remain damaged by excavation or filling.

F. Install Work in accordance with NJDOT Standards for Road and Bridge Construction as currently amended.

3.6 TOLERANCES

A. Top Surface of Subgrade: Plus or minus 1/10 foot from required elevation.

3.7 FIELD QUALITY CONTROL

A. Perform laboratory material tests in accordance with ASTM D698.

B. Perform in place compaction tests in accordance with the following:

C. When tests indicate Work does not meet specified requirements, remove Work, replace and retest.

3.8 SCHEDULES

A. Structural Fill: See Site Plans

B. Previous Structural Fill: See Site Plans

C. Subsoil Fill: See Site Plans

D. Topsoil Fill: See Site Plans.
END OF SECTION
SECTION 312316 - EXCAVATION

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Soil densification.
 2. Excavating for paving, roads, and parking areas.
 3. Excavating for slabs-on-grade.
 4. Excavating for site structures.
 5. Excavating for landscaping.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Excavating Soil Materials:
 1. Basis of Payment: Includes general excavating to required elevations, loading and placing materials in stockpile. Over Excavating: Payment will not be made for over excavated work or for replacement materials.

1.3 REFERENCES

A. Local utility standards when working within 24 inches of utility lines.

1.4 SUBMITTALS

A. Excavation Protection Plan: Describe sheeting, shoring, and bracing materials and installation required to protect excavations and adjacent structures and property; include structural calculations to support plan.

B. Shop Drawings: Indicate soil densification grid for each size and configuration footing requiring soils densification.

1.5 QUALITY ASSURANCE

A. Perform Work in accordance with NJDOT Standards for Road and Bridge Construction, as currently required.

B. Maintain one copy of each document on site.

1.6 QUALIFICATIONS

A. Prepare excavation protection plan under direct supervision of Professional Engineer experienced in design of this Work and licensed in State of New Jersey.
PART 2 – PRODUCTS

Not Used.

PART 3 – EXECUTION

3.1 PREPARATION

A. Call Local Utility Line Information service not less than three working days before performing Work.
 1. Request underground utilities to be located and marked within and surrounding construction areas.

B. Identify required lines, levels, contours, and datum.

C. Notify utility company to remove and relocate utilities.

D. Protect utilities indicated to remain from damage.

E. Protect plant life, lawns, rock outcroppings, and other features remaining as portion of final landscaping.

F. Protect bench marks, survey control points, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.

3.2 SOIL DENSIFICATION - VIBRO-COMPACTION

A. Vibro-compact substrates below footing bearing surfaces for footings as indicated on Drawings before excavating site.

B. Densify existing subsoils with relative density rating of compact to dense to attain relative density rating of very dense.

C. Densification Equipment:
 1. Depth Vibrator: Poker type with follower tubes with visible marking every 12 inches to enable insertion depth measurement.
 2. Motion: radial in horizontal plane.
 3. Data Acquisition System: Record amps or pressure of the vibrator motor over time and depth.

D. Perform densification in presence of Geotechnical Engineer directly under each footing with vibrator inserted in grid pattern at maximum 6 feet on center.
 1. Arrange compaction grid for each footing for maximum number of insertion points and with outermost insertion points within the bearing area of footings.
 2. Adjust compaction grid arrangement and spacing as directed by Geotechnical Engineer to achieve required densification.
E. Insert vibrator to maximum specified depth. Densify soils for 30 seconds or other time as directed by Geotechnical Engineer. Withdraw vibrator every 12 inches increments and repeat densification at each increment.
 1. When subsurface obstruction prevents vibrator insertion to specified depth, request instructions from Geotechnical Engineer to compensate for obstruction.

F. Tolerances:
 1. Maximum Deviation from Center of Completed Compaction: 8 inches from indicated position.
 2. Maximum Deviation from Vertical: 4 degrees during vibrator insertion.

3.3 EXCAVATION

A. Underpin adjacent structures which may be damaged by excavation work.

B. Excavate subsoil to accommodate slabs-on-grade, paving, and site structures, and construction operations.

C. Excavate to working elevation for piling work.

D. Compact disturbed load bearing soil in direct contact with foundations to original bearing capacity; perform compaction in accordance with Section 31 23 23 and Section 31 23 17.

E. Slope banks with machine to angle of repose or less until shored.

F. Do not interfere with 45 degree bearing splay of foundations.

G. Grade top perimeter of excavation to prevent surface water from draining into excavation.

H. Trim excavation. Remove loose matter.

I. Remove lumped subsoil, boulders, and rock up to 1/3 cu yd measured by volume. Remove larger material as specified in Section 31 23 23.

J. Notify Architect/Engineer of unexpected subsurface conditions.

K. Correct areas over excavated with as directed by Architect/Engineer.

L. Remove excess and unsuitable material from site.

M. Stockpile excavated material in area designated on site in accordance with Section 31 05 13 and 31 05 16.

N. Repair or replace items indicated to remain damaged by excavation.
3.4 FIELD QUALITY CONTROL

A. Request inspection of excavation and controlled fill operations in accordance with applicable code.

B. Request visual inspection of bearing surfaces by inspection agency before installing subsequent work.

3.5 PROTECTION

A. Prevent displacement or loose soil from falling into excavation; maintain soil stability.

B. Protect bottom of excavations and soil adjacent to and beneath foundation from freezing.

C. Protect structures, utilities and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth operations.

END OF SECTION
SECTION 312317 - TRENCHING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Excavating trenches for utilities.
 2. Compacted fill from top of utility bedding to subgrade elevations.
 3. Backfilling and compaction.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Trenching:
 1. Basis of Payment: Includes excavating to required elevations, protecting excavation, and stockpiling excavated materials, and removing excavated materials from site. Over Excavating: Payment is not made for over excavated work or for replacement materials.

B. Subsoil Fill:
 1. Basis of Payment: Includes furnishing fill material, stockpiling, scarifying substrate surface, placing where required, and compacting.

C. Structural Fill:
 1. Basis of Payment: Includes furnishing fill material, stockpiling, shaping substrate surface, placing where required, and compacting.

D. Granular Fill:
 1. Basis of Payment: Includes furnishing fill material, stockpiling, scarifying substrate surface, placing where required, and compacting.

E. Concrete Fill:
 1. Basis of Payment: Includes furnishing materials, forming, mixing and placing where required, and curing.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:
 1. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)).
 2. ASTM D1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
 3. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)).
4. ASTM D2167 - Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.
5. ASTM D2922 - Standard Test Method for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).

1.4 DEFINITIONS
A. Utility: Any buried pipe, duct, conduit, or cable.

1.5 SUBMITTALS
A. Excavation Protection Plan: Describe sheeting, shoring, and bracing materials and installation required to protect excavations and adjacent structures and property; include structural calculations to support plan.
C. Samples: Submit, in air-tight containers, 10 lb sample of each type of fill to testing laboratory.
D. Materials Source: Submit name of imported fill materials suppliers.
E. Manufacturer's Certificate: Certify products meet or exceed specified requirements

1.6 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.7 QUALITY ASSURANCE
A. Perform Work in accordance with NJDOT Standards Specifications for Road and Bridge Construction, as currently amended.
B. Maintain one copy of each document on site.

1.8 QUALIFICATIONS
A. Prepare excavation protection plan under direct supervision of Professional Engineer experienced in design of this Work and licensed in State of New Jersey

1.9 FIELD MEASUREMENTS
A. Verify field measurements prior to fabrication.

1.10 COORDINATION
A. Verify Work associated with lower elevation utilities is complete before placing higher elevation utilities.
PART 2 – PRODUCTS

2.1 FILL MATERIALS

A. Subsoil Fill: Type S1 as specified in Section 31 05 13.
B. Structural Fill: Type S1 as specified in Section 31 05 13 and 31 05 16.
C. Granular Fill: Type A1 as specified in Section 31 05 16.
D. Concrete: Structural concrete as specified in Section 03 30 00

2.2 ACCESSORIES

A. Manufacturers: See Site Plans

PART 3 – EXECUTION

3.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

3.2 LINES AND GRADES

A. Lay pipes to lines and grades indicated on Drawings.
 1. Architect/Engineer reserves right to make changes in lines, grades, and depths of utilities
 when changes are required for Project conditions.

B. Use laser-beam instrument with qualified operator to establish lines and grades.

 OR

C. Maintain grade alignment of pipe using string line parallel with grade line and vertically above
 centerline of pipe.
 1. Establish string line on level batter boards at intervals of not more than 25 feet.
 2. Install batter boards spanning trench, rigidly anchored to posts driven into ground on both
 sides of trench.
 3. Set three adjacent batter boards before laying pipe to verify grades and line.
 4. Determine elevation and position of string line from elevation and position of offset points
 or stakes located along pipe route.
 5. Do not locate pipe using side lines for line or grade.

3.3 PREPARATION

A. Call Local Utility Line Information service not less than three working days before performing
 Work.
 1. Request underground utilities to be located and marked within and surrounding construction
 areas.
B. Identify required lines, levels, contours, and datum locations.

C. Protect plant life, lawns, rock outcropping, and other features remaining as portion of final landscaping.

D. Protect bench marks, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.

E. Maintain and protect above and below grade utilities indicated to remain.

F. Establish temporary traffic control and detour when trenching is performed in public right-of-way. Relocate controls and reroute traffic as required during progress of Work.

3.4 TRENCHING

A. Excavate subsoil required for utilities to utility service.

B. Remove lumped subsoil, boulders, and rock up of 1/6 cubic yard, measured by volume.

C. Perform excavation within 24 inches of existing utility service in accordance with utility’s requirements.

D. Do not advance open trench more than 200 feet ahead of installed pipe.

E. Cut trenches sufficiently wide to enable installation and allow inspection. Remove water or materials that interfere with Work.

F. Excavate bottom of trenches maximum 2 feet wider than outside diameter of pipe.

G. Excavate trenches to depth indicated on Drawings. Provide uniform and continuous bearing and support for bedding material and pipe utilities.

H. Do not interfere with 45 degree bearing splay of foundations.

I. When Project conditions permit, slope side walls of excavation starting 2 feet above top of pipe. When side walls can not be sloped, provide sheeting and shoring to protect excavation as specified in this section.

J. When subsurface materials at bottom of trench are loose or soft, Engineer until suitable material is encountered.

K. Cut out soft areas of subgrade not capable of compaction in place. Backfill and compact to density equal to or greater than requirements for subsequent backfill material.

M. Correct areas over excavated areas with compacted backfill as specified for authorized excavation or replace with fill concrete as directed by Engineer.
N. Remove excess subsoil not intended for reuse, from site.

O. Stockpile excavated material in area designated on site in accordance with Section 31 05 13 and 31 05 16.

3.5 SHEETING AND SHORING

A. Sheet, shore, and brace excavations to prevent danger to persons, structures and adjacent properties and to prevent caving, erosion, and loss of surrounding subsoil.

B. Support trenches more than 5 feet deep excavated through unstable, loose, or soft material. Provide sheeting, shoring, bracing, or other protection to maintain stability of excavation.

C. Design sheeting and shoring to be left in place as part of the completed Work, cut off minimum 18 inches below finished grade.

OR

D. Design sheeting and shoring to be removed at completion of excavation work.

E. Repair damage caused by failure of the sheeting, shoring, or bracing and for settlement of filled excavations or adjacent soil.

F. Repair damage to new and existing Work from settlement, water or earth pressure or other causes resulting from inadequate sheeting, shoring, or bracing.

3.6 BACKFILLING

A. Backfill trenches to contours and elevations with unfrozen fill materials.

B. Systematically backfill to allow maximum time for natural settlement. Do not backfill over porous, wet, frozen, or spongy subgrade surfaces.

C. Place geotextile fabric over Fill Type prior to placing subsequent fill materials.

D. Place fill material in continuous layers and compact in accordance with schedule at end of this section.

OR

E. Place material in continuous layers as follows:
 1. Subsoil Fill: Maximum 8 inches compacted depth.
 2. Structural Fill: Maximum 6 inches compacted depth.

F. Employ placement method that does not disturb or damage foundation perimeter drainage utilities in trench.
G. Maintain optimum moisture content of fill materials to attain required compaction density.

H. Do not leave more than 50 feet of trench open at end of working day.

I. Protect open trench to prevent danger to the public.

3.7 TOLERANCES

A. Top Surface of Backfilling Under Paved Areas: Plus or minus 0.5 inches, 0.04 feet from required elevations.

B. Top Surface of General Backfilling: Plus or minus 1 inch, 0.8 feet from required elevations.

3.8 FIELD QUALITY CONTROL

A. Perform laboratory material tests in accordance with ASTM D698.

B. Perform in place compaction tests in accordance with the following:

C. When tests indicate Work does not meet specified requirements, remove Work, replace, compact, and retest.

3.9 PROTECTION OF FINISHED WORK

A. Reshape and re-compact fills subjected to vehicular traffic during construction.

3.10 SCHEDULE

A. Storm and Sanitary Piping: See Site Plans

B. Duct Bank: See Site Plans

END OF SECTION
SECTION 312323 - FILL

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backfilling site structures to subgrade elevations.
 2. Fill under slabs-on-grade.
 3. Fill under paving.
 4. Fill for over-excavation.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Fill Type:
 1. Basis of Payment: Includes supplying fill materials, stockpiling, scarifying substrate surface, placing where required, and compacting.

B. Structural Fill:
 1. Basis of Payment: Includes supplying fill material, stockpiling, scarifying substrate surface, placing where required, and compacting.

C. Concrete Fill:
 1. Basis of Payment: Includes supplying fill material, forming, mixing and placing where required, and curing.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:
 1. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lb/ft3 (600 kN-m/m3)).
 2. ASTM D1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
 3. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft3 (2,700 kN-m/m3)).
 4. ASTM D2167 - Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.
 5. ASTM D2922 - Standard Test Method for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).
1.4 SUBMITTALS

B. Samples: Submit, in air-tight containers, 10 lb sample of each type to testing laboratory.
C. Materials Source: Submit name of imported fill materials suppliers.
D. Manufacturer's Certificate: Certify Products meet or exceed specified requirements

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Perform Work in accordance with NJDOT Standard Specification for Road and Bridge Construction, as currently amended.
B. Maintain one copy of each document on site.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – not used

2.2 FILL MATERIALS

A. Subsoil Fill: Type S1 as specified in Section 31 05 13.
B. Structural Fill: Type S1 as specified in Section 31 05 13 and 31 05 16.
C. Granular Fill: Type A1 as specified in Section 31 05 16.
D. Concrete: Structural concrete as specified in Section 03 30 00.

2.3 ACCESSORIES

A. Manufacturers: See Site Plans

PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify subdrainage, dampproofing, or waterproofing installation has been inspected.
B. Verify underground tanks are anchored to their own foundations to avoid flotation after backfilling.
C. Verify structural ability of unsupported walls to support loads imposed by fill.
3.2 PREPARATION

A. Compact subgrade to density requirements for subsequent backfill materials.

B. Cut out soft areas of subgrade not capable of compaction in place. Backfill with structural fill and compact to density equal to or greater than requirements for subsequent fill material.

C. Proof roll to identify soft spots; fill and compact to density equal to or greater than requirements for subsequent fill material.

3.3 BACKFILLING

A. Backfill areas to contours and elevations with unfrozen materials.

B. Systematically backfill to allow maximum time for natural settlement. Do not backfill over porous, wet, frozen or spongy subgrade surfaces.

C. Place geotextile fabric over fill prior to placing next lift of fill.

D. Place material in continuous layers as follows:
 1. Subsoil Fill: Maximum 8 inches compacted depth.
 2. Structural Fill: Maximum 6 inches compacted depth.

E. Employ placement method that does not disturb or damage other work.

F. Maintain optimum moisture content of backfill materials to attain required compaction density.

G. Backfill against supported foundation walls and do not backfill against unsupported foundation walls.

H. Backfill simultaneously on each side of unsupported foundation walls until supports are in place.

I. Make gradual grade changes. Blend slope into level areas.

J. Remove surplus backfill materials from site.

K. Leave fill material stockpile areas free of excess fill materials.

3.4 TOLERANCES

A. Top Surface of Backfilling Under Paved Areas: Plus or minus 6 inches from required elevations.

B. Top Surface of General Backfilling: Plus or minus 1 inch from required elevations.

3.5 FIELD QUALITY CONTROL

A. Perform laboratory material tests in accordance with ASTM D698.
B. Perform in place compaction tests in accordance with the following:

C. When tests indicate Work does not meet specified requirements, remove Work, replace and retest.

D. Proof roll compacted fill surfaces under slabs-on-grade, pavers, and paving.

3.6 PROTECTION OF FINISHED WORK

A. Reshape and re-compact fills subjected to vehicular traffic.

3.7 SCHEDULE

A. Interior Crawl Spaces: See Site Plans
B. Interior Slab-On-Grade: See Site Plans.
C. Exterior Side of Retaining Walls: See Site Plans
D. Underground Tanks: See Site Plans
E. Fill Under Grass Areas: See Site Plans
F. Fill Under Landscaped Areas: See Site Plans
G. Fill For Berming: See Site Plans
H. Fill for French Drains: See Site Plans
I. Fill Under Interlocking Pavers: See Site Plans
J. Fill Under Asphalt and Concrete Paving: See Site Plans
K. Planter Boxes: See Site Plans
L. Fill to Correct Over-excitation: See Site Plans
M. Fill Over Drainage Piping Gravel Cover: See Site Plans
N. Fill Over Excavation of Material: See Site Plans

END OF SECTION
SECTION 320516 – AGGREGATES FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

2. Fine aggregate materials.

B. Related Sections:

1. Section 31 05 16 - Aggregates for Earthwork.
2. Section 31 22 13 - Rough Grading.
3. Section 31 23 17 - Trenching.
4. Section 31 23 23 - Fill.
5. Section 32 11 23 - Aggregate Base Courses.
6. Section 33 31 00 - Sanitary Utility Sewerage Piping.
7. Geotechnical report; bore hole locations and findings of subsurface materials.

1.2 UNIT PRICE - MEASUREMENT AND PAYMENT

A. Aggregate:

2. Basis of Payment: Includes supplying aggregate materials, stockpiling.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:

2. ASTM D448 - Standard Classification for Sizes of Aggregate for Road and Bridge Construction
3. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³).
4. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft^3 (2,700 kN-m/m^3).
5. ASTM D2487 - Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).

1.4 SUBMITTALS

A. Samples: Submit, in air-tight containers, 10 lb sample of each type of fill to testing laboratory.
B. Materials Source: Submit name of imported materials suppliers.
C. Manufacturer's Certificate: Certify Product meet or exceed specified requirements.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Furnish each aggregate material from single source throughout the Work.
B. Perform Work in accordance with New Jersey Township of West Windsor standards.
C. Maintain one copy of each document on site.

PART 2 - PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 COARSE AGGREGATE MATERIALS

A. Coarse Aggregate Type A1 Conforming to New Jersey Township of West Windsor standard.

1. Percent Passing per Sieve Size:

 a. 1 Inch 100
 b. 3/4 Inch 95 to 100
 c. 1/2 Inch 75 to 100
 d. 3/8 Inch 55 to 85
 e. No. 4 35 to 60
 f. No. 16 15 to 35
 g. No. 50 10 to 25
 h. No. 200 Zero to 10
2.3 FINE AGGREGATE MATERIALS

 A. Fine Aggregate Type A5: Conforming to New Jersey Township of West Windsor standards.

 1. Percent Passing per Sieve Size:

 a. No. 4 100
 b. No. 16 10 to 100
 c. No. 50 5 to 90
 d. No. 100 4 to 30

2.4 SOURCE QUALITY CONTROL

 C. When tests indicate materials do not meet specified requirements, change material and retest.

PART 3 - EXECUTION

3.1 EXCAVATION

 A. Excavate aggregate materials from on-site locations as specified in Section 312213.

 B. Stockpile excavated material meeting requirements for coarse aggregate materials and fine aggregate materials.

 C. Remove excess excavated materials not intended for reuse, from site.

 D. Remove excavated materials not meeting requirements from site.

3.2 STOCKPILING

 A. Stockpile materials on site at locations indicated.

 B. Stockpile in sufficient quantities to meet Project schedule and requirements.

 C. Separate different aggregate materials with dividers or stockpile individually to prevent mixing.

 D. Direct surface water away from stockpile site to prevent erosion or deterioration of materials.

 E. Stockpile unsuitable materials on impervious material and cover to prevent erosion and leaching, until disposed of.
3.3 STOCKPILE CLEANUP

A. Remove stockpile, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

B. When borrow area is indicated, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

END OF SECTION
SECTION 321123 – AGGREGATE BASE COURSES

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Aggregate subbase.
 2. Aggregate base course.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Aggregate Subbase:
 1. Basis of Payment: Includes supplying fill material, stockpiling, scarifying substrate surface, placing where required, and compacting.

B. Aggregate Base Course:
 1. Basis of Payment: Includes supplying fill material, stockpiling, scarifying substrate surface, placing where required, and compacting.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:
 1. ASTM D1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
 2. ASTM D2167 - Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.
 5. ASTM D3017 - Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).

1.4 SUBMITTALS

A. Product Data:

B. Samples: Submit, in air-tight containers, 10 lb sample of each type of aggregate fill to testing laboratory.

C. Materials Source: Submit name of aggregate materials suppliers.
D. Manufacturer’s Certificate: Certify products meet or exceed specified requirements.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Furnish each aggregate material from single source throughout the Work.

B. Perform Work in accordance with State and local Public Work’s standard.

C. Maintain once copy of each document on site.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 AGGREGATE MATERIALS

A. Subbase Aggregate: ASTM D2940; graded type.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 inches</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>30 to 60</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 to 12</td>
</tr>
</tbody>
</table>

B. Base Aggregate: ASTM D2940; graded type.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 inches</td>
<td>100</td>
</tr>
<tr>
<td>1-1/2 inches</td>
<td>95 to 100</td>
</tr>
<tr>
<td>3/4 inches</td>
<td>70 to 92</td>
</tr>
<tr>
<td>3/8 inches</td>
<td>50 to 70</td>
</tr>
<tr>
<td>No. 4</td>
<td>35 to 55</td>
</tr>
<tr>
<td>No. 30</td>
<td>12 to 25</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 to 8</td>
</tr>
</tbody>
</table>

OR

2.3 AGGREGATE MATERIALS

A. Coarse Aggregate: Fill Type A1 as specified in Section 32 05 16.

The Club at Woodbridge
INDOOR ICE RINK
AGGREGATE BASE COURSES
2.4 ACCESSORIES
A. Geotextile Fabric: AASHTO M288; non-woven, polypropylene.

PART 3 – EXECUTION
3.1 EXAMINATION
A. Verify compacted substrate is dry and ready to support paving and imposed loads.
 1. Proof roll substrate in minimum two perpendicular passes to identify soft spots.
 2. Remove soft substrate and replace with compacted fill as specified in Section 31 23 23.
B. Verify substrate has been inspected, gradients and elevations are correct.

3.2 PREPARATION
A. Correct irregularities in substrate gradient and elevation by scarifying, reshaping, and recompacting.
B. Do not place fill on soft, muddy, or frozen surfaces.

3.3 AGGREGATE PLACEMENT
A. Install geotextile fabric over subgrade in accordance with manufacturer's instructions.
 1. Lap ends and edges minimum 6 inches.
 2. Anchor fabric to subgrade when required to prevent displacement until aggregate is installed.
B. Place aggregate equal thickness layers to total compacted thickness indicated on Drawings.
 1. Maximum Layer Compacted Thickness: 8 inches.
C. Roller compact aggregate to 95 percent maximum density
D. Level and contour surfaces to elevations, profiles, and gradients indicated.
E. Add small quantities of fine aggregate to coarse aggregate when required to assist compaction.
F. Maintain optimum moisture content of fill materials to attain specified compaction density.
G. Use mechanical tamping equipment in areas inaccessible to compaction equipment.

3.4 TOLERANCES
A. Maximum Variation from Flat Surface: ½ inch measured with 10 foot straight edge.
B. Maximum Variation From Thickness: ¼ inch.
C. Maximum Variation from Elevation: ½ inch.
3.5 FIELD QUALITY CONTROL

A. Compaction testing will be performed in accordance with ASTM D698.

B. When tests indicate Work does not meet specified requirements, remove Work, replace and retest.

C. Frequency of Tests: One test for every 1000 square yards of each layer compacted aggregate.

3.6 COMPACTION

A. Compact materials to 98 percent of maximum density as determined from test strip, in accordance with ASTM D2940.

3.7 SCHEDULES

A. Asphalt Paving Base Course: See Site Plans.

B. Concrete Paving Base Course: See Site Plans.

END OF SECTION
SECTION 321313 – CONCRETE PAVING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Aggregate subbase and base course.
 2. Concrete paving for:
 a. Concrete sidewalks.
 b. Concrete stair steps.
 c. Concrete integral curbs and gutters.
 d. Concrete median barriers.
 e. Concrete parking areas and roads.

1.2 PRICE AND PAYMENT PROCEDURES

A. Aggregate Base Course:
 1. Basis of Payment: Includes supplying fill material (if necessary), stockpiling, scarifying substrate surface, placing where required, and compacting.

B. Concrete Paving:
 1. Basis of Payment: Includes forms, reinforcing, concrete, accessories, placing, finishing, curing, and testing.

1.3 REFERENCE STANDARDS

A. American Association of State Highway and Transportation Officials:

B. American Concrete Institute:
 1. ACI 301 - Specifications for Structural Concrete.
 2. ACI 304 - Guide for Measuring, Mixing, Transporting, and Placing Concrete.

C. ASTM International:
 2. ASTM A185/A185M - Standard Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement.
 4. ASTM A615/A615M - Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement.
 5. ASTM A706/A706M - Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.
The Club at Woodbridge
INDOOR ICE RINK
CONCRETE PAVING

6. ASTM A767/A767M - Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement.
7. ASTM A775/A775M - S Standard Specification for Epoxy-Coated Steel Reinforcing Bars.
10. ASTM C31/C31M - Standard Practice for Making and Curing Concrete Test Specimens in the Field.
17. ASTM C173/C173M - Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method.
18. ASTM C231 - Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method.
23. ASTM C618 - Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete.
34. ASTM D6690 - Standard Specification for Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PRE-INSTALLATION MEETINGS

A. Convene minimum one week prior to commencing work of this section.

1.5 SUBMITTALS

A. Product Data:
 1. Submit data on concrete materials, joint filler, admixtures, and curing compounds.

B. Samples: Submit two sample panels, 8 x 8-inch size illustrating exposed aggregate finish.

C. Design Data:
 1. Submit concrete mix design for each concrete strength. Submit separate mix designs when admixtures are required for the following:
 a. Hot and cold weather concrete work.
 2. Identify mix ingredients and proportions, including admixtures.
 3. Identify chloride content of admixtures and whether or not chloride was added during manufacture.

D. Source Quality Control Submittals: Indicate results of factory tests and inspections.

1.6 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.7 QUALITY ASSURANCE

A. Perform Work in accordance with ACI 301.

B. Obtain cementitious materials from same source throughout.

C. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

D. Maintain one copy of each document on site.

1.8 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum three years documented experience.

The Club at Woodbridge
INDOOR ICE RINK
CONCRETE PAVING
B. Installer: Company specializing in performing work of this section with minimum 5 years documented experience.

1.9 MOCKUP
A. Construct mockup, including paving, joints, surface texture, and exposed aggregate.
B. Locate where indicated on Drawings.
C. Incorporate accepted mockup as part of Work.

1.10 AMBIENT CONDITIONS
A. Do not place concrete when base surface temperature is less than 40 degrees F or surface is wet or frozen.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 AGGREGATE BASE COURSE
A. Aggregate Base Course: As specified in Section 32 11 23

2.3 CONCRETE PAVING
A. Performance / Design Criteria:
 1. Paving: Design for parking.
B. Form Materials:
 1. Form Materials: Conform to ACI 301.
C. Reinforcement:
 1. Welded Plain Wire Fabric: ASTM A185/A185M; in flat sheets; epoxy coated finish.
 2. Dowels: ASTM A615/A615M; 75 ksi yield strength, plain steel bars; cut to length indicated on Drawings, square ends with burrs removed; epoxy coated finish.
 3. Tie Wire: Minimum 16 gage annealed type, epoxy coated.
 4. Epoxy Coating Patching Material: Type as recommended by coating manufacturer.
D. Concrete Materials:
 1. Concrete Materials: Provide in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
 2. Chemical Admixture: ASTM C494/C494M.
 a. Type D - Water Reducing and Retarding.
 4. Slag: ASTM C989; ground granulated blast furnace slag.
 5. Plasticizing: ASTM C1017/C1017M Type I, plasticizing
6. Color Pigment: ASTM C979; mineral oxides, alkali and fade resistant.

2.4 FABRICATION
A. Fabricate reinforcing in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
B. Form standard hooks for 180-degree bends, 90 degree bend, and seismic hooks as indicated on Drawings.

2.5 MIXES
A. Concrete Mix - By Performance Criteria:
 1. Mix and deliver concrete in accordance with ASTM C94/C94M, Option A.
B. Concrete Mix - By Prescriptive Criteria:
 1. Mix and deliver concrete in accordance with ASTM C94/C94M, Option B.

2.6 FINISHES
A. Shop Finishing - Reinforcement:
 2. Epoxy Coated Finish for Steel Bars: ASTM A775/A775M.
B. Epoxy Coated Finish for Steel Wire: ASTM A884/A884M; Class A, using ASTM A775/A775M.

2.7 ACCESSORIES
A. Curing Compound: ASTM C309

 OR

B. Joint Sealers: ASTM D6690; hot applied type.

2.8 SOURCE QUALITY CONTROL
A. Submit proposed mix design of each class of concrete to appointed firm for review prior to commencement of Work.
B. Tests on cement, aggregates, and mixes will be performed to ensure conformance with specified requirements.
C. Test samples in accordance with ASTM C94/C94M.
PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify compacted subgrade subbase is dry and ready to support paving and imposed loads.
 1. Proof roll subbase with minimum two perpendicular passes to identify soft spots.
 2. Remove soft subbase and replace with compacted fill as specified in Section 31 23 23.

B. Verify gradients and elevations of base are correct.

3.2 PREPARATION

A. Moisten substrate to minimize absorption of water from fresh concrete.

B. Coat surfaces of manhole frames with oil to prevent bond with concrete paving.

C. Notify Architect/Engineer minimum 24 hours prior to commencement of concreting operations.

3.3 INSTALLATION

A. Base Course:
 1. Aggregate Base Course: Install as specified in Section 32 11 23.

B. Forms:
 1. Place and secure forms and screeds to correct location, dimension, profile, and gradient.
 2. Assemble formwork to permit easy stripping and dismantling without damaging concrete.

C. Reinforcement:
 1. Place reinforcing as indicated on Drawings.

D. Placing Concrete:
 1. Coordinate installation of snow melting components.
 2. Place concrete in accordance with ACI 301.

E. Joints
 1. Place expansion joints at 20 foot intervals. Align curb, gutter, and sidewalk joints.
 2. Place joint filler between paving components or any other appurtenances.
 3. Provide scored joints at 3 feet intervals between sidewalks and curbs, between curbs and paving.
 4. Provide keyed joints as indicated.

F. Exposed Aggregate:
 1. Apply surface retarder where exposed aggregate finish is required.
 2. Wash exposed aggregate surface with clean water and scrub with stiff bristle brush exposing aggregate to match sample panel.

G. Finishing:
1. Paving: Light broom.
2. Sidewalk Paving: Light broom.
5. Direction of Texturing: Transverse to paving direction.
6. Inclined Vehicular Ramps: Broomed perpendicular to slope.
7. Place curing compound on exposed concrete surfaces immediately after finishing.

H. Curing and Protection
1. Cure floor surfaces in accordance with ACI 301

3.4 TOLERANCES

A. Maximum Variation of Surface Flatness: 1/2 in 10 ft.

B. Maximum Variation from True Position: 1/4 inch.

3.5 FIELD QUALITY CONTROL

A. Perform field inspection and testing in accordance with ASTM C94/C94M

B. Inspect reinforcing placement for size, spacing, location, support.

C. Testing firm will take cylinders and perform slump and air entrainment tests in accordance with ACI 301.

D. Strength Test Samples:
 3. Sample concrete and make one set of three cylinders for every 75 cu yds or less of each class of concrete placed each day and for every 5,000 sf of surface area paving.
 4. Make one additional cylinder during cold weather concreting, and field cure.

E. Field Testing:
 1. Slump Test Method: ASTM C143/C143M.
 2. Air Content Test Method: ASTM C173/C173M.
 3. Temperature Test Method: ASTM C1064/C1064M.
 4. Measure slump and temperature for each compressive strength concrete sample.
 5. Measure air content in air entrained concrete for each compressive strength concrete sample.

F. Cylinder Compressive Strength Testing:
 1. Test Method: ASTM C39/C39M.
 2. Test Acceptance: in accordance with State and local Public Work's standards.
 3. Test one cylinder at 7 days.
 4. Test two cylinders at 28 days.
 5. Retain one cylinder for testing when requested by Architect/Engineer.
 6. Dispose remaining cylinders when testing is not required.
G. Maintain records of placed concrete items. Record date, location of pour, quantity, air temperature, and test samples taken.

3.6 PROTECTION

A. Immediately after placement, protect paving from premature drying, excessive hot or cold temperatures, and mechanical injury.

B. Do not permit pedestrian traffic over paving for 7 days minimum after finishing.

3.7 ATTACHMENTS

A. Concrete Sidewalks and Median Barrier: 3,000 psi 28 day concrete, 4 inches thick, buff color Portland cement, exposed aggregate finish.

B. Parking Area Paving: 4,000 psi 28 day concrete, 5 inches thick, 6/6 - 6 x 6 inch mesh reinforcing, wood float finish.

END OF SECTION
SECTION 321423 - ASPHALT PAVING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Asphalt materials.
 2. Aggregate materials.
 3. Aggregate subbase.
 4. Asphalt paving base course, binder course, and wearing course.
 5. Asphalt paving overlay for existing paving.
 6. Surface slurry.

1.2 PRICE AND PAYMENT PROCEDURES

A. Aggregate Subbase:
 1. Basis of Payment: Includes supplying and stockpiling aggregate, scarifying substrate surface, placing, and compacting subbase.

B. Asphalt Paving Base Course:
 1. Basis of Payment: Includes priming surfaces, tack coating surfaces, furnishing, placing, compacting, and testing base course.

C. Asphalt Paving Binder Course:
 1. Basis of Payment: Includes priming surfaces, tack coating surfaces, furnishing, placing, compacting, and testing binder course.

D. Asphalt Paving Wearing Course:
 1. Basis of Payment: Includes priming surfaces, tack coating surfaces, furnishing, placing, compacting, and testing wearing course.

E. Tack Coat:
 1. Basis of Payment: Includes preparing surfaces and applying.

1.3 REFERENCE STANDARDS

A. American Association of State Highway and Transportation Officials:

B. Asphalt Institute:
1. AI MS-2 - Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types.
3. AI SP-2 - Superpave Mix Design.

C. ASTM International:
1.4 SUBMITTALS

A. Product Data:
 1. Submit product information for asphalt and aggregate materials.
 2. Submit mix design with laboratory test results supporting design.

B. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 QUALITY ASSURANCE

A. Mixing Plant: Conform to State and local Public Work's standard.

B. Obtain materials from same source throughout.

C. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

D. Maintain one copy of each document on site.

1.7 QUALIFICATIONS

A. Installer: Company specializing in performing work of this section with minimum 3 years documented experience.

1.8 AMBIENT CONDITIONS

A. Do not place asphalt mixture between November 1 and March 1

B. Do not place asphalt mixture when ambient air or base surface temperature is less than 40 degrees F, or surface is wet or frozen.

C. Place asphalt mixture when temperature is not more than 15 degrees F less than initial mixing temperature.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 ASPHALT PAVING

A. Performance / Design Criteria:
 1. Paving: Design for parking.

B. Asphalt Materials:
1. Asphalt Binder: In accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
2. Primer: ASTM D2027; medium curing, cutback asphalt. In accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
3. Tack Coat: In accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
4. Reclaimed Asphalt Pavement (RAP): Processed material obtained by milling or full depth removal of existing asphalt paving.
5. Oil: In accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

C. Aggregate Materials:
 1. Coarse Aggregate: In accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
 2. Fine Aggregate: In accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

D. Aggregate Subbase: Specified in Section 32 11 23

2.3 MIXES

A. Use dry material to avoid foaming. Mix uniformly.
B. Asphalt Paving Mixtures: Designed in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
C. Surface Slurry: ASTM D3910, emulsified asphalt slurry.

2.4 ACCESSORIES

A. Geotextile Fabric: AASHTO M288; non-woven, polypropylene.
B. Sealant: ASTM D6690, hot applied type.

2.5 SOURCE QUALITY CONTROL

A. Submit proposed mix design of each class of mix for review prior to beginning of Work.
B. Test samples in accordance with AI MS-2

PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify utilities indicated under paving are installed with excavations and trenches backfilled and compacted.
B. Verify compacted subgrade subbase is dry and ready to support paving and imposed loads.
 1. Proof roll subbase with minimum two perpendicular passes to identify soft spots.
 2. Remove soft subbase and replace with compacted fill as specified in Section 31 23 23.

C. Verify gradients and elevations of base are correct.

D. Verify manhole frames are installed in correct position and elevation.

3.2 PREPARATION

A. Prepare subbase in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

3.3 DEMOLITION

A. Saw cut and notch existing paving as indicted on Drawings.

B. Clean existing paving to remove foreign material, excess joint sealant and crack filler from paving surface.

C. Repair surface defects in existing paving to provide uniform surface to receive new paving.

3.4 INSTALLATION

A. Subbase:
 1. Aggregate Subbase: Install as specified in Section 32 11 23.

B. Primer:
 1. Apply primer in accordance with AI MS-2.

C. Tack Coat:
 1. Apply tack coat in accordance with AI MS-19
 2.
 a. New Surfaces: 1/2 gal/sq yd.
 b. Existing Surfaces: 1/2 gal/sq yd.
 3. Apply tack coat to contact surfaces of curbs, and gutters.
 4. Coat surfaces of manhole frames with oil to prevent bond with asphalt paving. Do not tack coat these surfaces.

D. Single Course Asphalt Paving:
 1. Install Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
 2. Place asphalt within 24 hours of applying primer or tack coat.
 3. Place asphalt wearing course to thickness indicated on Drawings.
 4. Compact paving by rolling to specified density. Do not displace or extrude paving from position. Hand compact in areas inaccessible to rolling equipment.
 5. Perform rolling with consecutive passes to achieve even and smooth finish without roller marks.
E. Double Course Asphalt Paving:
1. Place asphalt binder course within 24 hours of applying primer or tack coat.
2. Place binder course to thickness indicated on Drawings.
3. Place wearing course within 24 hours of placing and compacting binder course. When binder course is placed more than 24 hours before placing wearing course, clean surface and apply tack coat before placing wearing course.
4. Place wearing course to thickness indicated on Drawings.
5. Compact each course by rolling to specified density. Do not displace or extrude paving from position. Hand compact in areas inaccessible to rolling equipment.
6. Perform rolling with consecutive passes to achieve even and smooth finish, without roller marks.

F. Asphalt Paving Overlay
1. Apply tack coat to existing paving surface at rate recommended by geotextile fabric manufacturer.
2. Install geotextile fabric in accordance with manufacturer's instructions to permit asphalt saturation of fabric. Lap fabric edge and end joints 4 inches.
3. Place wearing course to thickness indicated on Drawings.
4. Compact overlay by rolling to specified density. Do not displace or extrude paving from position. Hand compact in areas inaccessible to rolling equipment.
5. Perform rolling with consecutive passes to achieve even and smooth finish, without roller marks.

G. Surface Slurry
1. Install uniform thickness surface slurry over existing paving in accordance with ASTM D3910.
2. Allow slurry to cure.
3. Roll paving to achieve uniform surface.

H. Curbs
1. Install extruded asphalt curbs as indicated on Drawings.

3.5 TOLERANCES
A. Flatness: Maximum variation of 1/4 inch measured with 10 foot straight edge.

B. Scheduled Compacted Thickness: Within 1/4 inch.

C. Variation from Indicated Elevation: Within 1/2 inch.

3.6 FIELD QUALITY CONTROL
A. Take samples and perform tests including mat density tests in accordance with State and local Public Work’s Standards.

B. Asphalt Paving Mix Temperature: Measure temperature at time of placement.
C. Asphalt Paving Thickness: ASTM D3549; test one core sample from every 1000 square yards compacted paving.

D. Asphalt Paving Density: ASTM D2950 nuclear method; test one location for every 1000 square yards compacted paving.

3.7 PROTECTION

A. Immediately after placement, protect paving from mechanical injury for 24 hours or until surface temperature is less than 140 degrees F.

3.8 ATTACHMENTS

A. Paving at Truck Ramp and Garbage Area: Single course of 3-1/2 inch compacted thickness, with surface slurry.

B. Paving at Parking Areas: Two courses; binder course of 2-1/2 inch compacted thickness and wearing course of 1 inch compacted thickness.

C. Paving at Rear Bus Loading Area: Thickness and compaction of subbase to support vehicles up to 30,000 lb.

D. Paving Front Sidewalks: Thickness and compaction of subbase to support moderate pedestrian traffic.

END OF SECTION
SECTION 330513 - MANHOLES AND STRUCTURES

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Monolithic concrete manholes and structures with masonry transition to cover frame, covers, anchorage, and accessories.
 2. Modular precast concrete manhole and structures with tongue-and-groove joints with masonry transition to cover frame, covers, anchorage, and accessories.
 3. Monolithic FRP manholes and structures with transition to cover frame, covers, anchorage, and accessories.
 4. Masonry manholes and structures with masonry transition to cover frame, covers, anchorage, and accessories.
 5. Bedding and cover materials.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Manhole:
 1. Basis of Payment: Includes excavating, concrete base pad, concrete manhole sections, FRP manhole sections, brick masonry manhole construction, brick masonry transition to cover frame, cover frame and cover, to indicated depth design depth, forming and sealing pipe inlets and outlets.

B. Drainage Structures:
 1. Basis of Payment: Includes excavating, concrete base pad, concrete sections, FRP sections, brick masonry construction, brick masonry transition to cover frame, cover frame and cover, to indicated depth, forming and sealing pipe inlets and outlets.

1.3 REFERENCES

A. American Concrete Institute:
 1. ACI 318 - Building Code Requirements for Structural Concrete.
 2. ACI 530/530.1 - Building Code Requirements for Masonry Structures and Specifications for Masonry Structures.

B. ASTM International:

1.4 DESIGN REQUIREMENTS
A. Equivalent strength: Based on structural design of reinforced concrete as outlined in ACI 318.
B. Design of Lifting Devices for Precast Components: In accordance with ASTM C913.
C. Design of Joints for Precast Components: In accordance with ASTM C913; maximum leakage of 0.025 gallons per hour per foot of joint at 3 feet of head.

1.5 SUBMITTALS
A. Shop Drawings: Indicate manhole and structure locations, elevations, piping, conduit, and sizes and elevations of penetrations.
B. Product Data: Submit cover and frame construction, features, configuration and, dimensions.

1.6 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.7 QUALITY ASSURANCE
A. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
B. Maintain one copy of each document on site.

1.8 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years documented experience.

1.9 DELIVERY, STORAGE AND HANDLING
A. Comply with precast concrete manufacturer’s instructions for unloading, storing and moving precast manholes and structures.
B. Store precast concrete manholes and structures to prevent damage to Owner’s property or other public or private property. Repair property damaged from materials storage.
C. Mark each precast structure by indentation or waterproof paint showing date of manufacture, manufacturer, and identifying symbols and numbers shown on Drawings to indicate its intended use.

1.10 ENVIRONMENTAL REQUIREMENTS

A. Maintain materials and surrounding air temperature to minimum 50 degrees prior to, during, and 48 hours after completion of masonry work.

B. Cold Weather Requirements: ACI 530.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 MANHOLES AND STRUCTURES

A. Manufacturers:
 1. Armorcast Products Company
 2. Hanson Pipe & Precast
 3. Monarch Products, Inc.
 4. Oldcastle Precast, Inc.
 5. Or Approved Equal

B. Manhole and Structure Sections: Reinforced precast concrete in accordance with ASTM C478 with gaskets in accordance with ASTM C923

C. Mortar and Grout: As specified in Section 03 60 00.

D. Reinforcement: Formed steel wire, galvanized finish, unfinished.

2.3 FRAMES AND COVERS

A. Manufacturers:
 1. Barry Pattern & Foundry Co., Inc
 2. East Jordan Iron Works, Inc.
 3. McKinley Iron Works, Inc.
 4. Neenah Foundry
 5. Or Approved Equal

B. Product Description: ASTM A48/A48M, Class 30B Cast iron construction, machined flat bearing surface, removable boltable lid, closed cover design; sealing gasket; cover molded with identifying name and logo.
2.4 COMPONENTS

A. Manhole and Structure Steps: Formed galvanized steel, aluminum, or FRP rungs; 3/4 inch diameter. Formed integral with manhole and structure sections.

B. Base Pad: Cast-in-place concrete of type specified in Section 03 30 00

C. Strap Anchors: Bent steel shape, galvanized.

2.5 CONFIGURATION

A. Shaft Construction: Concentric with concentric cone top section; lipped male/female dry joints; sleeved to receive pipe

B. Shape: Cylindrical

C. Clear Inside Dimensions: As indicated on Drawings.

D. Design Depth: As indicated on Drawings.

E. Clear Cover Opening: As indicated on Drawings.

F. Pipe Entry: Furnish openings as indicated on Drawings

G. Steps: As indicated on Drawings.

2.6 BEDDING AND COVER MATERIALS

A. Bedding: Fill Type A1 as specified in Section 31 05 16.

B. Cover: Fill Type A1 as specified in Section 31 05 16.

C. Soil Backfill from Above Pipe to Finish Grade: Soil Type S1, as specified in Section 31 05 13

2.7 FINISHING - STEEL

A. Galvanizing: ASTM A123/A123M; hot dip galvanize after fabrication.

PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify items provided by other sections of Work are properly sized and located.

B. Verify built-in items are in proper location, and ready for roughing into Work.

C. Verify correct size of manhole and structure excavation.
3.2 PREPARATION

A. Coordinate placement of inlet and outlet pipe or duct sleeves required by other sections.

B. Do not install structures where site conditions induce loads exceeding structural capacity of structures.

C. Inspect precast concrete structures immediately prior to placement in excavation to verify structures are internally clean and free from damage. Remove and replace damaged units.

3.3 INSTALLATION

A. Excavation and Backfill:
 1. Excavate for manholes and structures in accordance with Section 31 23 16 in location and to depth shown. Provide clearance around sidewalls of structure for construction operations.
 2. When groundwater is encountered, prevent accumulation of water in excavations. Place manholes and structures in dry trench.
 3. Where possibility exists of watertight structure becoming buoyant in flooded excavation, anchor structure to avoid flotation.

B. Place base pad, trowel top surface level.

C. Place manhole and structure sections plumb and level, trim to correct elevations, anchor to base pad.

D. Install manholes and structures supported at proper grade and alignment on crushed stone bedding as shown on Drawings.

E. Backfill excavations for manholes and structures in accordance with Section 31 23 16. And 31 23 23

F. Form and place manhole and structures cylinder plumb and level, to correct dimensions and elevations. As Work progresses, build fabricated metal items.

G. Cut and fit for pipes and sleeves.

H. Grout base of shaft sections to achieve slope to exit piping. Trowel smooth. Contour to form continuous drainage channel

I. Set cover frames and covers level without tipping, to correct elevations.

J. Coordinate with other sections of Work to provide correct size, shape, and location.

3.4 MASONRY MANHOLE AND STRUCTURE INSTALLATION

A. Maintain masonry courses to uniform dimension. Form vertical and horizontal joints of uniform thickness.
B. Lay masonry units in running bond. Course one unit and one mortar joint to equal 8-inches

C. Form flush mortar joints.

D. Lay masonry units in full bed of mortar, with full head joints, uniformly jointed with other Work.

E. Install joint reinforcement 16 inches on center.

F. Place joint reinforcement in first and second horizontal joints above base pad and below covers frame opening.

G. As work progresses, build in fabricated metal items

H. Cut and fit for pipes and sleeves

I. Set cover frames and covers level without tipping, to correct elevations.

J. Grout base of shaft sections to achieve slope to exit piping. Trowel smooth. Contour to form continuous drainage channel.

K. Coordinate with other sections of Work to provide correct size, shape, and location.

3.5 PRECAST CONCRETE MANHOLE AND STRUCTURE INSTALLATION

A. Lift precast components at lifting points designated by manufacturer.

B. When lowering manholes and structures into excavations and joining pipe to units, take precautions to ensure interior of pipeline and structure remains clean.

C. Set precast structures bearing firmly and fully on crushed stone bedding, compacted in accordance with provisions of Sections 31 23 16 and 31 23 23 or on other support system shown on Drawings.

D. Assemble multi-section structures by lowering each section into excavation. Lower, set level, and firmly position base section before placing additional sections.

E. Remove foreign materials from joint surfaces and verify sealing materials are placed properly. Maintain alignment between sections by using guide devices affixed to lower section.

F. Joint sealing materials may be installed on site or at manufacturer’s plant.

G. Verify manholes and structures installed satisfy required alignment and grade.

H. Remove knockouts or cut structure to receive piping without creating openings larger than required to receive pipe. Fill annular space with mortar.

I. Cut pipe to finish flush with interior of structure.
J. Shape inverts through manhole and structures as shown on Drawings.

3.6 CAST-IN-PLACE CONCRETE MANHOLE AND STRUCTURE INSTALLATION

A. Prepare crushed stone bedding or other support system shown on Drawings, to receive base slab as specified for precast structures.

B. Erect and brace forms against movement in accordance with Section 03 10 00.

C. Install reinforcing steel as indicated on Drawings and in accordance with Section 03 20 00.

D. Place and cure concrete in accordance with Section 03 30 00.

3.7 FRAME AND COVER INSTALLATION

A. Set frames using mortar and masonry. Install radially laid concrete brick with 1/4-inch-thick vertical joints at inside perimeter. Lay concrete brick in full bed of mortar and completely fill joints. Where more than one course of concrete brick is required, stagger vertical joints.

B. Set frame and cover 2 inches above finished grade for manholes and structures with covers located within unpaved areas to allow area to be graded away from cover beginning 1 inch below top surface of frame.

3.8 FIELD QUALITY CONTROL

A. Test concrete manhole and structure sections in accordance with ASTM C497

B. Test cast-in-place concrete in accordance with Section 03 30 00.

C. Vertical Adjustment of Existing Manholes and Structures:
 1. Where required, adjust top elevation of existing manholes and structures to finished grades shown on Drawings.
 2. Reset existing frames, grates and covers, carefully removed, cleaned of mortar fragments, to required elevation in accordance with requirements specified for installation of castings.
 3. Remove concrete without damaging existing vertical reinforcing bars when removal of existing concrete wall is required. Clean vertical bars of concrete and bend into new concrete top slab or splice to required vertical reinforcement, as indicated Drawings.
 4. Clean and apply sand-cement bonding compound on existing concrete surfaces to receive cast-in-place concrete in accordance with Section 03 30 00.

3.9 SCHEDULES

A. Storm Sewer Manholes: Precast concrete sections, galvanized steel steps, not less than 48 inches inside dimension, to depth indicated, with bolted lid.

B. Electric Service Manholes: Prefabricated FRP sections, integral molded steps, 60 inch inside dimension, to depth indicated.
SECTION 330516.13 - PRECAST CONCRETE UTILITY STRUCTURES

PART 1 – GENERAL

1.1 SUMMARY

A. Section includes precast concrete utility structures:
 1. Drainage system catch basins.
 2. Drainage system inlets.
 3. End walls.
 4. Pipe ends.
 5. Frames and covers.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Precast Concrete Utility Structures:
 1. Basis of Payment: Includes excavating, concrete foundation slab, concrete structure sections, cover frame and cover, to indicated depth, forming and sealing pipe inlets and outlets.

1.3 REFERENCES

A. American Association of State Highway Transportation Officials:
 1. AASHTO M306 - Drainage Structure Castings.

B. American Concrete Institute:
 1. ACI 318 - Building Code Requirements for Structural Concrete.
 2. ACI 211.1 - Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete.
 3. ACI 211.2 - Standard Practice for Selecting Proportions for Structural Lightweight Concrete.

C. ASTM International:
 3. ASTM A82/A82M - Standard Specification for Steel Wire, Plain, for Concrete Reinforcement.
 5. ASTM A185/A185M - Standard Specification for Steel Welded Wire Fabric, Plain, for Concrete Reinforcement.
 6. ASTM A496 - Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement.
 8. ASTM A615/A615M - Standard Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement.
10. ASTM A767/A767M - Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement.
11. ASTM A775/A775M - Standard Specification for Epoxy-Coated Steel Reinforcing Bars.
13. ASTM A996/A996M - Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
14. ASTM C31/C31M - Standard Practice for Making and Curing Concrete Test Specimens in the Field.
17. ASTM C138/C138M - Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete.
20. ASTM C192/C192M - Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.
21. ASTM C231 - Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method.
26. ASTM C618 - Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete.
28. ASTM C890 - Standard Practice for Minimum Structural Design Loading for Monolithic or Section Precast Concrete Water and Wastewater Structures.

The Club at Woodbridge
INDOOR ICE RINK

T&M Project No: WOOD-00510

PRECAST CONCRETE UTILITY STRUCTURES

330516.13-2
37. ASTM C1244 - Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test prior to Backfill.

D. American Welding Society:
 1. AWS D1.1 - Structural Welding Code - Steel.
 2. AWS D1.4 - Structural Welding Code - Reinforcing Steel.

E. Federal Aviation Administration:
 1. FAA AC 150/5320-6 - Airport Pavement Design and Evaluation.
 2. FAA AC 150/5370-10A - Standards for Specifying Construction for Airports.

F. National Precast Concrete Association:
 1. NPCA Quality Control Manual for Precast Plants.
 2. NPCA Plant Certification Program.

G. South Coast Air Quality Management District:

H. SSPC: The Society for Protective Coatings:
 1. SSPC Paint 20 - Zinc-Rich Primers (Type I - Inorganic and Type II - Organic).

1.4 DESIGN REQUIREMENTS

A. Design structures for minimum loads in accordance with ASTM C857 and ASTM C890.
 1. Roof Live Load: Comply with the following loading conditions, including impact load.
 a. Heavy Traffic: AASHTO S99-HB; HS20-44, maximum 16,000 lb each wheel.
 5. Equipment Loads: as indicated on Drawings.

1.5 SUBMITTALS

A. Shop Drawings:
 1. Indicate structure locations, elevations, sections, piping / conduit sizes and elevations of penetrations.
 2. Indicate design, construction and installation details, typical reinforcement and additional reinforcement at openings and for each type, size, and configuration.
B. Product Data:
 1. Submit data for frames and covers, steps, component construction, features, configuration, dimensions.

C. Samples: Submit two precast concrete samples, illustrating exposed to view finishes.

D. Design Data:
 1. Submit concrete mix design for each different mix.
 2. Submit design calculations signed and sealed by professional engineer.

E. Manufacturer's Certificate: Certify Products meet or exceed specified requirements

1.6 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.7 QUALITY ASSURANCE

A. Obtain precast concrete utility structures from single source.

B. Perform structural design in accordance with ACI 318.

C. Preform Work in accordance with NPCA Quality Control Manual for Precast Plants.

D. Conform to the following for material and fabrication requirements:
 2. Multiple Cell Box Culverts:

E. Perform welding in accordance with the following:
 2. Reinforcing Steel: AWS D1.4.

F. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

G. Maintain one copy of each document on site.

1.8 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years’ experience.

B. Installer: Company specializing in performing work of this section.

C. Design utility structures under direct supervision of Professional Engineer experienced in design of this Work and licensed In State of New Jersey.

D. Welders: AWS qualified within previous 12 months.
1.9 DELIVERY, STORAGE AND HANDLING

A. Comply with precast concrete manufacturer’s instructions for unloading, storing and moving precast structures. Lift structures from designated lifting points.

B. Do not deliver products until concrete has cured 5 days or attained minimum 75 percent of specified 28 day compressive strength.

C. Store precast concrete structures to prevent damage to Owner’s property or other public or private property. Repair property damaged from materials storage.

D. Mark each precast structure by indentation or waterproof paint showing date of manufacture, manufacturer, and identifying symbols and numbers shown on Drawings to indicate its intended use.

PART 2 – PRODUCTS

2.1 PRECAST CONCRETE UTILITY STRUCTURES

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Precast Concrete Utility Structures: Reinforced precast concrete.

C. Foundation Slab: Cast-in-place or precast concrete of type specified in Section 03 30 00 leveled top surface.

2.2 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.3 CONCRETE MATERIALS

A. Cement: ASTM C150, Type I - Normal Portland type.

B. Fine and Coarse Aggregates: ASTM C33, except gradation requirements do not apply.

C. Water: Clean and not detrimental to concrete.

2.4 ADMIXTURES

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Air Entrainment: ASTM C260.

C. Chemical Admixtures: ASTM C494/C494M.
 1. Type D - Water Reducing and Retarding.
D. Fly Ash: ASTM C618.

E. Blast Furnace Slag: ASTM C989 Grade

F. Pigments: Mineral oxide, non-fading, lime resistant;

2.5 CONCRETE REINFORCEMENT

A. Reinforcing Steel: ASTM A615/A615M, 75 ksi yield grade, plain deformed billet bars, epoxy coated finish.

B. Reinforcing Wire:
 1. Plain Wire: ASTM A82/A82M epoxy coated.

C. Welded Steel Wire Fabric:
 1. Plain Wire: ASTM A185/A185M; epoxy coated.

D. Reinforcing Steel Finishes:
 1. Galvanized Finish: ASTM A767/A767M,
 2. Epoxy Coating Finish: ASTM A775/A775M.

E. Wire and Wire Fabric Finishes:

2.6 FRAMES AND COVERS

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

2.7 ACCESS HATCHES

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

2.8 ACCESSORIES

A. Membrane Curing Compound: ASTM C309

B. Steps: Formed steel reinforced, polypropylene, galvanized steel, or aluminum rungs.
 1. Diameter: See Site Plan
 2. Width: See Site Plan
 3. Spacing: See Site Plan

C. Inserted and Embedded Items:
 1. Structural Steel Sections: ASTM A36/A36M; galvanized.

The Club at Woodbridge
INDOOR ICE RINK
PRECAST CONCRETE UTILITY STRUCTURES
T&M Project No: WOOD-00510 330516.13-6
D. Joint Sealants and Joint Gaskets:
 2. External Sealing Bands: ASTM C877; Type I rubber and mastic bands; Preformed Joint Sealants for Concrete Pipe and Box Sections: ASTM C990.
 3. Elastomeric Joint Sealants: ASTM C920; silicone; Grade NS, Class 25;

E. Pipe Entry Connectors: ASTM C923.

F. Grout:
 1. Cement Grout: Portland cement, sand and water mixture with stiff consistency to suit intended purpose.
 2. Non-Shrink Grout: ASTM C1107/C1107M; premixed compound consisting of non-metallic aggregate, cement, water reducing and plasticizing agents; capable of developing minimum compressive strength of 2,400 psi in 48 hours and 7,000 psi in 28 days;

G. Touch-Up Primer for Galvanized Surfaces: SSPC 20, Type I Inorganic

2.9 CONCRETE MIX

A. Select proportions for normal weight concrete in accordance with ACI 318. and ACI 211.1.

B. Provide concrete to the following criteria:
 1. Compressive Strength: 4,000 psi at 28 days.
 2. Water Cement Ratio:
 a. Concrete Exposed to Freezing and Thawing: Maximum 0.45 percent by mass.
 b. Watertight Concrete Not Exposed to Freezing and Thawing: Maximum 0.45 percent by mass.
 c. Concrete Exposed to Corrosive Conditions: 0.40 percent by mass.
 3. Air Content:

 | Maximum Aggregate Size inches | Air Content, Percent | |
|---|---|---|
 | | Severe Exposure | Moderate Exposure |
 | 3/8 inches | 6.0 to 9.0 | 4.5 to 7.5 |
 | 1/2 inches | 5.5 to 8.5 | 4.7 to 7.0 |
 | 3/4 inches | 4.5 to 7.5 | 3.5 to 6.5 |
 | 1 inches | 4.5 to 7.5 | 3.0 to 6.0 |
 | 1-1/2 inches | 4.5 to 7.0 | 3.0 to 6.0 |

C. Admixtures: Include admixture types and quantities indicated in concrete mix designs approved through submittal process.
 1. Do not use calcium chloride.

The Club at Woodbridge
INDOOR ICE RINK
PRECAST CONCRETE UTILITY STRUCTURES
T&M Project No: WOOD-00510

330516.13-7
2.10 FABRICATION

A. Fabricate precast concrete utility structures in accordance with ACI 318. and NPCA Quality Control Manual for Precast Plants.

B. Fabricate precast concrete utility structures to size, configuration, and openings as indicated on Drawings.

C. Construct forms to provide uniform precast concrete units with consistent dimensions.

D. Clean forms after each use.

E. Install reinforcing by tying or welding to form rigid assemblies. Position reinforcing to maintain minimum 1/2-inch cover. Secure reinforcement to prevent displacement when placing concrete.

F. Position and secure embedded items to prevent displacement when placing concrete.

G. Deposit concrete in forms. Consolidate concrete without segregating aggregate.

H. Provide initial curing by retaining moisture using one of the following methods:
 1. Cover with polyethylene sheets.
 2. Cover with burlap or other absorptive material and keep continually moist.
 3. Apply curing compound in accordance with manufacturer's instructions.

I. Provide final curing in accordance with manufacturer's standard.

J. Remove forms without damaging concrete.

2.11 CONCRETE FINISHES

A. Formed Surfaces Not Exposed to View: As formed.

B. Unformed Surfaces: Finish with vibrating screed or hand float.
 1. Permitted: Color variations, minor indentations, chips, and spalls.
 2. Not Permitted: Major imperfections, honeycomb, or other defects.

2.12 SOURCE QUALITY CONTROL

A. Perform the following tests for each 150 cy of concrete placed, with minimum one set of tests each week.
 1. Slump: ASTM C143/C143M.
 3. Air Content: ASTM C231 or ASTM C173/C173M.
 4. Unit Weight: ASTM C138/C138M.

B. Visually inspect completed precast structures for defects.
 1. Repair defects affecting exposed to view surfaces to achieve uniform appearance.
2. Repair honeycomb by removing loose material and applying grout to produce smooth surface flush with adjacent surface.
3. Repair major defects only when permitted by Engineer.

C. Make test results available to Engineer upon request.

D. Allow witnessing of factory inspections and test at manufacturer’s test facility. Notify Engineer at least seven days before inspections and tests are scheduled.

2.13 FINISHING - STEEL

A. Galvanizing: ASTM A123/A123M; hot dip galvanize after fabrication.

PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify items provided by other sections of Work are properly sized and located.
B. Verify correct size and elevation of excavation.
C. Verify subgrade and bedding is properly prepared, compacted and ready to receive Work of this section.

3.2 PREPARATION

A. Coordinate placement of inlet and outlet pipe or duct sleeves required by other sections.
B. Do not install structures where site conditions induce loads exceeding structural capacity of structures.
C. Inspect precast concrete structures immediately prior to placement in excavation to verify are internally clean and free from damage. Remove and replace damaged units.

3.3 INSTALLATION

A. Install underground precast utility structures in accordance with ASTM C891.
B. Lift precast concrete structures at lifting points designated by manufacturer.
C. When lowering structures into excavations and joining pipe to units, take precautions to ensure interior of pipeline and structure remains clean.
D. Install precast concrete base to elevation and alignment indicated on Drawings.
E. Install precast concrete utility structures to elevation and alignment indicated on Drawings.
F. Assemble multi-section structures by lowering each section into excavation.

The Club at Woodbridge
INDOOR ICE RINK

PRECAST CONCRETE UTILITY STRUCTURES
1. Clean joint surfaces.
2. Install watertight joint seals in accordance with manufacturer's instructions using gasket joints.

G. Remove knockouts or cut structure to receive piping without creating openings larger than required to receive pipe. Fill annular space with grout.

H. Connect pipe / utility to structure and seal watertight. Cut pipe / utility flush with interior of structure.

I. Grout foundation slab to achieve slope to exit piping. Trowel smooth. Contour to form continuous drainage channel.

J. Paint interior with 2 coats of bituminous interior coating at rate of 120 square feet per gallon for each coat.

K. Set frame and cover level without tipping, to elevations indicated on Drawings.
 1. Set cover 2-inches above finished grade for structures located within unpaved areas to allow area to be graded away from cover.
 2. Connect drain from access hatch frame to storm drainage system.

L. Touch up damaged galvanized coatings.

M. Install Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections for structures indicated to be watertight:
 2. Hydrostatic Exfiltration Test: In accordance with manufacturer's instructions

3.5 SCHEDULES (SEE SITE PLANS)

END OF SECTION
SECTION 331213 - WATER SERVICE CONNECTIONS

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipe and fittings for domestic water service connections.
 2. Meter setting equipment.
 3. Water meters.
 5. Underground pipe markers.
 7. Bedding and cover materials.

1.2 PRICE AND PAYMENT PROCEDURES

A. Pipe and Fittings:
 1. Basis of Payment: Includes hand trimming excavation, pipe and fittings, bedding, concrete
 thrust restraints, connection to future building service piping, and to municipal utility water
 source.

B. Corporation Stop Assembly:
 1. Basis of Payment: Includes corporation stop, fittings and accessories.

C. Curb Stop Assembly:
 1. Basis of Payment: Includes curb stop, curb box and cover, fittings, and accessories.

D. Water Meters:
 1. Basis of Payment: Includes meter, meter setting equipment, fittings and accessories.

E. Backflow Preventers:
 1. Basis of Payment: Includes backflow preventer, fittings and accessories.

1.3 REFERENCE STANDARDS

A. American Association of State Highway and Transportation Officials:
 1. AASHTO T180 - Standard Specification for Moisture-Density Relations of Soils Using a
 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop.

B. American Society of Mechanical Engineers:
 1. ASME B16.18 - Cast Copper Alloy Solder Joint Pressure Fittings.
 2. ASME B16.22 - Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

C. American Society of Sanitary Engineering:
 1. ASSE 1012 - Backflow Preventer with Intermediate Atmospheric Vent.
 2. ASSE 1013 - Reduced Pressure Principle Backflow Preventers.
D. ASTM International:
2. ASTM B62 - Standard Specification for Composition Bronze or Ounce Metal Castings.
5. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN·m/m³)).
6. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN·m/m³)).

E. American Welding Society:
1. AWS A5.8 - Specification for Filler Metals for Brazing and Braze Welding.

F. American Water Works Association:
1. AWWA C600 - Installation of Ductile-Iron Water Mains and Their Appurtenances.
2. AWWA C700 - Cold-Water Meters - Displacement Type, Bronze Main Case.
3. AWWA C701 - Cold-Water Meters - Turbine Type, for Customer Service.
4. AWWA C702 - Cold-Water Meters - Compound Type.
5. AWWA C706 - Direct-Reading, Remote-Registration Systems for Cold-Water Meters.
6. AWWA C800 - Underground Service Line Valves and Fittings.
7. AWWA C901 - Polyethylene (PE) Pressure Pipe and Tubing, 1/2 in. through 3 in., for Water Service.
9. NJ American Water
 a. Contact Information: 908-431-3240

1.4 SUBMITTALS

A. Product Data: Submit data on pipe materials, pipe fittings, corporation stop assemblies, curb stop assemblies, meters, meter setting equipment, service saddles, backflow preventer, and accessories.

B. Shop Drawings: Provide shop drawings for precast concrete vaults to include detail drawings showing the vault and accessories.

C. Manufacturer's Certificate: Certify products meet or exceed specified requirements

The Club at Woodbridge
INDOOR ICE RINK
WATER SERVICE CONNECTIONS

T&M Project No: WOOD-00510

331213-2
1.5 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.6 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record actual locations of piping mains, curb stops, connections, thrust restraints, and invert elevations.

B. Identify and describe unexpected variations to subsoil conditions or discovery of uncharted utilities.

1.7 QUALITY ASSURANCE

A. Perform Work in accordance with NJ American Water

B. Maintain one copy of each document on site.

1.8 DELIVERY, STORAGE, AND HANDLING

A. During loading, transporting, and unloading of materials and products, exercise care to prevent any damage.

B. Store products and materials off ground and under protective coverings and custody, away from walls and in manner to keep these clean and in good condition until used.

C. Exercise care in handling precast concrete products to avoid chipping, cracking, and breakage.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 WATER PIPING AND FITTINGS

A. Ductile Iron Pipe:

B. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

C. Corporation Stops:
 1. Brass or red brass alloy body conforming to ASTM B62.
 2. Inlet end threaded for tapping according to AWWA C800.
 3. Outlet end suitable for service pipe specified.

D. Service Saddles:
 1. Double strap type, designed to hold pressures in excess pipe working pressure.
2.3 CURB STOP ASSEMBLY

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Curb Stops:
 1. Brass or red brass alloy body conforming to ASTM B62.
 2. Plug type valve.
 3. Positive pressure sealing.

C. Curb Boxes and Covers:
 1. Cast iron body, Extension Type or Buffalo Type.
 2. Minneapolis or Arch Pattern Base.
 3. Lid with inscription WATER, with Pentagon Plug.

2.4 METER SETTING EQUIPMENT

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Outside Meter Setting:
 1. Meter Yokes: Copper or iron, riser type assembly with bronze inlet inverted key angle valve expansion type outlet connection and Ell fitting; flared copper tubing connections both ends.
 2. Meter Yokes: Copper or iron, inlet and outlet horizontal or vertical setting with matching couplings, fittings and stops.

2.5 WATER METERS

A. Furnish materials in accordance with NJ American water standards.

2.6 BACKFLOW PREVENTERS

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Reduced Pressure Backflow Preventers:
 1. Comply with ASSE 1013.
 2. Bronze body, with bronze internal parts and stainless steel springs.
 3. Two independently operating, spring loaded check valves; diaphragm type differential pressure relief valve located between check valves; third check valve opening under back pressure in case of diaphragm failure; non-threaded vent outlet; assembled with two gate valves, strainer, and four test cocks.

C. Double Check Valve Assemblies: Comply with ASSE 1012; Bronze body with corrosion resistant internal parts and stainless steel springs; two independently operating check valves with intermediate atmospheric vent.
2.7 UNDERGROUND PIPE MARKERS

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Plastic Ribbon Tape: Bright colored, continuously printed, minimum 6 inches wide by 4 mil thick, manufactured for direct burial service.

C. Trace Wire: Electronic detection materials for non-conductive piping products.
 1. Unshielded 10 gage THWN insulated copper wire.
 2. Conductive tape.

2.8 PRECAST CONCRETE VAULT

A. Furnish materials in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Product Description: Precast vault designed in accordance with ASTM C858, comprising modular, interlocking sections complete with accessories.

C. Shape: indicated on Drawings.

D. Riser Casting: 6 inch, with manhole step cast into frame.

E. Frames and Covers: ASTM A48/A48M; Class 30B gray cast iron, 30 inch size, machine finished with flat bearing surfaces. Furnish cover marked WATER SERVICE to indicate utility.

F. Pipe Entry Locations: As indicated on Drawings.

G. Steps: Polypropylene plastic step with 1/2-inch steel reinforcement or Cast steps at 12 inches on center vertically.

2.9 BEDDING AND COVER MATERIALS

A. Bedding: Fill Type A1 as specified in Section 31 05 16.

B. Cover: Fill Type A1, as specified in Section 31 05 16.

C. Soil Backfill from Above Pipe to Finish Grade: Soil Type S1, as specified in Section 31 05 13. Subsoil with no rocks over 6 inches in diameter, frozen earth or foreign matter.

2.10 ACCESSORIES

A. Concrete for Thrust Restraints: Concrete type specified in Section 03 30 00.

B. Manhole and Cover: Refer to Section 33 05 13.
PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify future building service connection and municipal utility water main size, location, and invert are as indicated on Drawings.

3.2 PREPARATION

A. Cut pipe ends square, ream pipe and tube ends to full pipe diameter, remove burrs.
B. Remove scale and dirt on inside and outside before assembly.
C. Prepare pipe connections to equipment with flanges or unions.

3.3 INSTALLATION - CORPORATION STOP ASSEMBLY

A. Make connection for each different kind of water main using suitable materials, equipment and methods approved by the Engineer.
B. Provide service clamps for mains other than of cast iron or ductile iron mains.
C. Screw corporation stops directly into tapped and threaded iron main at 10 and 2 o'clock position on main's circumference; locate corporation stops at least 12 inches apart longitudinally and staggered.
D. For plastic pipe water mains, provide full support for service clamp for full circumference of pipe, with minimum 2 inches width of bearing area; exercise care against crushing or causing other damage to water mains at time of tapping or installing service clamp or corporation stop.
E. Use proper seals or other devices so no leaks are left in water mains at points of tapping; do not backfill and cover service connection until approved by the Engineer.

3.4 BEDDING

A. Backfill around sides and to top of pipe in accordance with Section 31 23 23.
B. Place fill material in accordance with Section 31 23 23.

3.5 INSTALLATION - PIPE AND FITTINGS

A. Maintain separation of water main from sewer piping in accordance with NJ American Water Regulations.
B. Group piping with other site piping work whenever practical.
C. Route pipe in straight line.
D. Install pipe to allow for expansion and contraction without stressing pipe or joints.
E. Install access fittings to permit disinfection of water system performed under Section 33 13 00.
F. Form and place concrete for thrust restraints at each elbow or change of direction of pipe main.
G. Establish elevations of buried piping with not less than 3 ft of cover.
H. Backfill trench in accordance with Section 31 23 23.

3.6 INSTALLATION - CURB STOP ASSEMBLY

A. Set curb stops on compacted soil.
B. Center and plumb curb box over curb stops. Set box cover flush with finished grade.

3.7 INSTALLATION - WATER METERS

A. Install Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

3.8 INSTALLATION - BACKFLOW PREVENTERS

A. Install backflow preventer where indicated on the Contract Drawings and in accordance with manufacturer’s instructions.
B. Comply with local water company requirements and plumbing codes in regards to testing and installation requirements.

3.9 SERVICE CONNECTIONS

A. Install water service in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.
B. Install Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

3.10 PRECAST CONCRETE VAULT

A. Construct valve vaults of precast concrete.
B. Seal vault joints watertight with preformed plastic joint sealant compound. Apply asphalt waterproofing to exterior walls.
C. Seal annular space between pipe and wall sleeves as indicated on the Contract Drawings.
D. Install vault covers and frames; adjust to finished grade elevation.
3.11 FIELD QUALITY CONTROL

A. Perform pressure test on domestic site water distribution system in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended.

B. Compaction Testing for Bedding: In accordance with ASTM D698.

C. When tests indicate Work does not meet specified requirements, remove Work, replace and retest.

D. Frequency of Compaction Tests: Every 100 feet.

END OF SECTION
SECTION 333100 - SANITARY UTILITY SEWERAGE PIPING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sanitary sewage pipe.
 2. Underground pipe markers.
 4. Bedding and cover materials.

1.2 LUMP SUM - MEASUREMENT AND PAYMENT

A. Pipe and Fittings:
 1. Basis of Payment: Includes hand trimming, excavation, bedding, pipe and fittings, connection to future building service piping, and to municipal sewer.

B. Cleanout:
 1. Basis of Payment: Includes hand trimming, excavating, foundation pad, unit installation with accessories, connection to sewer piping.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials:

B. ASTM International:
 2. ASTM C14 - Standard Specification for Concrete Sewer, Storm Drain, and Culvert Pipe.
 7. ASTM D698 - Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)).
 8. ASTM D1557 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)).
17. ASTM D3017 - Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).
20. Stony Brook Regional Sewage Authority
 a. Contact Information: Heidi Bode (609-924-8881)

1.4 DEFINITIONS

A. Bedding: Fill placed under, beside and directly over pipe, prior to subsequent backfill operations.

1.5 SUBMITTALS

A. Product Data: Submit data indicating pipe material used, pipe accessories.

B. Manufacturer's Installation Instructions: Indicate special procedures required to install Products specified.

C. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.6 SUSTAINABLE DESIGN SUBMITTALS – NOT USED

1.7 CLOSEOUT SUBMITTALS

A. Project Record Documents: Record location of pipe runs, connections, manholes, cleanouts, and invert elevations.

B. Identify and describe unexpected variations to subsoil conditions or discovery of uncharted utilities.
1.8 QUALITY ASSURANCE

A. Perform Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended and Stony Brook Sewage Authority.

B. Maintain one copy of each document on site.

1.9 PRE-INSTALLATION MEETINGS

A. Convene minimum one week prior to commencing work of this section.

1.10 FIELD MEASUREMENTS

A. Verify field measurements and elevations are as indicated.

1.11 COORDINATION

A. Coordinate the Work with termination of sanitary sewer connection outside future building, connection to sewer utility service, and trenching.

PART 2 – PRODUCTS

2.1 SUSTAINABILITY CHARACTERISTICS – NOT USED

2.2 SANITARY SEWAGE PIPE

A. Plastic Pipe: ASTM D3034, SDR 35, Poly (Vinyl Chloride) (PVC) material; bell and spigot style rubber ring sealed gasket joint.
 1. Fittings: PVC.

2.3 UNDERGROUND PIPE MARKERS

A. Manufacturers:
 1. Kolbi Pipe Marker Co.
 2. Marking Services, Inc.
 3. Pipemaker.com; Brimar Industries, Inc.
 4. Rhino Marking and Protection Systems
 5. Seton Identification Products

B. Plastic Ribbon Tape: Bright colored, continuously printed, minimum 6 inches wide by 4 mil thick, manufactured for direct burial service.

C. Trace Wire: Magnetic detectable conductor, brightly colored plastic covering, imprinted with Sewer Service in large letters.
2.4 MANHOLES

A. Manufacturers:
 2. Neenah Foundry
 3. Polylok, Inc.

B. Manhole Lid and Frame:
 1. Construction: Cast iron construction, hinged lid.
 2. Lid Design: See Detail
 3. Nominal Lid and Frame Size: See Detail

2.5 BEDDING AND COVER MATERIALS

A. Bedding: Fill Type A1 as specified in Section 31 05 16.

B. Cover: Fill Type A1, as specified in Section 31 05 16.

C. Soil Backfill from Above Pipe to Finish Grade: Soil Type S1 as specified in Section 31 05 13

PART 3 – EXECUTION

3.1 EXAMINATION

A. Verify excavation base is ready to receive work and excavations, dimensions, and elevations are as indicated on drawings.

3.2 PREPARATION

A. Correct over excavation with coarse aggregate.

B. Remove large stones or other hard matter which could damage pipe or impede consistent backfilling or compaction.

3.3 BEDDING

A. Excavate pipe trench in accordance with Section 31 23 17.

B. Place bedding material at trench bottom, level materials in continuous layer not exceeding 8 inches.

C. Maintain optimum moisture content of bedding material to attain required compaction density.

3.4 INSTALLATION - PIPE

A. Install pipe, fittings, and accessories in accordance with ASTM D2321. Seal joints watertight.
B. Lay pipe to slope gradients noted on drawings; with maximum variation from indicated slope of 1/8 inch in 10 feet.

C. Install bedding at sides and over top of pipe to minimum compacted thickness of 12 inches.

D. Refer to Section 31 23 17 for backfilling and compacting requirements. Do not displace or damage pipe when compacting.

E. Connect to future building sanitary sewer outlet and municipal sewer system

F. Install Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended and Stony Brook Sewage Authority.

3.5 INSTALLATION - MANHOLES

A. Excavate for manholes in accordance with Section 31 23 16.

B. Form bottom of excavation clean and smooth to correct elevation.

C. Form and place cast-in-place concrete base pad, with provision for sanitary sewer pipe end sections.

D. Establish elevations and pipe inverts for inlets and outlets as indicated on Drawings.

E. Mount lid and frame level in grout, secured to top cone section to elevation indicated.

F. Install Work in accordance with NJDOT Standard Specifications for Road and Bridge Construction, as currently amended and Stony Brook Sewage Authority.

3.6 FIELD QUALITY CONTROL

A. Perform test on site sanitary sewage system in accordance with Stony Brook Sewage Authority Standards.

B. Request inspection prior to and immediately after placing bedding.

C. Compaction Testing: In accordance with ASTM D698.

D. When tests indicate Work does not meet specified requirements, remove work, replace and retest.

3.7 PROTECTION OF FINISHED WORK

A. Protect pipe and aggregate cover from damage or displacement until backfilling operation is in progress.
3.8 SCHEDULE

A. Sanitary Sewer Main: From 5 feet beyond east wall of future building location, to municipal sewer under Oak Street. Size: 8 inches.

B. Cleanout: Near west side of main sidewalk, on sanitary sewer main.

END OF SECTION